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Abstract (250 words) 

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is imperative for normal 
cardiac function regulating both muscle relaxation and contractility. SERCA2a is the 
predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). 
Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine 
nitration. Tafazzin (Taz) is a mitochondrial specific transacylase that regulates mature 
cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and 
excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present 
study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN 
expression/phosphorylation in left ventricles (LV) obtained from young (3-5 months) and 
old (10-12 months) wild-type (WT) and Taz knockdown (TazKD) male mice. These mice 
are a mouse model for Barth syndrome, which is characterized by mitochondrial 
dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, 
we show that maximal SERCA activity was impaired in both young and old TazKD LV, a 
result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein 
was decreased, and its phosphorylation was increased in TazKD LV compared with 
control, which suggests that PLN may not contribute to the impairments in SERCA 
function. These changes in expression and phosphorylation of PLN may be an adaptive 
response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate 
for the first time that SERCA function is impaired in LVs obtained from young and old 
TazKD mice likely due to elevated ROS/RNS production. Future studies should determine 
whether improving SERCA function can improve cardiac contractility and pathology in 
TazKD mice. 
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INTRODUCTION 

 
The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a P-type ATPase 

which catalyzes the active transport of Ca2+ ions from the cytoplasm into the 

sarcoplasmic reticulum (SR) (33, 34, 36). In cardiac muscle, the predominant isoform is 

SERCA2a, which has been shown to be necessary in regulating muscle relaxation as well 

as muscle contraction by ensuring sufficient Ca2+ load in the SR (33, 36, 37). 

Phospholamban (PLN) is a 52 amino acid protein that, in its non-phosphorylated state, 

binds to and regulates SERCA by decreasing its affinity for Ca2+ (10, 30). When 

phosphorylated at serine (Ser) 16 and threonine (Thr) 17 by protein kinase A (PKA) and 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) respectively, PLN dissociates 

from SERCA thus restoring its affinity for Ca2+ (30).  

In addition to PLN, SERCA can be regulated by reactive oxygen/nitrogen species 

(ROS/RNS) (40, 46, 49). Structurally, the SERCA pumps are highly susceptible to 

oxidative and nitrosative post translational modification as they contain vulnerable 

cysteine, lysine, and tyrosine residues (40, 46, 49). Tyrosine nitration occurs when a nitro 

(-NO2) group is added adjacent to the hydroxyl (-OH) group on the aromatic ring of 

tyrosine (13). Under conditions of oxidative stress, superoxide (O2
-) and nitric oxide 

(NO) react to form peroxynitrite (ONOO-), which can then adduct to tyrosine (35). As a 

result, tyrosine nitration alters protein structure and function changing the catalytic 

activity of many enzymes. SERCA2a specifically contains 18 tyrosine residues (28) and 

has been shown to be the isoform most susceptible to tyrosine nitration leading to 

impairments in SERCA function (49). Others have shown that SERCA2a tyrosine 

nitration positively correlates with ½ relaxation time in cardiomyocytes thereby 
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illustrating the importance of this post-translational modification in regulating cardiac 

function (27). 

Tafazzin (Taz) is a mitochondrial specific transacylase that regulates the 

formation of mature tetralinoleyl cardiolipin (L(4)CL) species (1, 7). Cardiolipin (CL) is 

an inner mitochondrial membrane phospholipid that is critical for mitochondrial function 

acting as an ‘adhesive’ for the respiratory complexes (7, 41, 52). In turn, reductions in CL 

and L(4)CL in Taz knockdown (TazKD) mice leads to mitochondrial dysfunction and 

elevated ROS/RNS (17, 38, 39). Thus, it is plausible to suggest that SERCA function 

may be impaired in TazKD mice; however, to our knowledge, SERCA function has never 

been investigated. This is particularly important in their cardiac muscles since TazKD 

mice specifically serve as a mouse model for Barth syndrome (1), which is a rare X-

linked recessive disease often characterized by dilated cardiomyopathy (DCM) (1, 41). 

Interestingly, SERCA dysfunction, SERCA2a tyrosine nitration, and PLN dysregulation 

have all been implicated in DCM pathology (1, 18, 20, 23, 27). Therefore, in the present 

study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN 

expression/phosphorylation in young (3-5 month) and old (10-12 month) TazKD mice. 

 

METHODS 

Animals 

Age-matched wild-type and TazKD male mice were obtained from a breeding colony 

established in Dr. Paul LeBlanc’s laboratory (Brock University, St. Catharines) and the 

original breeding pairs were purchased from Jackson Laboratories (stock number 

014648). The TazKD mice are a tetracycline inducible shRNA-mediated Taz knockdown 



	
   5	
  

mouse model of Barth syndrome. Thus, to knockdown Taz and to eliminate any 

confounding effect of diet, both WT and TazKD mice were fed a standard chow diet 

supplemented with doxycycline (625 mg of dox/kg diet; Envigo TD.01306) similar to 

that previously described (1). Briefly, pregnant dams and their weaned pups were fed the 

doxycycline diet so that the TazKD mice were Taz deficient from in utero to the time with 

which they were sacrificed (3-6 months or 10-12 months of age). All mice were allowed 

access to food and water ad libitum and were housed in an environmentally controlled 

room with a standard 12:12-hour light-dark cycle. All mice were euthanized via cervical 

dislocation while under isofluorane anesthetic, after which the left ventricles were then 

quickly dissected, weighed, homogenized and stored at -80°C. All animal procedures 

were reviewed and approved by the Brock University Animal Care and Utilization 

Committee (file #16-02-01) and carried out in accordance with the guidelines established 

by the Canadian Council on Animal Care. 

 

SERCA activity  

An enzyme-linked spectrophotometric assay was used to measure left-ventricular 

SERCA activity over Ca2+ concentrations ranging from pCa 6.9 to 4.6 in the presence of 

a Ca2+ ionophore (A23187, Sigma C7522) as previously described (44). The rate of 

NADH disappearance, which indirectly measures ATP hydrolysis, was assessed at 340 

nm and 37°C for 30 minutes using an M2 Molecular Devices MultiMode plate reader. 

SERCA activity was then calculated after correcting for pathlength using the extinction 

coefficient of NADH (6.22 mM) and by subtracting ATPase activity in the presence of a 

SERCA specific inhibitor, cyclopiazonic acid (40mM) from total ATPase activity 
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measured across the range of pCa. All rates of SERCA activity were normalized to total 

protein measured with a BCA assay and the data were then fitted onto a sigmoidal dose-

response curve to calculate the pCa50 (concentration of Ca2+ required to elicit ½Vmax) 

using GraphPad Prism 8 software (GraphPad Software Inc. CA, USA). The maximal 

rates of SERCA activity were obtained directly from the raw data.  

 

Western Blotting 

Western blots were performed for tafazzin, SERCA2a, PLN, and p-PLN using TGX 

BioRad PreCast 4-15% gradient gels (#4568086, BioRad). LV homogenate protein were 

solubilized in 4x Laemmli buffer (#161-0747, BioRad), separated using SDS-PAGE, and 

then transferred to a polyvinylidene difluoride (PVDF) or nitrocellulose (tafazzin) 

membrane using the BioRad Transblot Turbo. All membranes were then blocked with 

milk (5% (w/v) in tris-buffered saline tween [TBST]) except for membranes probing for 

tafazzin and p-PLN, which were blocked in 3% bovine serum albumin in TBST at room 

temperature for 1 hour before incubating overnight at 4°C with their respective primary 

antibodies.  The tafazzin antibody was kindly donated from Dr. Steven Claypool (John 

Hopkins University) and was incubated at a 1:1000 dilution, SERCA2a (MA3-919, 

ThermoFisher Scientific) and PLN (MA3-925, ThermoFisher Scientific) were incubated 

at a 1:2000 dilution. The p-PLN (Ser16/Thr17; #8496, Cell Signaling Technology) was 

incubated at a dilution of 1:5000. The membranes were washed 3 times in TBST after 

incubation before being incubated with anti-mouse (tafazzin, SERCA2a and PLN) or 

anti-rabbit (p-PLN) antibodies at either a 1:5000 (tafazzin) or 1:10000 dilution for 1 hour 

at room temperature. After secondary incubation the membranes were washed 3x in 
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TBST before membranes were visualized using Clarity Western ECL Substrate (BioRad 

Inc) and a BioRad Chemi Doc Imager. All images were analyzed using Image Lab 

Software (BioRad Inc.). The blots were normalized to a Ponceau stain (tafazzin), 

GAPDH (#2118S, Cell Signaling Technology) optical density (SERCA2a and PLN) and 

to total PLN (p-PLN). 

 

SERCA2a tyrosine nitration 

To provide an indication of SERCA oxidant damage, SERCA2a tyrosine nitration was 

measured using a co-immunoprecipitation. Briefly, 100µL of SureBeads Protein G 

Magnetic beads (#161-4023, BioRad) were conjugated to 3.5µg of SERCA2a antibody 

(MA3-919, ThermoFisher Scientific) in phosphate buffered saline tween (PBST). The 

SERCA2a-bead complex was then incubated with 100 µg of LV homogenate protein for 

1hr at room temperature. Subsequently, the beads were magnetized and supernatant 

discarded, then washed 3x in PBST, prior to eluting the SERCA2a protein/protein 

complexes with 60µL of 1x non-reducing Laemmli buffer at 70°C for 10 min. A western 

blot was then performed with the eluent using a nitrocellulose membrane and a primary 

antibody for nitrotyrosine (#9691, Cell Signaling Technology; 1:5000 primary, 1:10000 

anti-rabbit secondary).  

 

Statistical Analysis 

All data are expressed as mean ± SEM.  All comparisons between WT and TazKD were 

conducted using a two-way ANOVA with genotype and age as main effects. A 

significant interaction between age and genotype was tested to determine if age would 
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influence any effect of genotype. In the event of a significant interaction, a Sidak post-

hoc test enabled comparisons between genotypes within a specific age group. A 

Pearson’s correlation was performed to examine the relationship between SERCA2a 

tyrosine nitration and maximal SERCA activity. Statistical significance was set to P < 

0.05 and all data were analyzed using GraphPad Prism 8 (GraphPad Sofware Inc.). 

 

RESULTS 

Body mass, tafazzin protein levels and left ventricle:body mass ratio 

Similar to previous findings (1), we found a significant interaction of age and genotype 

on body weight, whereby body weights were similar at 3-5 months of age, but by 10-12 

months, TazKD mice were significantly smaller than WT (Fig. 1A). As expected, tafazzin 

levels were found to be significantly decreased (-60-80%) in the TazKD mice with a 

significant main effect of genotype (Fig. 1B). While there were no significant differences 

in LV wet weight between groups (Fig. 1C), when expressed as a ratio relative to body 

weight we found a significant interaction indicative of a larger LV:body mass ratio but 

only in old TazKD mice compared with WT (Fig. 1C) 

 

SERCA function 

Ca2+-dependent SERCA activity was assessed to examine maximal SERCA activity and 

pCa50. Our results show that both 3-5 month old and 10-12 month old TazKD mice 

displayed slower rates of maximal SERCA activity compared to WT with a significant 

main effect of genotype (Fig. 2A-C). We also detected a significant main effect of age 

(Fig. 2C), suggesting that 10-12 month old mice on average have faster maximal rates of 
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SERCA activity compared with 3-5 month old mice. There were no differences in the 

pCa50 between groups (Fig. 2D).  

 

SERCA expression and tyrosine nitration 

We next examined changes in the expression of SERCA2a as well as the levels of 

SERCA2a tyrosine nitration. SERCA tyrosine nitration occurs when peroxynitrite, 

formed via a reaction with nitric oxide and superoxide, attacks the tyrosine residues of 

the SERCA pump and can therefore be used as a marker of oxidative/nitrosative 

stress(49) . Our results show no changes in SERCA2a expression between WT and TazKD 

mice across any age groups (Fig. 3A). Using co-immunoprecpitation and non-reducing 

SDS-PAGE, we then examined the levels of SERCA2a tyrosine nitration. Under these 

conditions purified SERCA2a resolves at ~150 kDa (Fig. 3B). After probing for 3-

nitrotyrosine, we observed a significant increase in SERCA2a tyrosine nitration across 

both age groups in the TazKD mice with a significant main effect of genotype (Fig. 3B). 

We next examined the relationship between the absolute values of SERCA2a tyrosine 

nitration and maximal SERCA activity across young and old WT and TazKD mice. Our 

results show that SERCA2a tyrosine nitration is negatively correlated with maximal 

SERCA activity (Fig. 3C). 

 

Phospholamban expression and phosphorylation 

Finally, we examined the expression and phosphorylation status of PLN. Our findings 

show that monomeric PLN is significantly decreased in both age groups of the TazKD 

mice with a significant main effect of genotype (Fig. 4A). Furthermore, we observed 
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another significant main effect of genotype indicating that PLN phosphorylation was 

significantly increased in TazKD LV compared to WT across both age groups (Fig. 4B). 

 

DISCUSSION 

 In the present study, we characterized LV SERCA function in young and old 

TazKD mice, which are distinguished by mitochondrial dysfunction and 

oxidative/nitrosative stress (17, 38, 39). We confirmed tafazzin knock-down via Western 

blotting in which we found a significant 60-80% reduction in both young and old TazKD 

mice. In agreement with previous results, we found that TazKD mice elicit a failure to 

grow, and at an older age, display an increase in LV:body weight ratios (1). Adding to 

our understanding of this mouse model, our results show that maximal SERCA activity is 

impaired in LV from both young and old TazKD mice, with an increase in maximal 

activity in the 10-12 month old mice compared to 3-5 months old, which is likely 

representing the natural course of growth and development. These impairments in 

SERCA activity can be partly attributed to elevated levels of SERCA2a tyrosine nitration. 

In support of this, we detected a significant negative correlation between SERCA2a 

tyrosine nitration and maximal SERCA activity.  

 Our findings are consistent with previous studies that have shown that SERCA2a 

tyrosine nitration correlates with reductions in SERCA activity in aged rodent skeletal 

and cardiac muscle (22, 50). Furthermore, in vitro experiments have previously 

demonstrated that incubating purified SERCA2a with increasing amounts of peroxynitrite 

proportionately increases tyrosine nitration ultimately impairing SERCA activity (22, 50). 

While we have not conducted any experiments to determine which tyrosine residues are 
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specifically affected in the TazKD mice, previous research has shown that Tyr294 and 

Tyr295 are nitrated in cardiac and skeletal muscle obtained from senescent rodents and 

that nitration at these residues correlates with the functional decline of SERCA (22, 50). 

It is thought that nitration at Tyr294 and Tyr295 distorts helix-helix interactions and thus 

hinders coordinated movements of membrane helices required for optimal rates of 

SERCA activity (22). Thus, we speculate that Tyr294 and Tyr295 are most likely nitrated 

in the TazKD LV, however, this should be tested more vigorously in the future. 

 According to the American Heart Association, DCM is one of the most common 

causes of heart failure (HF) (25) and Ca2+ dysregulation has been observed in both HF 

and DCM with several studies reporting impairments in SERCA function (8-10, 24). 

Thus, our results could also have clinical implications especially since SERCA2a tyrosine 

nitration has been observed in DCM hearts (27). As with most patients with Barth 

syndrome, the TazKD mice have been shown to develop DCM (1, 4, 31, 38) although, a 

recent study has reported signs of hypertrophic cardiomyopathy (HCM) (19). 

Nonetheless, SERCA dysfunction has also been implicated in HCM, and thus our 

findings suggest that SERCA may be a viable therapeutic target for improving cardiac 

function and pathology in TazKD mice and potentially in those with Barth syndrome. 

Furthermore, Acehan et al., (2011) reported that the DCM phenotype in TazKD mice 

manifests only at an older age (>8 months) and cannot be observed in younger (2 month 

old) mice. Given that we used similar age groups, it is plausible to suggest that the 

impairments in SERCA function could precede the DCM phenotype in these mice and 

could further rationalize SERCA as a therapeutic target. While our study is limited in that 

we did not examine cardiac contractility or intracellular calcium, it would be interesting 
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to determine whether improving SERCA function in TazKD mice could mitigate the 

cardiomyopathy.  

 Across several different models of DCM and HF, researchers have shown that 

transgenic overexpression of SERCA improves Ca2+ reuptake and alleviates the 

cardiomyopathy (2, 14, 16, 26, 48, 51). In the context of ROS/RNS damage, protecting 

SERCA with chaperone proteins such as heat shock protein 70 (Hsp70) has been shown 

to maintain SERCA function when challenged with heat stress (11, 45). Furthermore, in 

vivo pharmacological induction of Hsp70 with BGP15 improves skeletal muscle 

pathology and lifespan in a mouse model of Duchenne muscular dystrophy where 

ROS/RNS are important pathological mediators (12). While ROS/RNS damage may 

impair other calcium regulatory proteins, such as ryanodine receptors and the contractile 

proteins actin and myosin (3), this is the first time SERCA dysfunction has been observed 

in TazKD mice and correlated with ROS/RNS damage. Thus, future studies could 

determine whether increasing SERCA expression or enhancing cytotoxic protection 

would improve SERCA function, cardiac contractility, and histopathology in TazKD mice. 

 While our findings indicate that SERCA2a tyrosine nitration contributes to the 

reductions of maximal SERCA activity in TazKD mice, our results with PLN suggest 

otherwise. PLN is implicated in HF and DCM with either an increase in expression or 

decrease in its phosphorylation (30). In fact, several mutations to the PLN gene have been 

linked to HF and DCM (29, 42, 43, 47). Here, our results show that PLN is less likely 

contributing to the impairments in SERCA function, given that PLN monomeric content 

was reduced, and its phosphorylation increased. Altogether, this would suggest that there 

is less PLN inhibiting the SERCA pump. Although we do not know the exact 
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mechanisms leading to these changes in expression and phosphorylation, β-adrenergic 

signaling has previously been shown to activate phosphorylation of PLN at both CaMKII 

and PKA sites (ser16/thr17) (15). Furthermore, β-adrenergic activation in primary 

cultures from murine smooth muscle cells has been shown to reduce PLN expression (32). 

Importantly, elevated circulating levels of norepinephrine and epinephrine have 

previously been found in TazKD mice compared with WT suggestive of enhanced β-

adrenergic activation (5). Thus, the reduced expression and increased phosphorylation of 

PLN may be mediated by elevated β-adrenergic stimulation, and could represent a 

compensatory response elicited in TazKD hearts aimed at improving SERCA function. 

Importantly, chronic β-adrenergic activation can be detrimental and studies have linked it 

to DCM, heart failure, and early mortality (6, 15). Thus, it is possible that improving 

SERCA function in TazKD mice may lessen the need for β-adrenergic stimulation and 

thus improve the physiological outcome in these mice and perhaps in Barth syndrome 

patients who are often prescribed beta blockers such as carvedilol (21). 

In summary, we have found that maximal SERCA activity is impaired in young 

and old TazKD mice. This is likely due to the mitochondrial dysfunction and ensuing 

oxidative stress found in these mice as we observed a negative correlation between 

SERCA2a tyrosine nitration and maximal SERCA activity. Our findings may also have 

clinical implications in suggesting that SERCA may be a viable therapeutic target for the 

cardiomyopathy observed in TazKD mice. Thus, in the future it will be important to 

determine whether improving SERCA function in these mice can improve the 

cardiovascular outcomes. 
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FIGURE LEGENDS 

Figure 1.  Old TazKD mice exhibit reduced growth and increased left ventricle 
(LV):body weight ratio. (A) Body weight (g) in young (3-5 month) and old (10-12 
month) TazKD and WT mice. (B) LV Taz protein content expressed relative to WT, 
determined via Western blotting. (C)LV wet weight (mg) in young and old TazKD and 
WT mice. (D) LV:body weight ratio in young and old TazKD and WT mice. A two-way 
ANOVA was used with age and genotype as main effects while testing for a potential 
interaction. For (A) and (C) a significant interaction was detected and was followed with 
a Sidak post-hoc test that enabled comparison between genotypes within a specific age-
group.For (B) a significant main effect of genotype was detected and is depicted with an 
asterisk across the bar legends. *P < 0.05; **** P < 0.0001 (n = 5-6 per group). 
 
 
Figure 2. Maximal SERCA activity is reduced in both young (3-5 month) and old 
(10-12 month) TazKD mice compared with WT.  SERCA activity (µmol ATP/ g of 
protein/ min) in (A) young and (B) old WT and TazKD mice over Ca2+ concentrations 
ranging from pCa 6.9 to 4.6 and their respective pCa50 values. (C) Maximal SERCA 
activity (µmol ATP/ g of protein/ min) of young and old WT and TazKD mice. Significant 
main effects of both age and genotype were found using a two-way ANOVA. *P < 0.05; 
**P < 0.01 (n = 5-6 per group). 
 
Figure 3. SERCA2a expression and tyrosine nitration in young (3=5 month) and old 
(10=12 month) TazKD mice compared with WT. (A) SERCA2a total protein levels 
determined via Western blotting was unaltered between genotypes. (B) SERCA2a 
tyrosine nitration was significantly elevated in TazKD mice, determined via Western 
blotting using co-IP eluent. (C) Correlational analyses between absolute SERCA2a 
tyrosine nitration levels and maximal SERCA activity. For (B), a significant main effect 
of genotype was detected using a two-way ANOVA (n = 4 – 6 per group) and is depicted 
with an asterisk across the bar legends; and for (C), a significant negative correlation was 
detected using Pearson's correlational analyses, *P < 0.05.  
 
Figure 4. Monomeric PLN expression is decreased (A) and phosphorylated PLN is 
increased (B) in both young (3-5 month) and old (10-12 month)  TazKD mice 
compared with WT. A two-way ANOVA was used with age and genotype as main 
effects. For both (A) and (B), a significant main effect of genotype was detected and is 
depicted with an asterisk across the bar legends. *P < 0.05 (n = 4-6 per group). 
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