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Prediction of Phase Noise and Spurs in a Nonlinear
Fractional-N Frequency Synthesizer

Yann Donnelly , Student Member, IEEE, and Michael Peter Kennedy , Fellow, IEEE

Abstract— Integer boundary spurs appear in the passband
of the loop response of fractional-N phase lock loops and
are, therefore, a potentially significant component of the phase
noise. In spite of measures guaranteeing spur-free modulator
outputs, the interaction of the modulation noise from a divider
controller with inevitable loop nonlinearities produces such spurs.
This paper presents analytical predictions of the locations and
amplitudes of the spurs and accompanying noise floor levels
produced by interaction between a divider controller output and
a PLL loop with a static nonlinearity. A key finding is that
the spur locations and amplitudes can be estimated by using
only the knowledge of the structure and pdf of the accumulated
modulator noise and the nonlinearity. These predictions also offer
new insights into why the spurs appear.

Index Terms— Fractional-N, PLL, spur, prediction, phase
noise, nonlinearity, noise floor, spectrum.

I. INTRODUCTION

FRACTIONAL-N PLLs are widely used where the gen-
eration of precisely-defined frequency components is

required [1]. This includes a huge number of modulation,
demodulation and clock generation applications. The versa-
tility and power of fractional-N PLLs has led to their ubiquity
in microelectronic systems.

The key feature of the fractional-N architecture is noise-
shaped modulation of the divide ratio (typically using a
MASH modulator incorporating Digital Delta-Sigma Modula-
tors (DDSMs) [2], although other modulator architectures have
also been proposed [3]–[6]). The introduction of the modulator
allows the PLL to maintain an effectively fractional input-
output frequency ratio, but also brings its main drawback:
since the loop feedback divide ratio is directly controlled by a
modulation term, this introduces phase noise into the loop.
Furthermore, this phase noise may induce strong spurious
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periodic components [7]. Spurious components that are outside
the passband of the synthesizer can be attenuated by filtering.
Those inside the loop cannot be removed easily by filtering.
These in-band components usually occur for small values of
the fractional divide ratio and are called integer boundary
spurs (IBS).

Previous work has attempted to reduce the amplitudes of
these spurs by removing them at source, within the divider
controller, thus making the spectrum of the latter spur-free [8].
Even if the spectrum of the modulator is itself spur-free,
spur regrowth will occur in the loop when nonidealities
are present [9], or when cross-coupling occurs within the
loop [10]. Furthermore, techniques aimed at removing the
phase noise from the loop are only able to achieve attenuation,
but not removal, of these spurs [5], [7], [11]–[13]. In spite
of techniques that offer improved charge pump linearity [14],
the presence of loop nonlinearities is unfortunately inevitable.
Progress on elucidating the features of nonlinearity-induced
spurs has been slow [15], and only the locations of these spurs
have so far been predicted, not their amplitudes [8], [21].

In this paper we present a semi-analytical technique for
deriving a full prediction of the phase noise due to modulation
of the nonlinearity—that is, the locations and amplitudes of
the integer boundary spurs, and the density of the folded
quantization noise component—given only knowledge of the
modulator output noise and the nonlinear loop transfer func-
tion. We demonstrate that the phase noise is a function of the
nonlinearity and the statistics of the modulator noise.

The paper is structured as follows. In Section II, we first
present an overview of the problem and describe the main fea-
tures of nonlinearity-induced phase noise and spurs. We then
present in Section III a method for predicting the key fea-
tures of this phase noise, via a signal we term the Periodic
Nonlinearity Noise. Section IV demonstrates the reliability
of these predictions using comparisons to simulations of four
representative fractional-N PLLs from the literature. Finally,
we summarize our conclusions in Section VI.

II. INTEGER BOUNDARY SPURS AND

NONLINEARITY-INDUCED

PHASE NOISE

The architecture of the fractional-N Phase Lock Loop we
consider in this work is shown in Fig. 1. The fractional-N PLL
modulates the instantaneous, integer feedback division ratio,
N[n], such that it approximates a desired nominal, fractional
division ratio, Nnom [16]. This is done by the introduction of
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Fig. 1. Structure of a fractional-N PLL employing a DDSM as a divide ratio
controller.

Fig. 2. Simulated contribution of the MASH to the output phase noise
spectrum of a linear fractional-N PLL (dark blue). Colored smooth curves
indicate theoretical estimates of the individual contributions due to MASH
modulation noise [16] (yellow), first-order shaped dither [16] (cyan), noise
due to non-uniform sampling [22] (purple) and the total noise envelope (red,
dashed), assuming that the additive quantization noise in the MASH is white.

a modulation term, y[n], with a fractional mean. Thus,

N[n] = Nint + y[n]; Nnom = Nint + E{y}, (1)

where E{·} denotes the expectation operator.1

The primary rationale for the design of the DDSM is the
desire to produce modulation noise that is pushed to higher
frequencies, so that the bulk of this noise is filtered by
the low-pass loop response. Fig. 2 shows the contributions
to the output phase noise spectrum of a simulated linear
PLL due to modulation noise, using a dithered MASH 1-1-1
modulator. The effective use of dithering can guarantee a
spur-free modulator output [17]–[20]. The PLL parameters are
given in Table I, where fPFD is the loop PFD frequency, x is
the input to the modulator, which we take as constant in this
work, and M is the modulus of the MASH. M = 2B , where
B is the bit width of each DDSM accumulator in the MASH.
Hence, E{y} = x/M .

In an actual system, the PLL loop will be nonideal, and
typically nonlinear. The simulated contribution to the output

1Throughout this paper, it is insinuated that y is a stochastic signal. Since
the modulator is normally implemented as an entirely deterministic Finite
State Machine (FSM), as in the case of a MASH modulator with or without
pseudorandom dither, then y is deterministic. In this case, the Probability
Mass Function of y, P(y), is taken to equal the steady-state probabilities of
the FSM output, while the expectation of y is defined as the population mean
of y, as usual.

TABLE I

PLL DESIGN USED IN SECTION II

Fig. 3. Output phase noise spectrum of a simulated fractional-N PLL with a
nonlinear loop transfer function, representing a nonideal loop. The cyan curve
indicates the loop response. The (dark blue) phase noise spectrum shows a
notable departure from the total noise envelope in Fig. 2 that assumes linear
conditions (red, dashed).

phase noise spectrum in this case, shown in Fig. 3, is very
different. We can divide this spectrum into three components:

1) The linear component of the high-pass modulation noise
is still present, although it may be stronger or weaker
because the gain of the loop transfer function from the
feedback divider to the output will be modified by the
linear component of the nonlinearity.

2) A white noise floor has appeared (in this example,
at approximately −108 dB/Hz), which is also low-pass
shaped by the loop response.

3) Strong integer boundary spurs appear (labeled 1, 2, 3 and
4 in the figure).

The latter two noise and spur components result from the
interaction between the modulation noise and the nonlinearity;
if either is removed, these components are not present.

It should be noted that the spurs lie at integer multiples of
a fundamental frequency—the frequency of the lowest spur—
which indicates that these spurs result from an underlying
periodic phenomenon. We can offer the following empirical
prediction for the fundamental frequency of this phenomenon:

fspur = x

M
fPFD, (2)

when x/M � 1.
Note that we are assuming a loop frequency of fPFD.

Therefore folding about fPFD/2 must be applied to the result
of Eq. (2) to determine the actual frequency offset from the
carrier; it follows that inputs of x and (M − x) will result in
similar fractional spurs [21].

In order to predict fully the contribution to the PLL’s
output phase noise spectrum due to the modulation noise,
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Fig. 4. MASH 1-1-1 modulator used as a divide ratio controller in this
paper. Pseudorandom binary dither is used to ensure that the output is
spur-free [18], [19].

TABLE II

MASH 1-1-1 MODULATOR USED IN SECTIONS III & IV

we require four pieces of information: a) the gain of the
loop transfer function from the feedback divider to the output,
b) the positions of the integer boundary spurs, c) the ampli-
tudes of the integer boundary spurs, and d) the level (power
spectral density) of the noise floor. The first piece is easily
identified from the linear component of the transfer function,
while the second piece is given by Eq. (2). This leaves two
unknowns: the amplitudes of the integer boundary spurs, and
the level of the noise floor.

III. PREDICTION OF NONLINEARITY-
INDUCED PHASE NOISE

Throughout this paper, we assume that the feedback divider
is controlled by the dithered MASH 1-1-1 modulator shown
in Fig. 4, with the parameters given in Table II. This method
can be readily adapted to other architectures.

We begin by assuming the simplest case where the modula-
tor input x is a small value relative to M , which ensures that
fractional spurs are located in the passband. Our analysis will
also apply to very large values of x , after applying necessary
sign changes.2 In general, in-band spurs will occur when x
is very close to integer fractions of M; an extension of this
method to the general case is presented in the Appendix.

A. Modulation Noise

The required average divide ratio is Nint + x/M . This is
approximated at time instant t = n/ fPFD by dividing the output
frequency by N[n] = Nint + y[n], where fPFD is the update
frequency of the PFD.

2Observing that (M − x) ≡ −x mod M, the behavior with a modulator
input of (M − x) mimics that of x , but the signs are reversed, and hence
Figs. 5 and 6 are mirrored across the y = 0 axis with the tracks ascending
instead of descending.

Fig. 5. Accumulated digital modulator output �y (blue) and expected
fractional output �E y (red).

Fig. 6. Modulation noise signal �y . Each (blue) sample of the signal �y [n]
lies on an underlying (black) line segment denoted τk .

Fig. 7. Spectrum of modulation noise from the MASH 1-1-1 modulator,
showing spur-free behavior in spite of the periodic pattern in Fig. 6.

Fig. 5 shows the desired accumulated output �Ey[n] (red)
and the approximation �y[n] (blue), where

�y[n] = �n
k=0 y[k] (3)

and

�Ey[n] = �n
k=0

x

M
. (4)

The difference between these two signals, shown blue
in Fig. 6, is the quantization noise which we call modulation
noise in this paper; it is defined by

�y[n] = �y[n] − �Ey[n]. (5)

Fig. 7 shows the spectrum of �y , demonstrating the lack of
inherent spurs in the accumulated output. Welch’s method is
used throughout the paper to generate the spectrograms (unless
otherwise stated).
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Note that y is dimensionless; it denotes the instantaneous
divide ratio of the loop. Hence, the modulation noise, �y ,
is also dimensionless. It can be expressed as a phase error,
which is called the modulation phase noise, using [16]:

φmod = 2π

Nnom
�y, (6)

or as a time offset from the reference clock edge, using [16]:

tmod = 1

fPFD Nnom
�y, (7)

where Nnom is the nominal divide ratio. The error is referenced
to the PFD input in each case.

The contribution of φmod to the PLL output phase noise
spectrum can then be calculated using [16]:

Sφout, mod( f ) =
(

Nnom

fPFD

)2

|G( f )|2 Sφmod( f ), (8)

where Sφmod and Sφout, mod are the spectra of the modulation
phase noise referred to the PFD input and its contribution
to the output phase noise, respectively, and G( f ) is the
normalized frequency response of the PLL loop, as described
in [16]. Note that G(0) = 1.

It is clear from Eqs. (6) and (8) that, in the passband of
G( f ), the contribution of the modulation noise to the output
phase noise spectrum is a scaled version of the spectrum
of �y . Since we are interested in predicting passband spurs
and phase noise, we will study �y directly in the remainder of
this paper. It should be mentioned, however, that our prediction
also holds outside of the passband, as long as the attenuation
caused by the loop response G( f ) is taken into account.

B. Tracks and Probability Distribution

When x is constant, Eq. (5) becomes

�y[n] = �y[n] − n
x

M
. (9)

Since y[n] is an integer-valued function, so is �y[n].
Define tracks

τk(t) = k − t
x

M
, (10)

t ∈ R, where each track corresponds to a different value of k.
Then, for every integer n,

�y[n] = τk(n) (11)

for some k ∈ Z.
The output y of the MASH 1-1-1 is bounded between

−3 and +4. The modulation noise �y is bounded between
−2 and +2, as shown in Fig. 6. Therefore, for 0 ≤ t < M/x ,
each sample of �y lies on one of four distinct tracks τk ,
k ∈ {−1, 0, 1, 2} in this example.

In general, for j M/x ≤ t < ( j + 1)M/x , |�y| < A and
samples of �y lie on one of 2A tracks τk, k ∈ { j − A + 1,
j − A + 2, . . . , j + A − 1, j + A}. Since the choice of the
time origin is arbitrary, we can map each interval of length
M/x in Fig. 8(a) onto the interval 0 ≤ t < M/x , as shown
in Fig. 8(b).

Fig. 8. (a) Samples of �y(blue)] are distributed over tracks τk (black);
(b) Due to periodicity, all samples can be mapped onto a finite set of tracks
(four in this example); (c) The distribution of samples of �y defines the
probability distribution P(�y).

Note that the domain [+2, −2) of �y can be subdivided
into four regions [−1, −2), [0, −1), [+1, 0) and [+2, +1)
corresponding to the four tracks τk, k = −1, 0,+1,+2.

Next we determine the probability distribution of �y .
Consider N samples �y[n], n = 0, 1, 2, . . . , N , where N is
large. In the case of a MASH 1-1-1 modulator with modulus
M , an odd initial condition, and first-order pseudorandom
dithering with period Ld , the period of the signal y is
2M Ld [23]. For example, with M = 225 and a pseudorandom
binary sequence generated by a 24-bit linear feedback shift
register, 2M Ld ≈ 1015.

Following (9), the N samples of �y[n] can take on values
in the discrete set {−A,−A+ 1

M ,−A+ 2
M , . . . ,+A− 1

M ,+A}.
Define

P(�y = m) = #{n : �y[n] = m}
N

, (12)

where # denotes cardinality. The probability distribution for
this example is shown in Fig. 8(c).

At this juncture, it is worth pointing out that the only
assumptions made so far are that the modulator is digital
with a small output mean. Consequently, this analysis applies
to every digitally modulated fractional-N PLL. Although we
focus mainly on a MASH 1-1-1 divider controller in this work,
the results apply to all digital divider controller structures,
including, amongst others, successive requantizers [5].

C. Interactions Between the Modulator
Output and the Loop Nonlinearity

A static nonlinearity can be treated as a mapping from the
domain of the modulation noise to the co-domain of a new
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Fig. 9. Demonstration of how the modulation noise �y (center) from Fig. 6
produces a nonlinearity noise signal, �NL

y , by indexing the nonlinearity (top)
according to the probability P

(
�y

)
(bottom). The situation at t = n0 = 1000

is highlighted. The arrow of time is indicated in black.

nonlinearity noise signal. For the purposes of illustration,
in this subsection we will demonstrate the waveforms resulting
from applying the modulation noise of the MASH 1-1-1,
studied in the preceding sections, to a static nonlinear transfer
function.

Fig. 9 shows an example nonlinear function3 (top),
the rotated modulation noise waveform from Fig. 6 (middle)
and the modulation noise Probability Mass Function (PMF,
bottom), where each point has been colored by track, and
the black arrows denote the passage of time. We restrict our
analysis to the situation where the loop has settled into steady-
state behavior and the loop nonlinearity can be described by
a static nonlinearity transfer function.

We denote by �NL
y the nonlinearly distorted modulation

noise which arises from the interaction between �y and the
nonlinear function N (·). Thus,

�NL
y = N (

�y
)
. (13)

Physically, �NL
y , shown in Fig. 10, corresponds to the excess

phase error introduced into the loop by the presence of
the loop nonlinearity. The spectrum of this signal is shown
in Fig. 11. Unlike the spectrum of the underlying modulation
noise �y in Fig. 7 which is spur-free and highpass filtered,

3This specific nonlinearity has no physical meaning. It is simply used for
illustration purposes.

Fig. 10. Nonlinearly distorted modulation noise �NL
y [n] in the time domain.

Fig. 11. Frequency spectrum of the nonlinearly distorted modulation
noise �NL

y .

this signal has an elevated flat noise floor and strong periodic
components.

D. Periodic and Noiselike Components of the
Nonlinearly Distorted Modulation Noise

An important step in predicting the spectrum of the nonlin-
earily distorted modulation noise is to consider separately the
periodic and noise-like behaviors. Denote by τNL

k the image
of the track τk under the mapping N (·). We have that

τNL
k (t) = N (

τk(t)
) ∀k. (14)

Fig. 12 shows nonlinearly distorted noise samples �NL
y

(blue, green, orange and purple) and tracks τNL
k (black) for

the example in Fig. 9.
Referring first to Fig. 9, consider the time instant t = n0 =

1000, indicated by the dashed red line in the central subplot.
To simplify the notation, define

P(�y = τ−1(n0)) = P−1

P(�y = τ0(n0)) = P0

P(�y = τ+1(n0)) = P+1

P(�y = τ+2(n0)) = P+2,

as shown in the bottom subplot.
Note that

�y[n0] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ−1(n0) with probability P−1

τ0(n0) with probability P0

τ+1(n0) with probability P+1

τ+2(n0) with probability P+2

(15)
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Fig. 12. Nonlinearity noise �NL
y produced by the features illustrated in Fig. 9,

shown with the corresponding tracks τNL
k (black). The instant t = n0 = 1000

is highlighted dashed in red.

After the mapping N (·), and referring to Fig. 12, we have
that

�NL
y [n0] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τNL−1 (n0) with probability P−1

τNL
0 (n0) with probability P0

τNL+1 (n0) with probability P+1

τNL+2 (n0) with probability P+2

(16)

We call the average value of �NL
y [n] the Periodic

Nonlinearity Noise, denoted PNN, where:

PNN[m] =
+2∑

k=−1

τNL
k (m)P(τk(m)), (17)

where m ∈ {0, 1/x, 2/x, . . . , (M − 1)/x}.
The periodic extension of the PNN signal, shown in

magenta in Fig. 12, is periodic with period M/x .
The complementary component of the phase noise describes

the aperiodic behavior of the nonlinearly distorted modulation
noise, ie. the noise floor in Fig. 11. We call this component
the Stochastic Nonlinearity Noise (SNN), defined by:

SNN[n] = �NL
y [n] − PNN[m], (18)

where m = n mod (M/x).
Fig. 13 shows the spectra of PNN and SNN , where it

can be seen that these concepts separate the periodic and
stochastic behavior of the nonlinearly distorted modulation
noise, the entire spectrum of which is shown in Fig. 11.

Note that the SNN is entirely aperiodic, almost white noise.
This is consistent with the common observation that the
nonlinearity contributes a flat noise floor to the passband
of the phase noise spectrum. An intuitive explanation for
the typically flat frequency spectrum of the SNN requires
considering the nonlinearity as a power series, and observing
that odd and even powers of a sinusoid produce frequency
components at respectively odd and even multiples of the
sinusoid frequency. Sampling effects fold these frequency

Fig. 13. Frequency spectrum of the PNN (magenta), consisting of harmonics
of frequency (x/M) rad s−ï¿½1, and the SNN (blue), which takes the form of
white noise (with some rolloff near the Nyquist frequency). Welch’s method
is used for the SNN , while a traditional FFT is used to represent the PNN so
as to clearly distinguish the spurs.

components, thus redistributing the noise power across the
spectrum.4

E. Quantifying the Noise Floor and Spur Amplitudes

In Section II we stated that in order to predict the phase
noise due to loop nonidealities accurately, we required two
pieces of information: the locations and amplitudes of the
spurs, and the level of the noise floor due to the nonlinearity.
The spurs and noise floor are described by the PNN and SNN
signals, respectively, and hence a prediction can be made.

Since the PNN contains only the spurious components of
�NL

y , the amplitudes of these spurs can be extracted using
the DTFS. The variance of the SNN can be determined in a
manner similar to Eq. (17), by calculating the variance of the
difference between each track, τNL

k , and the PNN , weighted
by the associated probability sequences P(τk):

σSNN[m] =
∑

k

P(τk(m))
(
τNL

k (m) − PNN[m]
)2

. (19)

where m ∈ {0, 1/x, 2/x, . . . , (M − 1)/x}.
The level of the noise floor, where the SNN is assumed to

take the form of white noise, is then given by:

SSNN = 10 log10

(
σ 2

SNN

)
, (20)

where NFFT is the length of the spectrum.
In Fig. 14, these predictions are compared to the actual fre-

quency spectrum of the nonlinearity noise. Note that the spur
locations and amplitudes match for the three most significant
spurs.

IV. SIMULATION

The method for predicting the phase noise arising from loop
nonidealities will next be applied to four example nonlineari-
ties from the literature:

4It is assumed that the aperiodic noise due to the nonlinearity is flat in the
spectrum. While this is true in many practical cases, it does not necessarily
hold generally and is treated here as a helpful approximation.
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Fig. 14. Frequency spectrum of the nonlinearly distorted modulation noise,
compared to the spur predictions offered by (17) (triangles) and the noise
floor prediction offered by (20) (black).

Fig. 15. PDF of modulation noise, �y , of a simulated MASH 1-1-1
modulator, showing the poor Gaussian fit (red) and the more appropriate
polynomial fit used in the following examples (black).

• A piecewise-linear function with a discontinuous
derivative at (φ − φ0) = 0,

• A piecewise-linear function with a discontinuous
derivative at (φ − φ0) �= 0,

• A piecewise-exponential function with a discontinuous
derivative at (φ − φ0) �= 0, and

• A simple polynomial function.
We make several simplifications when predicting the spur

amplitudes and noise level. Firstly, instead of attempting to
derive an analytical expression for the accumulated modulation
noise PMF, we derive it numerically through simulation of
the MASH 1-1-1 modulator. A Gaussian approximation was
deemed inappropriate,5 as can be seen in Fig. 15, so the
following polynomial approximation was used:

f (�y) 	

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 �y < 1.9

−0.0006�8
y + 0.0014�6

y

+0.0497�4
y − 0.3111�2

y

+0.5095 −1.9 ≤ �y ≤ 1.9

0 �y > 1.9.

(21)

The nonlinearity could be instead referenced to the phase
offset at the input of the PFD, as before, by applying
�y = (Nnom/2π)φ, where Nnom is the nominal PLL divide
ratio [16].

5More correctly, �y was found to be platykurtic as γ2 = −0.59.

Fig. 16. A piecewise linear nonlinearity.

Secondly, unlike the example nonlinearity of Fig. 9 which
was used up to this point, the PLL transfer functions con-
sidered below contain both linear and nonlinear components,
and we are only interested in the latter. Extracting the linear
component could be done by applying a linear fit to the nonlin-
earity in the region over which �y spans. However, since the
probability of �y is not uniform, this will overemphasize the
contribution of the extremities; hence, the linear component
was estimated by applying a linear fit to the nonlinearity in
the central 3/4 of the region over which �y spans (i.e. in
the range [−1.5,+1.5]), and this component was subtracted
from the transfer function in order to estimate the nonlinear
component.

We will continue to study the spectrum of the nonlinearly
distorted modulation noise, �NL

y , with the understanding that
this is a good proxy for the contribution to the PLL output
phase noise for the reasons detailed in Section III-A.

A. Piecewise-Linear Nonlinearity

The simplest nonlinearity studied in this paper consists
of two linear sections with different slopes. This piecewise-
linear nonlinearity is commonly used to model the situation
where the charge pump has mismatched positive and negative
currents, respectively [24], [25], although current mismatch
also results in nonlinearity noise which is not centered on the
discontinuity [26].

Neglecting the inevitable offset which occurs in practice,
we have considered the case where the nonlinearity noise is
centered on the discontinuity (i.e. the quiescent point is at
the discontinuity), because this is the simplified situation most
often studied in the literature.

We will consider the situation where there is a 5% mismatch
between charge pump currents, which produces the nonlinear-
ity shown in Fig. 16. Since the nonlinearity is piecewise-linear,
and the nonlinearity noise is centered on the discontinuity,
the tracks, τNL

k , consist of lines, shown black in Fig. 17(a). The
spur amplitude and noise floor predictions, shown in Fig. 17,
match the simulated nonlinearity noise reasonably well.

Razavi has derived a prediction for the ratio between the
peak of the overall phase noise, given by �y + �NL

y , and
the nonlinearity noise floor in the case of a specified charge
pump mismatch, �I/ICP [25]. For a given PLL and modulator,
the amplitude of the peak is fixed and does not depend on
the nonlinearity as the modulation noise dominates at high
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Fig. 17. Nonlinearity noise and PNN (a) and spectrum (b) of simulation
incorporating the piecewise linear nonlinearity in Fig. 16.

frequencies. The level of the noise floor is predicted to be:

20 log10

(
�I/ICP

4

)
, (22)

relative to the peak [25].
This prediction is valid only for the case where the quiescent

point is exactly at the discontinuity, as is the case with this
nonlinearity, and only provides a prediction for the relative
offset between the noise floor of the nonlinearity noise and
the peak of the modulation noise. It makes no prediction
about spur amplitudes. By contrast, our technique provides
an absolute prediction for the amplitudes of the spurs.

Eq. (22) predicts that the noise floor will lie 38.1 dB and
32.0 dB below the peak when there is a mismatch of 5% and
10%, respectively, with the peak appearing at +4.26 dB/Hz in
our example. Fig. 18 compares this and our predictions to the
simulated phase noise.6

Razavi’s prediction is found to match the simulated noise
floor closely, while our prediction underestimates the noise
floor by roughly 3 dB in each case. The reason for this is that

6The modulator input in Figs. 18 and 21 has been changed to x = 137,
in order to shows spurs at higher frequencies; all other parameters remain
unchanged.

Fig. 18. Frequency spectrum of overall phase noise (modulation and
nonlinearity noise) resulting from PWL nonlinearity corresponding to a charge
pump mismatch of (a) 5% and (b) 10%, with the noise floor, spur and peak
predictions shown.

the spectrum of the estimated SNN isn’t flat, as can be seen
in Fig. 17, which causes Eq. (20) to underestimate the low-
frequency noise floor. This can be overcome by passing the
estimated SNN through a low-pass filter, which removes the
high-frequency roll-off, before applying Eq. (20). A 10-point
moving-average filter was used in this case. The resulting
corrected prediction, illustrated by the magenta line in Fig. 18,
accurately predicts the noise floor. Additionally, our spur
prediction accurately tracks the change in amplitude of the
largest spur.

Arora et al. present a similar prediction for the corner fre-
quency, which is the frequency at which the power density of
the nonlinearity noise floor is equal to that of the linear mod-
ulation noise ( fc = f such that Synonlin( f ) = Symod( f )) [27].
By equating [16, Eq. (23)] (after making the substitution
T ≡ 1/ fPFD) with our prediction and that given by Razavi,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DONNELLY AND KENNEDY: PREDICTION OF PHASE NOISE AND SPURS IN A NONLINEAR FRACTIONAL-N FREQUENCY SYNTHESIZER 9

Fig. 19. Comparison of the corner frequencies given by each of the three
predictions, with the corner frequency seen in simulation.

Fig. 20. A piecewise linear nonlinearity with the quiescent point at φ0 �= 0.

respectively, we can determine the corner frequency in each
case. These are shown graphically in Fig. 19. Our prediction,
after removal of the high-frequency roll-off, and Razavi’s
prediction both closely match the simulation for a wide range
of mismatch values. Arora’s prediction slightly underestimates
the corner frequency.

B. Piecewise-Linear Nonlinearity With Offset Quiescent Point

We have previously mentioned that Razavi’s estimate only
applies to the case where the discontinuity lies exactly at
the center of the nonlinearity. Fig. 20 shows the nonlinearity
resulting from a 5% mismatch, as before, except that the
quiescent point has been offset such that the discontinuity
occurs at a point 1/4 the width of the region which �y spans
from the quiescent point (i.e. �y 0 = −1), to simulate the
actual shift in quiescent point due to current mismatch [26].

Fig. 21(a) compares both predictions for this nonlinearity,
while Fig. 21(b) compares both predictions for a 10% mis-
match with the same quiescent point. It can be seen that the
noise floor, which appears at −17.6 dB/Hz and −17.3 dB/Hz,
respectively, no longer concurs with Razavi’s predictions of
−36.8 dB/Hz and −30.8 dB/Hz, respectively. We predict
a noise floor at −19.3 dB/Hz with a 5% mismatch and
−19.0 dB/Hz with a 10% mismatch, which, after application
of the moving average filter, increase to −18.1 dB/Hz and

Fig. 21. Frequency spectrum of overall phase noise (modulation and
nonlinearity noise) resulting from PWL nonlinearity corresponding to a charge
pump mismatch of (a) 5% and (b) 10% and an offset of y0 = −1, with the
noise floor, spur and peak predictions shown.

−17.8 dB/Hz respectively—within half a dB of the simulated
noise floor. We also correctly predict the amplitudes of the
largest three spurs to within 2 dB.

C. Piecewise-Exponential Nonlinearity

The piecewise-linear nonlinearity considered above is an
oversimplification of the effects of charge pump nonidealities.
Firstly, the charges delivered are different in the presence of
positive and negative signals, respectively. However, the PLL
loop dynamics ensure that the positive and negative charges
will balance out. This results in a phase error with non-zero
mean, which moves the quiescent phase difference, φ0, away
from the discontinuity [26].

Furthermore, not only will the charge delivered by each
polarity be mismatched, but so will the timing. This results in
shorter or longer pulses, which alters the total charge delivered
by each side of the charge pump [15], [27]. The resulting
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TABLE III

PLL PARAMETERS USED TO DERIVE NONLINEARITY SHOWN IN FIG. 23

Fig. 22. Plot of average PFD output versus PFD input offset. A quiescent
point is present at 0.33 ns.

nonlinearity will no longer be piecewise-linear, but piecewise-
exponential.

Arora et al. offer an analysis of the dynamic behavior of
the charge pump [27]. From this analysis, they have derived a
prediction for the excess charge pump current produced as a
result of mismatched charge pump timing delays. We have
adapted their prediction to produce an expression for the
corresponding nonlinearity, in units of time:(

1 − e(−tk−td )/tup
r

) (
tup

f − tup
r

)

−
(

1 − e−td/tdn
r

) (
tdn

f − tdn
r

)
, tk ≥ 0, (23)(

1 − e−td/tup
r

) (
tup

f − tup
r

)

−
(

1 − e(−|tk |−td )/tdn
r

) (
tdn

f − tdn
r

)
, tk < 0, (24)

where tup
r and tup

f are the rise and fall times, respectively, of the
“up” charge pump; tdn

r and tdn
f are the rise and fall times,

respectively, of the “down” charge pump; td is the grouped
propagation delay of the PFD; and tk is the measured time
offset between clock edges at the input of the PFD.

We study the example described in Table III, where we
have applied the simplification that tup

r = tdn
f and tdn

r = tup
f .

The quiescent point, t0, was found numerically by applying
the PDF of �y to the PLL transfer function (given by
t + N (t), where N (t) is the nonlinearity described by
Eqs. (23) and (24)) and integrating the result to determine
the average PFD output, shown in Fig. 22. It was found that
the average PFD output reduced to 0, signifying steady-state
operation, at an offset of t0 = 0.33 ns. The corresponding
nonlinearity is shown in Fig. 23.

The PNN , shown in Fig. 24(a), has a very sharp peak
resulting from the discontinuous derivative in the nonlinearity.
Its spectrum therefore contains a large number of harmonics,
as can be seen in the prediction and corresponding simulated
spectrum in Fig. 24(b).

Fig. 23. A piecewise-exponential nonlinearity.

Fig. 24. Nonlinearity noise and PNN (a) and spectrum (b) of a simulation
incorporating the piecewise-exponential nonlinearity in Fig. 23. Predictions
for additional spurs are shown to account for the increase in the number of
IBS spurs.

D. Simple Polynomial Nonlinearity

Both previous nonlinearities have been constructed by
studying possible charge pump nonidealities. In practice, there
are numerous other potential sources of nonlinearities in the
loop, the combination of which will likely create a very
complex transfer function. For this reason, it is instructive to
consider the situation where charge pump mismatches do not
dominate the loop transfer function.
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Fig. 25. A simple polynomial nonlinearity.

Fig. 26. Nonlinearity noise and PNN (a) and spectrum (b) of a simulation
incorporating the simple polynomial nonlinearity in Fig. 25.

To begin with, we will study the case where the nonlinearity
is a simple polynomial function. Polynomial nonlinearities
have previously been studied by Swaminathan et al. as a
simplification of generalized nonlinearities [5]. The nonlin-
earity we will consider, shown after the removal of the linear
component in Fig. 25, is N (�y) = �3

y .
Since this is a relatively strong nonlinearity, the nonlinearity

noise shown in Fig. 26 is much higher than in previous exam-
ples, and the spur amplitude and noise floor predictions match
this. There is a small offset between the prediction and the
simulation, which likely stems from inaccurate linearization

Fig. 27. PDF of the Successive Requantizer’s accumulated output, and
polynomial fit.

Fig. 28. Spectrum of a simulation using Swamanithan et al.’s Successive
Requantizer and incorporating the simple polynomial nonlinearity in Fig. 25.
“Spur-free” operation can be observed.

of the nonlinearity, as some of the modulation noise is still
present at higher frequencies.

E. Successive Requantizer

Swaminathan et al. and Familier et al. have presented an
alternative modulator, the Successive Requantizer, which is
theoretically immune to polynomial nonlinearities of a given
order [5], [6]. Consider the modulator described in [5],7

which is provably immune to polynomial nonlinearities of up
to third order. The accumulated modulation noise PMF for
this modulator can be approximated well by the following
12th-order polynomial, as shown in Fig. 27:

N(�y) 	 0.0001�12
y − 0.0030�10

y + 0.0294�8
y

−0.1557�6
y + 0.4851�4

y − 0.8537�2
y + 0.6650. (25)

Fig. 28 shows the spur-free nonlinearity noise spectrum
which results from the interaction of this modulation noise
with the third-order nonlinearity. Spur-free operation has been
achieved at the expense of an increased phase noise floor. The
spur amplitude prediction correctly predicts that the spurs will
be masked by the nonlinearity noise; the fact that the predicted

7Although Familier and Galton have subsequently generalized the structure
to higher orders [28], we will only study the first-order case here.
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Fig. 29. Comparison of spur amplitude prediction and simulated output
phase noise corresponding to the situation in [28, Fig. 9], using a (a) �� and
(b) Successive Requantizer modulator. Both visible and hidden spurs ampli-
tudes are correctly predicted by the theory.

spur amplitudes are non-zero stems from the approximations
mentioned at the start of this section.

It should be noted that for any modulator with a bounded
accumulated output, |�y| ≤ A, then for at least one p, p ≤ A,
the nonlinearity N (�y) = �

p
y will produce spurs [29]. For this

reason, while it is possible to approximate most practically
encountered static nonlinearities with a polynomial of given
order, the residual higher-order components will still produce
spurs.

Familiar and Galton present output phase noise spectra of
a simulated PLL with 1% charge pump mismatch employing
a �� modulator and Successive Requantizer in [28, Fig. 9].
Fig. 29 shows a good agreement between the predicted and

simulated spur amplitudes. Our method accurately predicts
spurs which are not visible in the output spectrum due to other
noise sources, and demonstrates that all spurs are reduced in
amplitude by the Successive Requantizer in this case.

V. CONCLUSION

In this paper, we have demonstrated how manipulation of
the PLL loop nonlinearity, informed by the statistics of the
modulation noise, can be used to derive predictions for the
amplitudes of the spurs and the noise floor in the spectrum of
the nonlinearity-induced noise. In doing so, we have demon-
strated that the contribution of the nonlinearity to the output
phase noise spectrum depends on the shape of the nonlinearity,
the PMF of the modulation noise, and certain PLL parameters.
Finally, we have verified, through simulation of a typical
fractional-N synthesizer, that these predictions hold for a range
of representative static nonlinearities.

The immediate application of the findings presented herein
is that it demonstrates how the spectral behavior of a
fractional-N PLL with a given nonlinearity and modulator
design may be evaluated in a manner which allows separate
calculation of the spurs and noise floor.

From a broader point of view, by redefining the modulation
and nonlinearity noise in terms of a stochastic process which
can be mapped to a pattern of tracks which is repeated
periodically in time, we offer a new perspective into the contri-
bution of loop nonlinearites to the phase noise spectrum. This
perspective should both offer insight into the generation of
phase noise and inform the design of novel PLL architectures
and spur mitigation strategies.

APPENDIX

SPUR PREDICTION WITH LARGER VALUES OF x

The method presented in this paper assumes that the input to
the modulator, x , is very small or very close to the modulator
modulus: |x | << M . This appendix shows how the method
can be extended to other modulator inputs which also produce
in-band spurs.

In general, in-band spurs will occur when x approaches
a rational multiple of the modulus. Their behavior can be
determined by first expressing x in the following format:

x = aM

b
+ d a, b ∈ Z, (a, b) coprime (26)

Using the above formulation, in-band spurs will occur when
|d| � M for any a and b. These spurs will typically only be
visible when b is small.

The example studied in the body of this paper, |x | � M ,
represents a special case corresponding to b = 1. As outlined
in Section III-B above, in this special case, where the modu-
lation noise �y is bounded by |�y| < A, each sample of �y

lies on one of 2A distinct tracks.
In general, each sample of �y lies on one of at most 2Ab

tracks, where the minimum track separation is given by 1/b.
This results in the alternate formulation of Eq. (10),

τk(t) = k

b
− t

x

M
. (27)
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Fig. 30. Modulation noise tracks, τk (black) and simulated modulation
noise (blue), showing reduced track spacing (0.5) and increased number of
tracks (8).

Fig. 31. Frequency spectrum of the nonlinearity noise, compared to spur
predictions, demonstrating the application of the method to larger values of x
producing in-band spurs.

Note that, as the number of tracks has increased and the
spacing between tracks has been reduced, k ∈ { j − A + 1/b,
j − A + 2/b, . . . , j + A − 1/b, j + A} and Eq. (11) will now
apply to rational values of k.

The spur prediction method can then by carried out as
before, using a modified form of Eq. (17):

PNN[m] =
+Ab∑

q=−Ab+1

τNL
q/b(m)P(τq/b(m)), (28)

and applying Eqs. (19) and (20), as before.
Fig. 30 shows the τk tracks for x = 32772, which corre-

sponds to a = 1, b = 2 and d = 4. There are 8 tracks, each
separated by 1/2 and described by Eq. (27). The resulting spur
prediction, in the presence of the nonlinearity shown in Fig. 9,
is illustrated in Fig. 31, demonstrating a good match between
theory and simulation.
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