
Original Citation:

Matching with Partners and Projects

Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3308222 since: 2020-02-02T09:25:39Z

10.1016/j.jet.2019.104942

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Matching with Partners and Projects ∗

Antonio Nicolò†, Arunava Sen‡, Sonal Yadav§

August 22, 2019

Abstract

We propose a model where agents are matched in pairs in order to undertake a

project. Agents have preferences over both the partner and the project they are as-

signed to. These preferences over partners and projects are separable and dichoto-

mous. Each agent partitions the set of partners into friends and outsiders, and the set

of projects into good and bad ones. Friendship is mutual and transitive. In addition,

preferences over projects among friends are correlated (homophily). We define a suit-

able notion of the weak core and propose an algorithm, the minimum demand priority

algorithm (MDPA) that generates an assignment in the weak core. In general, the

strong core does not exist but the MDPA assignment satisfies a limited version of the

strong core property when only friends can be members of the blocking coalition. The

MDPA is also strategy-proof. Finally we show that our assumptions on preferences are

indispensable. We show that the weak core may fail to exist if any of the assumptions

of homophily, separability and dichotomous preferences are relaxed.

∗We are extremely grateful to two reviewers and the editor of the journal for their extensive comments on

earlier versions of the paper. We would also like to thank Yann Bramoullé, Jean-Jacques Herings, Michele

Lombardi, Jordi Massó, Debasis Mishra, Herve Moulin, Hans Peters, Juan Sebastián Pereya, Ton Storcken,

Fedor Sandomirskiy, Francesco De Sinopoli, Attila Tasnádi, William Thomson, Claudio Zoli and especially

Ravindra B. Bapat, Sarvesh Bandhu, Marco LiCalzi and Thayer Morill for their comments and suggestions.

This paper has also benifitted from the comments of seminar participants at Alicante, Bath, Budapest, Delhi,

Glasgow, Maastricht, Nizhny Novgorod, Saint Petersburg, Venice, Verona and York. This paper was earlier

circulated with the title “Matching with Homophily”. Nicolò and Yadav thank the financial support of the

Università delgi Studi di Padova Strategic Project “Incorporating patients’ preferences in kidney transplant

decision protocols” (STPD1159FJ).
†University of Padua, Padua, Italy and University of Manchester, UK.
‡Indian Statistical Institute, New Delhi, India.
§Ume̊a University, Ume̊a, Sweden.

1

1 Introduction

In many situations agents are matched in teams in order to work on a project. Agents have

preferences over the project they are asked to work on as well as over the partners they are

assigned to work with. Consequently, forming stable teams is important - it ensures that

agents do not have opportunities to abandon their assignments and do better for themselves.

A centralized authority matches agents in pairs and assigns them a project. We are

interested in mechanisms that satisfy stability and provide incentives to agents to truthfully

reveal their preferences. This problem shares some features with roommate matching models

since agents have preferences over their potential partners. However it also has common

features with one-sided matching models like the object allocation model and the house

allocation problem because a project has to be assigned to each pair of agents. In this sense

our model is a hybrid version of two classical models. We introduce appropriate notions of

the weak and strong cores in our framework. We show that strong core allocations no longer

exist in this setting. The contribution of our paper is twofold: we introduce a new model of

matching and identify a suitable restriction on preferences such that weak core allocations

exist. We propose an algorithm that generates weak core allocations and provides incentives

to agents to truthfully reveal their preferences. Our paper can be thought of as an attempt

to extend the matching literature to team formation focussing on the case of matching in

pairs in a well-defined but restricted preference domain.

Our model is a variant of the roommate problem where agents have preferences over

potential roommates and available rooms. A relevant application is the assignment of primary

school teachers in Italy. In Italian primary schools around one third of the teachers are

assigned in pairs to a class1 of students. The assignment of teachers to classes is done via a

centralized mechanism at school level: the head of the school is responsible for matching the

teachers in pairs and assigning each pair to a class of students. The two teachers work as a

team, sharing the teaching load and doing some classroom activities jointly. It is therefore

natural to assume that teachers have preferences over potential teaching partners and over

the classes they teach.

Another example is the problem of assigning term papers to students. In several aca-

demic institutions, undergraduate or Master’s students are required to take“Project”courses.

Students have to undertake some independent (non-coursework) research in these courses.

Due to the large number of students, they are often assigned in pairs (and sometimes in

1Families can choose between two options (DPR, Presidential Decree 89, 2009): a standard program with

27 hours per week (“modules”) and an extended-time program with 40 hours per week (“full-time”). In the

latter case two teachers are assigned to a class of pupils and they only teach those children (while in the

former case a group of three or more teachers are assigned to a set of classes and usually teach the same

subject in every class). According to the Italian Ministry of Education in 2018, there are 130,462 classes

of primary schools in Italy and among these 43,804 adopt the extended-time program, around 33.6 percent.

Students in Italian primary schools range from 6 to 11 years in age.

2

larger groups) to particular research topics. Students also benefit from learning from their

peers. Grades in these courses depend in very large measure on a joint report prepared by a

student team. As a result students have preferences over their assigned partner (often based

on whether they “get on” with him/her and on their assessments of their abilities) and the

project.

In our model there are a set of agents and a set of projects, and the number of projects

is at least as large as the number of pairs of agents. We assume that it is not feasible for an

agent to be unassigned. For instance, in the term paper assignment problem, every student

must write a term paper for the course with another student. It is not an option for a

student to not do a project. It would also be unfair for some students to work on their own

while others work in pairs. Similarly dorm rooms are often built for sharing, and fairness

would require all agents to share these rooms instead of some agents living on their own

while others share. An alternative approach would be to assume a preference restriction: all

agents strictly prefer to be assigned a partner and a project than to remain unassigned. We

adopt the feasibility approach for convenience. Each agent has a preference ordering over

partners and projects.

We investigate stable and strategy proof assignment rules in this setting. For stability,

we employ standard notions of the core - the strong core and the weak core.2 A coalition

can block an assignment using either an unassigned project or a project assigned to a pair of

agents both of whom belong to the coalition. An agent cannot unilaterally evict her partner

from the assigned project and use this project with other members of the blocking coalition.

A coalition can strongly block if all members of the blocking coalition are no worse-off and

at least one member is strictly better off. It can weakly block if all members are strictly

better off. Strong and weak core assignments are those that are immune to weak and strong

blocking respectively. These concepts differ whenever indifferences occur in agent preferences

(as they will in our model).

Neither the strong nor the weak cores exist in our model with an unrestricted domain

of preferences. One of the contributions of our paper is to provide a plausible restriction

on preferences under which the weak core and some variants of the strong core exist. We

describe our preference domain below.

Preferences are separable over partners and projects. Also preferences over each compo-

nent are dichotomous i.e. alternatives in each component are partitioned into good and bad

sets.3 The set of possible partners is partitioned into friends (good partners) and outsiders

(bad partners), and the set of projects into good and bad projects. Therefore every partner,

project pair can be placed into one of four indifference classes.4 Friendship is mutual and

2See Shapley and Scarf (1974) and Roth and Postlewaite (1977).
3The assumptions of separability and dichotomous preferences are pervasive in the literature on voting,

auctions and matching. Further references can be found in Section 2.3.
4The four indifference classes are (good partner, good project), (good partner, bad project), (bad partner,

3

transitive, so that the set of agents can be partitioned into groups of friends. Finally, pref-

erences of friends are correlated (homophily).5 Specifically, we assume a strong alignment in

the preference for projects among friends: for any pair of friends, the set of good projects

of one of them is weakly contained in the set of good projects of the other one. However,

two friends need not have the same set of good projects. One agent can be fussier than the

other and like only a subset of the projects liked by the other agent. Notice that homophily

is satisfied when the projects can be ordered according to a criterion such as the level of

complexity, degree of riskiness etc. and a threshold divides the projects into good and bad

ones. Friends evaluate the projects using the same criterion but they may have different

thresholds.

In our opinion, our model restrictions in the Italian primary teacher assignment applica-

tion are believable. Teachers have to be matched in pairs to a “project” (a class) and cannot

remain unmatched. Preferences over colleagues and classes are likely to be independent and

the fact that teachers divide the set of colleagues and classes into those they like more and

those they like less, seems plausible. Teachers typically have correlated preferences over

classes6 and may have common criteria to evaluate them. For instance, teachers may agree

that it is more difficult to teach a class in which there are many children from non-native

language speaking families. However they are likely to disagree on the critical number of

such students that make a class “hard” to teach.

Our main results are as follows. We show that the strong core may fail to exist in our

domain. We propose an algorithm, the minimum demand priority algorithm (MDPA) that

generates a weak core assignment. We also consider an intermediate core notion which

we call the friendship core. In this notion, agents can weakly block but all members of

the coalition must be friends. We show that the friendship core exists subject to certain

cardinality restrictions.

We also investigate the incentive properties of the MDPA. Since friendship relationships

are mutual, we assume that they are common knowledge. However agent preferences about

good projects is private information. There is a conceptual difficulty arising from the fact

that homophily is a restriction on preference profiles, rather than on individual preferences.

Nevertheless we find a convenient way to deal with this issue. We assume that for every group

of friends, there is a common ordering over projects in terms of acceptability. Each agent

is characterized by a threshold level of acceptability - all projects “less” than the threshold

good project) and (bad partner, bad project).
5Sociological literature provides ample evidence of the existence of homophily, that is, the tendency of

individuals to connect and form close ties with other individuals who are similar to them. See Cohen (1977),

Kandel (1978), Verbrugge (1983), McPherson et al. (2001), Golub and Jackson (2012).
6Boyd et al. (2013) show that in US teachers exhibit preferences for schools that are closer geographically,

are suburban, have a smaller proportion of students in poverty, and, for white teachers, have a smaller

proportion of minority students. Here we look at teachers’ preferences once they are already assigned to a

school.

4

project are good for the agent. A profile of thresholds generates a profile of preferences

satisfying homophily and strategy-proofness can be then defined in the usual way. We show

the MDPA algorithm is strategy-proof.

The key assumptions underlying our preference domain are separability, dichotomous

preferences and homophily. We show the weak core fails to exist if any one of the three is

dropped, while maintaining the other two. Our preference restrictions are indispensable in

this sense.

Earlier in the introduction, we alluded to the fact that our model is a combination of the

house allocation model and the roommate problem. We would like to emphasize that our

model is distinct from both - in particular, none of our results follow from results in either

model.

1.1 Existing Literature

To the best of our knowledge, our model is distinct from others in the literature. However

there are existing models that bear some resemblance to ours. We discuss some of these

connections below.

Our model extends the classical roommate problem (see Roth and Sotomayor (1992) for

a discussion) by allowing agents to have preferences over roommates and rooms. Stable

allocations in the roommate problem do not always exist. Tan et al. (1991), Gudmundsson

(2014) and Abizada (2016) identify preference restrictions that guarantee the existence of

stable allocations. The existence problem in our model is more severe than in the roommate

problem. We discuss this issue in Section 2.

Another related model is the “stable activities” (or SA) variant of the roommate problem

studied in Cechlárová and Fleiner (2005). In the SA model different kinds of partnerships

are possible between every pair of agents. A partnership between agents can be thought

of as a common activity such as playing chess, going to the movies together and so on.

Each agent has preferences over partner, activity pairs in which respect it is similar to

our model. However activities can be replicated arbitrarily in the SA model, i.e. several

pairs can be assigned the same activity. In our model, on the other hand, a project can be

assigned to only one pair if it is assigned at all. This makes the two problems substantatively

different. For instance, pairs of agents in our model can blocking by swapping their projects,

but this notion is meaningless in the SA problem. The main result of the Cechlárová and

Fleiner (2005) paper establishes an equivalence between the SA problem and the roommates

problem. However, it is not possible to extend a stable roommate assignment to a weak core

assignment in the partner, project model - see example 3 in Section 2.

Combe (2017) and Sethuraman and Smilgins (2016) consider a model where two distinct

sets of agents (men and women) have to be matched in pairs to a common set of objects

(houses). Agents’ of each type have preferences on the house and the partner they are

5

matched with.7 The cardinality of the the set of agents and houses is assumed to be equal.

Both papers show that a stable matching may fail to exist in this setting. Both papers

introduce a notion of house ownership whereby one of the agents assigned to a house is made

the owner of the house. Ownership places restrictions on possible deviations by agents.

They show that if agents on one side of the market are given ownership, the classical result

of Gale and Shapley applies and a stable match (with respect to the ownership structure), is

guaranteed. Combe (2017) goes on to show that even though stable matches exist for one-

sided ownership structures, the core may be empty unless further restrictions on preferences

are introduced. Our model, is similar to the models considered in these papers, but differs

in significant ways. One of these differences is that we assume that there are more projects

available than required. This makes blocking much easier and the ownership approach less

compelling. Our approaches to the fundamental non-existence issue in these models are quite

distinct. Consequently our results and the arguments that undergird them, are also distinct

both in substance and flavour.

Pycia (2012) proves a very general existence result on coalition stability. However, his

model does not cover ours because of the presence of objects in our model. Since objects do

not have preferences over agents they are assigned to, our notions of blocking do not have

a counterpart in his setting. In particular, if objects are interpreted as agents, deviating

coalitions that involve objects cannot strictly improve. The difference between the models is

manifested in the results as well. According to the main result of Pycia (2012), a coalition

structure is stable if and only if agents’ preferences are “pairwise-aligned” 8 i.e. every pair of

agents rank coalitions that contain both of them, in the same way. Our preference restrictions

do not satisfy pairwise alignment, yet the weak core exists.

A special case of the question investigated in Pycia (2012) is the existence of stable

threesome matchings. Alkan (1988) considers societies where there are three sets of agents

(men, women and children) and a matching consists of distinct triples, each formed by a man,

a woman and a child. Agents have preferences over the pairs they are matched with; thus

a blocking coalition is a triple, where each member in the coalition strictly improves. Alkan

(1988) shows that stable matchings fail to exist, even when the preferences are restricted to be

separable. Biró and McDermid (2010) considers a three-sided model with cyclic preferences,

where men care only about women, women only about children and children only about men.

As discussed in the earlier paragraph, our model cannot be interpreted as a special case of

these models.

In a slightly different spirit, Raghavan (2018) considers an allocation problem where

agents have to be assigned in pairs to objects. An object is either assigned to a unique

pair of agents or not assigned at all. However, unlike in the roommate problem and ours,

7Burkett et al. (2018) analyze two versions of the random serial dictatorship mechanism in a model where

pairs of roommates have to be assigned to rooms and agents care about their roommates and their rooms.
8Certain richness assumptions on preferences are made as well.

6

agents only have preferences over objects and not on potential partners. The paper examines

allocation rules from the perspective of strategy-proofness and efficiency.

An important strand in the recent literature on matching is concerned with matching

with contracts (see Ostrovsky (2008), Hatfield and Kominers (2012) etc.). Our model can

be interpreted as roommate matching problem with contracts. However to the best of our

understanding, the results in this literature do not have any bearing on ours. It is possible

to reformulate our model to make it consistent with that of Hatfield and Kominers (2012).

However their notion of blocking is stronger than ours. On the other hand, their requirement

of cross-side complementarity is not satisfied by our preferences. Hence full-substitutability

also fails and the existence of weak core assignments cannnot be inferred from their result.

Our model is also related distantly to the those on the existence of stable matchings in

two-sided matching models where couples are looking for jobs in the same labour market. A

convenient example is the one where doctors are seeking internships at hospitals and some

of the doctors are couples. (See Klaus and Klijn (2005), Klaus and Klijn (2007), Klaus

et al. (2007) and Khare and Roy (2018)). In these models, the identity of the couples is pre-

determined. Every agent has an individual preference on the hospitals and a joint preference

on the possible hospital duples. Hospitals also have preferences over the students. It is clear

that our model is fundamentally different from these models - in our case, the formation of

couples is endogenous while there is no counterpart of the hospital agent.

The remainder of the paper is organized as follows. Section 2 presents the model while

Section 3 informally describes the MDPA algorithm. Section 4 contains the main results of

the paper. Section 5 discusses the indispensability of our preference restrictions. Section 6

concludes. Appendix 1 provides a formal description of the MDPA algorithm. The proofs

are contained in Appendices 2 and 3.

2 The Model

There is a finite set of agents N = {1, 2, . . . , i, j, . . . , n} and a finite set of projects, A =

{a, b, c, d . . .}. We assume that |N | = 2m for some integer m ≥ 2 and that |A| ≥ m.

An assignment σ is a collection of triples (i, j, a) with the interpretation that agent pair

(i, j) is assigned project a. We require all agents to be assigned a partner and a project.

Each agent is paired with exactly one other agent. Every project is assigned to exactly one

pair of agents or left unassigned.

We say that the triple (i, j, a) is an element of σ if the pair (i, j) is assigned to the project

a in σ. Finally let uσ denote the set of unassigned projects in the assignment σ i.e. it is the

set of projects a such that (i, j, a) /∈ σ for every i, j ∈ N .

Let Σ denote the set of all feasible assignments.

7

Each agent i has a preference ordering9 %i over partner, project pairs (j, a) where j 6= i.

We denote the asymmetric and symmetric components of %i by �i and ∼i respectively. A

preference profile %≡ (%1, . . . ,%n).

2.1 Blocking and Stability

We introduce notions of blocking and stability appropriate for our model.

Let σ be an assignment and let S ⊂ N be a coalition such that |S| is even. The set of

projects available to the coalition S is X(S, σ) where

X(S, σ) = {a ∈ A : (i, j, a) ∈ σ and i, j ∈ S} ∪ uσ.

A project a belongs to X(S, σ) if either a is unassigned in σ or agents i, j ∈ S are matched

together and assigned a in σ.

We say that σ′ is X(S, σ)-feasible if each agent in S is paired with another agent in S

and each such pair is assigned a project from X(S, σ). Note that feasibility of σ′ requires

|X(S, σ)| ≥ |S|
2

.

Definition 1 A coalition S (with |S| even) strongly blocks σ at preference profile % if there

exists σ′ which is X(S, σ)-feasible and (k, b) �i (j, a) for all i ∈ S where (i, k, b) ∈ σ′ and

(i, j, a) ∈ σ. An assignment is in the weak core if it is not strongly blocked by any coalition.

Definition 2 A coalition S (with |S| even) weakly blocks σ at preference profile % if there

exists σ′ which is X(S, σ)-feasible, (k, b) %i (j, a) for all i ∈ S where (i, k, b) ∈ σ′, (i, j, a) ∈ σ
and (k, b) �l (j, a) for some l ∈ S where (l, k, b) ∈ σ′, (l, j, a) ∈ σ. An assignment is in the

strong core if it is not weakly blocked by any coalition.

The notion of the strong and weak core are well known in the literature. In the weak

core, every member of the blocking coalition must strictly improve. In the strong core, no

member of the blocking coalition can be worse off and at least one agent must be strictly

better off. It is easy to show if the preferences are anti-symmetric (admit no indifference)

then the strong and weak cores coincide. In our model, indifferences will be pervasive and

the distinction between the two notions of the core will be important.

There is another feature of blocking in our model that we would like to comment on.

Suppose σ is an assignment where agents 1, 2 are paired together with project a, while 3, 4

are paired together with project b. Let S = {1, 3}. According to our definition of X(S, σ),

projects a and b are not available to S. More generally, an assigned project a is available for

blocking only if the coalition S contains both agents who were assigned to a in σ. Both agents

who have been paired together with a project have “rights” over the project. No agent can

9An ordering is a binary relation which is complete, reflexive and transitive.

8

%1 %2 %3 %4

(2, .) (3, .) (1, .) (1, .)

. . . .

(3, .) (1, .) (2, .) (2, .)

. . . .

(4, .) (4, .) (4, .) (3, .)

. . . .

Table 1: Preferences of agents in Example 1.

evict her partner and use their assigned project with other members of the blocking coalition.

Of course, 1 and 3 can abandon their partners and block with an unassigned project.

We refer to blocking via unassigned projects when an assignment can be blocked by a

pair of agents who abandon their current partners and choose an unassigned project in the

assignment which strictly improves their welfare from the initial situation.

2.2 The general non-existence of the core

Neither the weak nor the strong core exist without restrictions on preferences. This is not

surprising in view of the fact that it is well known that the core does not exist in the

roommate problem.10 Recall that the roommate problem is one of forming pairs from a

set of agents where each agent has a preference ordering over possible roommates. Non-

existence in our model can be obtained from the non-existence in the roommate problem by

simply making agents care lexicographically more about partners than projects. Consider

the example below.

Example 1 Let N = {1, 2, 3, 4} and A = {x, y, z}. Table 1 specifies the preferences of the

agents. Agent 1 prefers to be paired with agent 2 and any project to being paired with agent

3 and any project which in turn is preferred to being paired with agent 4 and any project.

The preferences of agents 2, 3 and 4 are interpreted in a similar way.

Assume without loss of generality that agent 3 is matched with agent 4 together with

project x. Therefore 1 and 2 are matched together with some project, say z. Since 3 is agent

2’s favourite partner and 3 is paired with her least favourite partner, agents 2 and 3 can form

a blocking coalition with unassigned project y.

The non-existence problem in our model is however deeper and more pervasive than

suggested by the connection to the roommate problem. We provide two examples to demon-

strate our claim. In Example 2, the core does not exist even though agent preferences over

10A discussion can be found in Tan et al. (1991) and Gudmundsson (2014).

9

�proj1 �proj2 �proj3 �proj4 �proj5 �proj6

a b c d e f

b a b e f e

c c a f d d

d d d c c c

e e e b b b

f f f a a a

Table 2: Preferences of agents over projects in Example 2.

projects are lexicographically dominant. Example 3 which is a small variation of Example 2

shows that the core does not exist in our model even when the associated roommate problem

has a non-empty core.

Example 2 Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f}. We define the following linear

order >o over projects: a >o b >o c >o d >o e >o f .

Each agent i has a preference ordering �proji over the set A specified in Table 2. Observe

that �proji is single-peaked with respect to the ordering >o. In particular, agents 2 and 3

are left-oriented i.e. any project which lies to the left of the agent’s peak is preferred to a

project which lies to the right of her peak. Similarly agents 4 and 5 are right-oriented. For

notational convenience, we shall denote the peak of �proji by τ(i). Thus τ(1) = a etc.

Each agent i has an arbitrary preference ordering �parti over the set N \ {i}.
The two orderings �proji and �parti are combined to generate an ordering �i over part-

ner,project tuples as follows: (j, a) �i (k, b) if either a �proji b or a = b and j �parti k. Thus

�i is lexicographic and �proji is the dominant component.

We claim that the core is empty at the profile �= (�1, . . . ,�6).

Consider an arbitrary assignment. We claim that if the assignment is in the weak core

at �, then at least one of the projects in {τ(1), τ(2)} and one of the projects in {τ(5), τ(6)}
must be assigned.

Suppose neither τ(1) nor τ(2) are assigned. Then neither agents 1 nor 2 are getting their

first and second ranked projects. They can then form a blocking coalition by choosing one of

the unassigned projects τ(1) or τ(2). This would give each agent either their first or second

ranked project. By a similar argument, one of the projects in {τ(5), τ(6)} must be assigned.

Since there are six projects and six agents, exactly three projects must be assigned.

Suppose the third project assigned is the unassigned project in {τ(1), τ(2)} i.e. the assigned

projects are τ(1), τ(2), and either τ(5) or τ(6). Then at least one of the agents i ∈ {4, 5, 6} is

assigned to either τ(1) or τ(2). Observe also that agent 3 is not getting her best project since

τ(3) ∈ uσ. Now (i, 3, τ(3)) is a blocking coalition. This is true because single-peakedness

implies agent i strictly prefers τ(3) to τ(1) or τ(2).

10

By a symmetric argument, it cannot be the case that the assigned projects are τ(5), τ(6)

and either τ(1) or τ(2).

The only remaining possibility is that there is one assigned project in {τ(1), τ(2)}, one

in {τ(5), τ(6)} and one in {τ(3), τ(4)}. Assume τ(4) is the assigned project.

Observe that either agent 1 or 2 is not getting her best project. Suppose 1 is the agent

who is not getting her best project. There are two cases to consider. The first is when τ(1)

is assigned (clearly not to agent 1) and the second is when τ(2) is assigned.

In the first case, τ(2) is unassigned. Therefore 1 and 2 can block with τ(2). In the second

case, there are four possibilities.

(i) Agent 1 is getting τ(2) and agent 3 is not, i.e. agent 3 is getting a project in

{τ(4), τ(5), τ(6)}. Since 3 is left-oriented, 1 and 3 block via the unassigned project

τ(1).

(ii) Agent 3 is getting τ(2) but agent 1 is not, i.e. agent 1 is getting a project in

{τ(4), τ(5), τ(6)}. Then agents 1 and 3 block via the unassigned project τ(3).

(iii) Neither agent 1 nor agent 3 is getting τ(2). Here agents 1 and 3 block via one of the

unassigned projects τ(1) or τ(3).

(iv) Agents 1 and 3 are matched with project τ(2). Hence agent 2 is assigned a project

in {τ(3), τ(4), τ(5), τ(6)}. Since agent 2 is left-oriented, agents 1 and 2 block the

assignment via the unassigned project τ(1).

The other case is where agent 2 is not getting her best project. Once again, there are

two possibilities. The first is when τ(2) is assigned. So by assumption, τ(1) is unassigned.

Then agents 1 and 2 can block with τ(1). The remaining case is when τ(1) is assigned. So 2

and 3 are assigned projects in {τ(1), τ(4), τ(5)}. Then agents 2 and 3 block via the project

τ(2).

The last case is when τ(3) is the third assigned project instead of τ(4). This case can

be dealt with using analogous arguments. These arguments establish that the core does not

exist.11

In the following example, the associated roommate problem has a non-empty core while

the core is empty in our model.

Example 3 The setting is the same as in Example 2. Preferences are also the same, except

that agents’ preferences over partners (�parti) are as specified in Table 3.

11The model in Raghavan (2018) can be embedded in our setting by assuming that all agents’ are indifferent

about their partners. Example 2 shows that the weak core does not exist in this case.

11

�part1 �part2 �part3 �part4 �part5 �part6

2 1 4 3 6 5

.

.

.

.

Table 3: Preferences of agents over partners �parti in Example 3.

Consider the problem where the preferences over projects are ignored, i.e. we consider a

pure roommate problem with preferences shown in Table 3. In this problem, the assignment

(1, 2), (3, 4), (5, 6) belongs to the core. However we know from Example 2, that the core does

not exist.

In the next subsection, we propose some preference restrictions under which a version of

the core exists.

2.3 The Preference Domain

Each agent i has a preference ordering %i over partner, project tuples in N \ {i} × A. We

allow for weak preferences. The asymmetric and symmetric components of %i are denoted

by �i and ∼i respectively.

We assume preferences satisfy separability, dichotomous marginal orderings and ho-

mophily. We describe each of them successively.12

Definition 3 The ordering %i is separable if for all a 6= b ∈ A and j 6= k ∈ N \ {i}, we

have (i) (j, a) �i (k, a) ⇐⇒ (j, b) �i (k, b) and (j, a) ∼i (k, a) ⇐⇒ (j, b) ∼i (k, b) and (ii)

(j, a) �i (j, b) ⇐⇒ (k, a) �i (k, b) and (j, a) ∼i (j, b) ⇐⇒ (k, a) ∼i (k, b).

Separability implies that marginal preferences over partners and projects are well-defined.

We refer to the marginal preferences over partners and projects by %parti and %proji respec-

tively. We assume %parti and %proji are dichotomous.

12As we have noted earlier in the Introduction, the assumptions of separability and dichotomous preferences

have been used extensively in the literature. A few instances are noted below. Separable preferences have been

used in multi-dimensional voting (Border and Jordan (1983), Barberà et al. (1991), Breton and Sen (1999)), in

combinatorial auctions (Hart and Nisan (2017), Hart and Reny (2015)), multi-dimensional screening (Carroll

(2017)) and matching (Kurino (2014)). Dichotomous preferences have been employed in voting (Bogomolnaia

et al. (2005), Gaurav et al. (2017)), auctions (Mishra and Roy (2013)) and matching (Bogomolnaia and

Moulin (2004), Roth et al. (2005)).

12

Definition 4 Fix a separable ordering %i. The induced marginal ordering %parti is dichoto-

mous if there exists a set P i(%i) ⊆ N \ {i} such that (i) j �parti k ⇐⇒ j ∈ P i(%i),

k /∈ P i(%i) and (ii) j ∼parti k ⇐⇒ either a, b ∈ P i(%i) or a, b /∈ P i(%i). The induced

marginal ordering %proji is dichotomous if there exists a set Gi(%i) ⊆ A such that (iii)

a �proji b ⇐⇒ a ∈ Gi(%i), b /∈ Gi(%i) and (iv) a ∼proji b ⇐⇒ either a, b ∈ Gi(%i) or a, b /∈
Gi(%i). The ordering %i is dichotomous if both its induced marginal orderings %parti and

%proji are dichotomous.

We refer to the sets P i(%i) and Gi(%i) as the set of good partners (friends) and good

projects for agent i. We allow for the possibility of P i(%i), Gi(%i) = ∅. The complement

sets of P i(%i) and Gi(%i) will be referred to as the set of bad partners and bad projects

respectively.

As we have remarked earlier, dichotomous preferences are a natural preference domain

and have been used in several matching and allocation models. An immediate consequence

of this assumption is that agent preferences have “large” indifference classes.

According to these preferences all partner, project pairs can be placed in one of four

indifference classes: (I) both partner and project are good, (II) only the partner is good (III)

only the project is good and (IV) neither partner nor project is good. We shall refer to the

classes (I), (II), (III) and (IV) as (G,G), (G,B), (B,G) and (B,B) respectively. In general,

we adopt the convention that the first component in the ordered pairs refers to the type of

partner and the second to the type of project.

Separability implies that (G,G) is the most preferred equivalence class and (B,B), the

worst. Classes (G,B) and (B,G) can be ranked either way. We refer to the case where

(G,B) is ranked above (B,G) as a partner dominant preference. In this case agent i prefers

a good partner, bad project pair over a bad partner, good project pair.

Similarly, a project dominant preference is one where (B,G) is ranked above (G,B) i.e.

agent i prefers a bad partner, good project pair over a good partner, bad project pair.

We assume the following (i) if j ∈ P i(%i) then i ∈ P j(%j) and (ii) if i ∈ P j(%j) and

j ∈ P k(%k), then i ∈ P k(%k). Thus the friendship relationship is mutual (if i is j’s friend,

then j is i’s friend) and transitive (if i is j’s friend and k is i’s friend, then k is i’s friend).

These assumptions induce a partition on the set of agents N where each element in the

partition is a set of agents who are all friends. We shall refer to each element of this partition

as a friendship component. These components are labelled {F1, F2, . . . , FL}. Note that the

number of components which have an odd number of agents must be even.

The final assumption on preferences is that of homophily. Unlike separability and di-

chotomous preferences, homophily is an assumption on preference profiles.

Definition 5 Let %≡ (%1, . . . ,%n) be a preference profile where each %i is a separable and

dichotomous preference ordering. Then % satisfies homophily if for any i, j ∈ N such that

i, j are friends, we have either Gi(%i) ⊆ Gj(%j) or Gj(%j) ⊆ Gi(%i).

13

F1 F2

1 {x, y, z} 4 {z}
2 {x, y, z}
3 {x, y, z}

Table 4: Preferences of agents in Example 4.

This induces an alignment in the preference for projects among friends. There cannot be

a pair of projects a, b and a pair of friends i, j such that i likes a but not b, while j likes b

but not a. However i and j need not have the same set of good projects, one agent can be

more fussy than the other and like only a subset of the projects liked by the other agent.

2.4 Further remarks on the core

The next example shows that the strong core may not exist in our preference domain.

Example 4 Let N = {1, 2, 3, 4} and A = {x, y, z}. Table 4 summarizes the friendship

components and the sets of good projects for the agents. All agents have partner dominant

preferences.

In any assignment, an agent in F1 is paired with agent 4. Consider an arbitrary assign-

ment, say (1, 2, x), (3, 4, z). In this assignment, project y is unassigned. Agents 1, 3 (or 2, 3)

can form a blocking coalition using project y. Here agent 1 (or 2) remains indifferent by

blocking while agent 3 strictly improves. Thus the strong core does not exist.

In view of the non existence of the strong core, we investigate two weaker notions. In the

first, agents can weakly block but the blocking coalition must consist entirely of friends. We

call this notion friendship core. In the second, we consider the existence of a strengthened

version of the weak core which we call the robust weak core.

Definition 6 An assignment is in the Fq-friendship core (for some q ∈ {1, . . . , L}) at % if

no coalition S ⊆ Fq can weakly block it at %. An assignment is in the friendship core at %
if it is in the Fq-friendship core at % for all q ∈ {1, 2, . . . , L}.

We note in Example 4 that the F1-friendship core does not exist. An aspect of the

example is that F1 contains an odd number of agents. We will show that our algorithm will

generate an assignment in the Fq-friendship core whenever |Fq| is even.

The second variant of the core that we consider is the weak core. We show that the weak

core exists in our preference domain. In fact, we show that the assignment in the weak core

satisfies some stronger properties which we define below.

14

The profile %′ is good-set equivalent to the profile % if P i(%′i) = P i(%i) and Gi(%′i) =

Gi(%i) for all i.

Definition 7 An assignment is in the robust weak core at % if it is in the weak core at

every %′ that is good-set equivalent to %.

This is a desirable property because it implies that the only information that has to be

elicited from the agents in order to propose an assignment in the weak core is their set of

good partners and projects. Information regarding the partner or project dominance of agent

preferences is not required.

3 The Minimum Demand Priority Algorithm

We describe an algorithm to generate an assignment which we refer to as the Minimum De-

mand Priority Algorithm (MDPA). We provide here an informal description of the algorithm.

The formal detailed description can be found in Appendix 1.

Let �N and �A be fixed orderings of the sets N and A respectively. If agent i �N j,

then agent i has priority over j. Let �F be a fixed ordering over friendship components

{F1, . . . , FL} where F1 �F F2 �F . . . �F FL. If Fq, q ∈ {1, .., L} has an odd number of

agents we remove the last agent in this component according to �N . The agents who have

been removed from their respective components are called residual agents.

We then proceed to assign projects to pairs of agents who belong to the same component,

starting from F1 following the fixed ordering �F (note that every component is now formed

by an even number of friends).

Consider component F1 and project a ∈ A. The demand for a in F1 is the cardinality of

the set of agents belonging to F1 who consider project a good. We select the project with the

minimum positive demand in F1, breaking ties according to �A: let x ∈ A be this project.

If there are at least two agents who demand x (i.e. for whom x is good), we assign x to

the pair of agents with highest priority according to �N in the set of agents who demand x.

This triple is then removed from further consideration in the algorithm. If there is only one

agent who demands x, we provisionally assign x to the (only) agent who demands it. We

call this pair, formed by a project and an agent without a partner, a waiting pair.

In the next step, we again compute the demand for each unassigned project in F1, ex-

cluding the agents to whom a project has already been assigned, either definitively or provi-

sionally. We select the project with the minimum positive demand, breaking ties according

to the fixed ordering �A. Suppose this project is y. If there are at least two agents who

demand y, we assign y to the pair of agents with the highest priority according to �N in

the set of agents who demand y. We remove this triple from further consideration. If the

demand for y is exactly one and j is the agent who considers y good, then there are two

15

cases to consider. The first is that a waiting pair already exists. Note that this waiting pair

must be (i, x). We form the triple (i, j, y) and remove it from further consideration in the

algorithm. The project x is now unassigned and is available for future assignments. The

second case is that there is no waiting pair. Here (j, y) becomes a waiting pair for the next

step.

We proceed in this manner to subsequent steps calculating at each step, the demand in F1

for every unassigned project, excluding agents to whom a project has already been assigned,

either definitively or provisionally. Note that at the end of each step there is at most one

waiting pair.

It is clear that we must finally reach a step where the demand in F1 for each unassigned

project is zero. The first possibility is that all agents in F1 have already been matched

and this completes the assignment for F1. The second possibility is that there exists a set

of agents in F1 who are still unmatched. If this set has even cardinality, we arrange the

unmatched agents using �N , form pairs of consecutive agents and assign projects to each

pair in sequence using �A from the set of unassigned projects. The final possibility is that

the set of unmatched agents has odd cardinality. This implies that there exists a waiting

pair. The unmatched agent with highest priority using �N is matched with the waiting pair

to form a triple. If there are still unmatched agents, (notice that their number is even), we

proceed as above, forming pairs of consecutive agents (according to �N) and assign projects

to each pair in sequence using �A from the set of unassigned projects.

We repeat this procedure for every component in sequence till the last one, FL. Note

that the set of projects we can assign to agents in component Fl, where 1 < l ≤ L is given

by the set of remaining projects, calculated by removing all projects previously assigned to

pairs in components F1, . . . , Fl−1 from the set A.

Once we have completed the matching of agents in FL, we assign projects to residual

agents. We use �N to form as many pairs of agents with common good projects as possible.

We then match the remaining agents in pairs and assign to each pair a project which is good

for at least one agent (favouring the agent with the highest priority according to the fixed

ordering �N). Finally, agents who do not have any good project available, are given projects

from the set of remaining projects according to �A .
We illustrate it with an example.

Example 5 Let N = {1, 2, . . . , 24} and A = {a, b, . . . , z}. Table 5 summarizes the friend-

ship components and the sets of good projects for the agents. The priority order of agents

is 1 �N 2 �N 3 . . . �N 24 and the priority order of projects is z �A y . . . �A a.

Step 0: Each component has an odd number of agents. We remove agent 11 from F1 as

11 is the last agent in F1 according to �N . We remove agents 22, 23, 24 from F2, F3, F4

respectively. These agents form the set R of residual agents.

16

F1 F2 F3 F4

4 {x, y, z, w, q} 12 {a, b, c, d} 23 {f} 24 {e}
2 {x, y, z, w} 13 {a, b, c}
6 {x, y, z, w} 14 {a, b, c}

3 {x, y, z} 15 {a, b}
7 {x, y} 16 {a, b}
8 {x, y} 17 {a, b}
1 {x} 18 {a}
5 {x} 19 {a}
9 {x} 20 {a}
10 {x} 21 {a}

11 {x, y, z, w, q, e} 22 {a}

Table 5: Preferences of agents in Example 5.

The adjusted components are F̃1 = F1\{11}, F̃2 = F2\{22}. The MDPA assigns projects

to F̃1, F̃2, R in sequence.

Step 1: We assign projects to agent in F̃1. Table 6 illustrates the demand for the available

projects, the waiting set and the assignment made at every substep of Step 1. In the table,

NA indicates that the project is not available as it has been assigned either definitively or

provisionally.

In Step 1.0, q is the least demanded project with demand equal to 1. We provisionally

assign q to 4, the (only) agent who considers this project good. The pair (4, q) is a waiting

pair. In the next step, we again compute the demand for each unassigned project in F1,

excluding the agents to whom a project has already been assigned, either definitively or

provisionally. In Step 1.1, the set of unassigned projects is A \ {q} and agent 4 is excluded

while calculating the demand for unassigned projects. The project with the least demand is

w with demand equal to 2. Now the MDPA assigns w to the pair (2, 6). The set of agents

and projects for the next step are updated by removing agents 2, 6 and project w. Also (4, q)

is still a waiting pair. In Step 1.2, the project with least demand is z with demand 1 and

there exists a waiting pair (4, q). So the triple (4, 3, z) is formed in this step. The project q

is now unassigned and available for future assignments.13 In Step 1.3, project y is the least

demanded with demand equal to 2. So the MDPA forms (7, 8, y).14 In Step 1.4, the least

demanded project is x with demand equal to 4. The set of agents who consider project x

good is {1, 5, 9, 10}. Since 1 and 5 are the agents with the highest and second highest priority

13Note that there is no waiting pair formed in Step 1.2.
14Since there is no waiting pair in Step 1.2 and the project with least demand in Step 1.3 has demand 2,

there is no waiting pair in Step 1.3.

17

Step 1.q x y z w q Waiting Pair Assignment

1.0 10 6 4 3 1 {(4, q)} Provisional assignment

1.1 9 5 3 2 NA {(4, q)} (2, 6, w)

1.2 7 3 1 NA NA {(4, q)} (4, 3, z)

1.3 6 2 NA NA 0 ∅ (7, 8, y)

1.4 4 NA NA NA 0 ∅ (1, 5, x)

1.5 NA NA NA NA 0 ∅ (9, 10, v)

Table 6: Step 1 in Example 5.

Step 2.q a b c d Waiting Pair Assignment

2.0 10 6 3 1 {(12, d)} Provisional assignment

2.1 9 5 2 NA {(12, d)} (13, 14, c)

2.2 7 3 NA NA {(12, d)} (15, 16, b)

2.3 5 NA NA NA {(12, d)} (17, 18, a)

2.4 NA NA NA NA {(12, d)} (12, 19, d), (20, 21, u)

Table 7: Step 2 in Example 5.

according to �N in this set, the MDPA forms (1, 5, x). Finally Step 1.5 is the termination

step for the component F̃1 as the demand for each available project in this step is zero. Note

that there is no waiting pair and agents 9, 10 are unassigned. The pair (9, 10) is assigned the

highest ranked available project according to �A. So we have (9, 10, v).

Step 2: We make assignments to agent pairs in F̃2. Table 7 provides the demand for the

available projects, the waiting set and the assignment made in every substep of Step 2. In the

table, NA indicates that the project is not available as it has been assigned either definitively

or provisionally.

In Step 2.0, the project with the least demand is d, with demand equal to 1. Thus project

d is assigned provisionally to agent 12 and (12, d) is a waiting pair. Note that in any Step

2.q, q ∈ {1, 2, 3}, the least demanded project has demand greater than or equal to two: this

project is assigned to the highest and the second highest priority agents (according to �N)

in the set of agents who consider the project good. So (12, d) is a waiting pair in any Step

2.q. For instance, the triple (15, 16, b) is formed by the MDPA in Step 2.2. The termination

step for component F̃2 is Step 2.4: (12, d) is a waiting pair and 19, 20, 21 are unassigned.

Since 19 �N 20 �N 21, we have (12, 19, d) and (20, 21, u).

Step 3: Partner, project assignments are made for the agents in R = {11, 22, 23, 24}. Let

18

A(R) be the set of available projects to the residual agents.15 We use �N to form as many

pairs of agents with common good projects as possible. Note that G11 ∩ A(R) = {q, e},
G22 ∩ A(R) = ∅, G23 ∩ A(R) = {f} and G24 ∩ A(R) = {e}. Also 11 �N 22 �N 23 �N 24.

In Step 3.1, (11, 24, e) is formed by the MDPA. This is because 11 is the highest priority

agent in this step and has a common good available project with agent 24. Note that

G11 ∩ Gj ∩ A(R) = ∅ for j ∈ {22, 23}. The triple (11, 24, e) is removed from the algorithm.

In Step 3.2, the set of remaining agents is {22, 23}. The set of available projects is A(R)\{e}.
Agent 22 is the higher priority agent in {22, 23}. Since G22∩G23∩A(R) = ∅, no assignment

in this step. Thus we have formed as many pairs as possible where each pair is assigned a

project which is good for both agents. We now proceed to the termination substep, where

agents 22 and 23 are unassigned.

Step 4: Agent 22 has no good projects among the set of available projects. Agent 23 has

a good project among the set of available projects. The MDPA forms (22, 23, f). The

algorithm terminates at Step 4.

4 Properties of the MDPA

In this section we show that the MDPA satisfies several important properties.

4.1 Robust Weak Core

We have already defined and discussed the notion of stability. We show below the MDPA

generates an assignment in the robust weak core.

Theorem 1 The MDPA algorithm generates an assignment in the robust weak core at every

profile. If |Fq| is even, it is in the Fq-friendship core. If |Fq| is even for all q ∈ {1, . . . , L},
then it is in the friendship core.

The proof of Theorem 1 is provided in Appendix 2.

4.2 Strategy-Proofness

In this section we investigate the strategic properties of the MDPA. We assume that friend-

ship is commonly observable. Since friendship is mutual and transitive, no agent can in-

dividually manipulate and misreport her set of good partners or friends. We assume that

the set of good projects for an agent is private information and can be misreported by an

agent if she believes this could be advantageous. However, the assumption of homophily

15A(R) contains the projects in A which have not been allocated to agents in F̃1 and F̃2.

19

introduces some complications as it imposes a restriction on preference profiles. Therefore

individual announcements of sets of good projects may lead to profile announcements that

are inconsistent with homophily. Below, we propose a model that satisfactorily deals with

this issue.

For any friendship component Fq, there is a commonly known linear order �Oq over the set

of all projects with the following interpretation: for any x, y ∈ A, if x �Oq y then all agents in

Fq who like x also like y.16 The threshold project, say x is private information of an agent.17

All projects y such that x �Oq y are good. We believe this is a natural assumption that also

ensures that any announced profile of threshold projects is consistent with homophily.

We make a minor modification to the MDPA for convenience. We assume that while

making assignments in any component the order �Oq is used to break ties when there are

several projects with identical minimum demand. This amounts to a version of the MDPA

where a different order on A is used for each component and for the set R. The results on

robust weak core and the friendship core are not affected by this modification.

We now describe a general mechanism in this setting. Consider an agent i ∈ N . A

type for this agent consists of her threshold project and whether she is partner or project

dominant. Let Γi denote the set of types of agent i. Recall that Σ is the set of all feasible

assignments.

With a slight abuse of notation, we will refer to the type of agent i by her preference

ordering %i.18

An assignment rule is a map σ, σ : ×i∈NΓi → Σ.

Definition 8 An assignment rule σ is strategy-proof if there does not exist %i,%′i∈ Γi and

%−i∈ ×j 6=iΓi such that σ(%′i,%−i) �i σ(%i,%−i).

The notion of strategy-proofness is standard: an agent cannot strictly improve by misre-

porting her type for any possible announcements of types of other agents. Our main result

in this section is the following.

Theorem 2 The MDPA algorithm is strategy proof.

The proof of Theorem 2 can be found in Appendix 3.

16It may be convenient to think of the order �Oq as the counterpart of the underlying order on alternatives

required in the definition of single peakedness. The order �Oq is arbitrary but “common” to all agents in the

same component. Like in the analysis of single peaked preferences, the mechanism designer is assumed to

know the ordering �Oq .
17Note that the private information of an agent consists of more than her threshold project. It is also

whether she is partner or project dominant.
18Note that %i consists of exactly three elements: her set of good partners, her set of good projects and

whether she is partner or project dominant. In the model, the set of good partners is fixed. A type for i can

therefore be unambiguously identified with a preference ordering %i.

20

5 Indispensability of the preference restrictions

The key assumptions underlying our preference domain are as follows: (i) separability of

preferences over partners and projects, (ii) marginal component preferences are dichotomous

and (iii) homophily. We show below by a series of examples that the weak core fails to exist

if any of the assumptions (i), (ii) and (iii) are dropped.19

5.1 Non-separable dichotomous domains with homophily

In this subsection, we retain all assumptions on preferences except separability. We assume

that the sets of good partners for agents are well defined. Also friendship continues to be

mutual and transitive. However the set of good projects for an agent depends on her partner.

For agent i, let Gi(j) be the set of good projects for agent i when her partner is j. Note that

if agent i’s preferences over partner, project tuples are separable, we have Gi(j) = Gi(k)

for all j, k ∈ N \ {i}. In this setting, a natural interpretation of homophily is that either

Gi(j) ⊆ Gj(i) or Gj(i) ⊆ Gi(j) for all agents i, j who are friends.

Example 6 Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d}. The friendship components are

F1 = {1, 2, 3} and F2 = {4, 5, 6}. Table 8 shows the sets of good projects for the agents. If

the set of good projects is indicated as ∅, all projects are bad for the agent.

Partner G1(j) G2(j) G3(j) G4(j) G5(j) G6(j)

1 - {a} {a, b, c, d} ∅ ∅ ∅
2 {a, b, c, d} - {a} ∅ ∅ ∅
3 {a} {a, b, c, d} - ∅ ∅ ∅
4 ∅ ∅ ∅ - {a} {a, b, c, d}
5 ∅ ∅ ∅ {a, b, c, d} - {a}
6 ∅ ∅ ∅ {a} {a, b, c, d} -

Table 8: Preferences of agents over projects in Example 6.

Each agent i’s preference ordering %i has three indifference classes. The first class consists

of tuples where i is matched to an agent j in her friendship component and works on a

project in Gi(j). The second class consists of tuples where i is matched to j in her friendship

component but assigned a project that does not belong to Gi(j). The third class consists of

the remaining tuples.

Observe that preferences satisfy homophily (as defined above) and the component prefer-

ences over partners and projects are dichotomous. However, preferences are non-separable.

19A similar approach is followed in Klaus and Klijn (2005).

21

For instance, {a, b, c, d} is the set of good projects for 1 when her partner is 2, while {a}
is the set of good projects for 1 when her partner is 3. Formally, (1, 3, a) �i (1, 3, b) but

(1, 2, a) ∼i (1, 2, b).

In each friendship component, every agent has {a, b, c, d} as the set of good projects with

a friend and only {a} with the other one. Consider an arbitrary stable assignment. Since

both friendship components have an odd number of agents, at least one of the agents in F1

must be matched with an agent in F2. In fact, there must be exactly one such pair. Suppose

this is not true. Then each agent in F1 is matched to an agent in F2. Two agents from the

same component can then block using the unassigned project.20 Without loss of generality,

let agents 3 and 6 be matched to each other. So 1 and 2 are matched together as are 4 and

5.

We first argue that the pair (1, 2) must be assigned a in any stable assignment. Suppose

not i.e. (1, 2) is assigned a project in {b, c, d}. For agent 2, a is the only good project when

she is matched to agent 1, while all projects are good for her when she is matched to agent

3. So the triple (2, 3, x) where x is the unassigned project blocks this assignment. Therefore

(1, 2) is assigned a in any stable assignment and (4, 5) is assigned a project in {b, c, d}.
Note that G4(5) = {a, b, c, d} and G5(4) = {a}. So any project assigned to the pair (4, 5)

in {b, c, d} is good for 4 and bad for 5 if they are paired together. Without loss of generality,

let b be the project assigned to the pair (4, 5). Since G5(6) = {a, b, c, d}, the unassigned

project belongs to G5(6). Thus the pair (5, 6) will block using the unassigned project.

Hence the weak core is empty.

5.2 Separable, Non-Dichotomous Preferences with homophily

In this section, we retain all assumptions on preferences except that of dichotomous marginal

component preferences. Due to separability, the marginal component preferences are well-

defined. We assume that the marginal preferences over partners are non-dichotomous. In

particular, each agent partitions the set of partners into friends, outsiders and enemies.21

Friendship continues to be mutual and transitive. In addition, the “other” categories are

mutual and transitive i.e. if agent i considers j to be an outsider (resp. enemy), then j

considers i as an outsider (resp. enemy) as well. Note that the set of agents can still be

partitioned into friendship components. The marginal preferences over projects continue to

be dichotomous. The homophily assumption is satisfied for any pair of agents who are friends

with each other.

In Example 7, we demonstrate the non-existence of a weak core assignment where prefer-

ences are separable, satisfy homophily for every pair of friends and the component preferences

20There are 4 projects and 6 agents. So in any assignment, there exists an unassigned project.
21The marginal preferences over partners are trichotomous.

22

over partners are non-dichotomous.

Example 7 Let N = {1, 2, . . . , 12} and A = {a, b, c, d, e, f, g, h, u, x, y, z}. Table 9 sum-

marizes the marginal preferences over partners (%parti) for the agents. The friendship com-

ponents are F1 = {1, 2, 3}, F2 = {4, 5, 6}, F3 = {7, 8, 9} and F4 = {10, 11, 12}. Table 10

summarizes the sets of good projects for the agents.

Agent Friends Outsiders Enemies

1 {2, 3} {4, 5, 6, 7, 8, 9} {10, 11, 12}
2 {1, 3} {4, 5, 6, 7, 8, 9} {10, 11, 12}
3 {1, 2} {4, 5, 6, 7, 8, 9} {10, 11, 12}
4 {5, 6} {1, 2, 3, 7, 8, 9} {10, 11, 12}
5 {4, 6} {1, 2, 3, 7, 8, 9} {10, 11, 12}
6 {4, 5} {1, 2, 3, 7, 8, 9} {10, 11, 12}
7 {8, 9} {1, 2, 3, 4, 5, 6} {10, 11, 12}
8 {7, 9} {1, 2, 3, 4, 5, 6} {10, 11, 12}
9 {7, 8} {1, 2, 3, 4, 5, 6} {10, 11, 12}
10 {11, 12} ∅ {1, 2, 3, 4, 5, 6, 7, 8, 9}
11 {10, 12} ∅ {1, 2, 3, 4, 5, 6, 7, 8, 9}
12 {10, 11} ∅ {1, 2, 3, 4, 5, 6, 7, 8, 9}

Table 9: Preferences of agents over partners %parti in Example 7.

F1 F2 F3 F4

1 {a, b, c} 4 {d, e, f} 7 {g, h, u} 10 {x, y, z}
2 {a, b, c} 5 {d, e, f} 8 {g, h, u} 11 {x, y, z}
3 {a, b, c} 6 {d, e, f} 9 {g, h, u} 12 {x, y, z}

Table 10: Preferences of agents in Example 7.

Each agent i’s preference ordering %i is lexicographic and %parti is the dominant compo-

nent.22

In any assignment σ, the set of unassigned projects uσ is non empty. We will first argue

that any assignment in the weak core has exactly one surplus agent from each friendship

22Note that %i has six indifference classes. The first class consists of tuples where i is matched with a

friend and assigned a good project. The second class consists of tuples where i is matched with a friend but

assigned a bad project. The third class consists of tuples where i is matched with an outsider and assigned

a good project and so on.

23

component i.e. only one agent from a friendship component is matched to an agent who is

not her friend. To see this, we assume for contradiction that at least two agents (say agents

1 and 2) in F1 are paired with agents who do not belong to F1 in the assignment.23 Then

agents 1, 2 can block the assignment with an unassigned project. They both strictly improve

as they now move to either the first or the second indifference class.

Thus there is only one agent in every friendship component who is matched to an agent

who is not her friend.

All agents in any friendship components have the same set of good projects. As a con-

sequence, the two agents in a friendship component who are matched together must either

receive a good project or all good projects for these agents are assigned. If this is not true,

then these two agents will block with the unassigned good project for them.

In order for the claim in the previous paragraph to hold for all four friendship components,

it must be the case that the pair formed in each component is assigned a project that is good

for both agents. Thus in any assignment and for every component, there exists an unassigned

project which is good for all three agents in the component. Hence there is a good project

that is unassigned for the surplus agent in every component.

In view of the underlying symmetry in the example, we can assume without loss of

generality that agents 3, 6, 9, 12 are the surplus agents in components F1, F2, F3 and F4

respectively. The agents 3,6 and 9 regard 12 as an enemy. In addition, each of the agents

in {3, 6, 9} view the other two agents as outsiders. One of the agents in {3, 6, 9} must be

matched with 12. We can assume without loss of generality that this agent is 3. Therefore

agents 6 and 9 are matched together. Moreover, one of these agents must receive a bad project

since they have no common good projects. Suppose 6 is the agent who is not receiving a good

project. By our earlier argument, there exists a good project for agent 6 that is unassigned.

Now agents 3 and 6 together with this project will block the assignment.

Hence the weak core is empty.

5.3 Separable Dichotomous Domains without homophily

We retain all the assumptions on preferences in Section 2.3 except homophily. We show the

non-existence of weak core assignments for a partner dominant preference profile (Example

8) and for a project dominant preference profile (Example 9).

Example 8 Let N = {1, 2, 3, 4} and A = {a, b, c, d, e, f}. The friendship components are

F1 = {1, 2, 3} and F2 = {4}. The sets of good projects for agents are specified in Table 11.

Note that the preferences of agents in F1 violate homophily since the set inclusion relation

does not hold for any pair of agents in F1. Consider the preference profile such that all agent

preferences are partner dominant.

23Note that agents 1, 2 are not in the first and second indifference classes in the assignment.

24

F1 F2

1 {a, b} 4 {g}
2 {c, d}
3 {e, f}

Table 11: Preferences of agents in Example 8.

F1 F2

1 {a, b} 4 {g, h}
2 {c, d} 5 {x, y}
3 {e, f} 6 {z, u}

Table 12: Preferences of agents in Example 9.

In any assignment, one of the agents in F1 must be matched with agent 4, while the

remaining agents are matched with each other. Assume without loss of generality that (1, 2)

and (3, 4) are matched with each other. Since agent 3’s preferences are partner dominant,

agent 3 would prefer to be matched with a good partner. Since the set of projects of agents

1 and 2 are disjoint, at least one of them must be receiving a bad project. Moreover this

agent must also have a good project which is unassigned. Agent 3 can then pair with this

agent and this unassigned project to block the assignment. Hence the weak core is empty.

Example 9 Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f, g, h, x, y, z, u}. The friendship

components are F1 = {1, 2, 3} and F2 = {4, 5, 6}. The sets of good projects for agents are

specified in Table 12. Once again the preferences of agents in F1 and F2 violate homophily.

Consider the preference profile such that all agent preferences are project dominant.

Since there are an odd number of agents in each component, at least one agent in F1 is

matched to an agent in F2 in any assignment. Assume without loss of generality that agents

3 and 6 are paired together. Since the good projects of agents 3 and 6 are disjoint, at least

one of them is not getting a good project. Suppose it is agent 3.

In order for agent 3 not to form a blocking coalition with either agents 1 or 2 via an

unassigned project either (i) or (ii) below must hold: (i) all good projects of 1 and 2 are

assigned or (ii) agents 1 and 2 are both getting good projects. However there are four

projects that are either good for agent 1 or good for agent 2, while the total number of

assigned projects is three. Therefore (i) cannot hold.

Suppose (ii) holds. Then agents 1 and 2 must be paired with agents 4 and 5 in F2.

Moreover both agents 1 and 2 must be getting a good project. Therefore agents 4 and 5

are not getting good projects i.e. they are getting bad partners and bad projects. They will

25

then block by pairing with each other with an unassigned project. Therefore (ii) cannot hold

either.

Hence agent 3 will block with either agent 1 or 2 and hence the weak core is empty.

6 Conclusion

In this paper, we have investigated a class of matching models in which agents are matched

in pairs and each pair is assigned a project. We provide a preference domain restriction

that guarantees the existence of the robust weak core. The key assumptions underlying

our preference domain are separability, dichotomous marginal component preferences and

homophily. We present an algorithm, the MDPA, which generates an assignment in the

robust weak core at every preference profile. In addition it is strategy-proof. We also

show that if any one of the assumptions underlying our preference domain is dropped while

maintaining the others, the weak core fails to exist.

Several questions remain open in our model. The examples used to demonstrate the non-

existence of the strong core rely on there being at least one odd component. We conjecture

that the strong core is, in fact non-empty. The strong core is also likely to be non-empty if

the number of projects is exactly equal to half the number of agents. Our current results on

pairs also do not extend in a straightforward manner to teams of general size. We hope to

address these issues in future work.

7 Appendix 1

In this section, we formally describe the MDPA algorithm.

Let �N and �A be linear orderings 24 of the sets N and A respectively. If agent i �N j,

then agent i has priority over j.

Fix an arbitrary preference profile%. This profile induces friendship components {F1, . . . , FL}
which are ordered as F1, F2, . . . , FL (according to the linear ordering �F).

Step 0: In each component Fq where |Fq| is odd, remove the agent with the lowest priority

in Fq and add this agent to the Residual set R. If |Fq| is even, then no changes are made and

the original component is retained. The adjusted friendship components are {F̃1, . . . , F̃L}.
Each adjusted component has even cardinality.

We shall make assignments in the components F̃1, F̃2, . . . , F̃L in sequence. These will be

labelled Steps 1 to L respectively. Each step comprises of an initial step, several intermediate

steps and a termination step. For component F̃q, the initial step will be denoted by Step q.0,

24A linear ordering is a reflexive, complete and antisymmetric binary relation

26

intermediate steps by Step q.1, q.2, . . . and the termination step by Step q.T . At the start

of the generic step q.s where q ∈ {1, . . . , L} and s ∈ {0, . . . , T}, the algorithm is provided

three inputs: (i) the set of available projects denoted by A(q.s), (ii) the set of unassigned

agents N(q.s) in component F̃q and (iii) the set of waiting agent, project pairs W (q.s). For

every step q.s, |W (q.s)| is either 0 or 1.

Step 1.0: Here A(1.0) = A, N(1.0) = F̃1 and W (1.1) = ∅. The demand for every available

project a ∈ A(1.0) is given by d(a; (1.0)) = # {i ∈ N(1.0) : a ∈ Gi(%i)}. The set of agents

who demand project a is given by S(a; (1.0)) = {i ∈ N(1.0) : a ∈ Gi(%i)}.
Remove all projects with zero demand. Consider the project (projects) with the least

demand. In case there is more than one such project, pick the project which is ranked

highest according to �A. Denote the project with the lowest demand (after tie breaking) by

a. There are two cases to consider.

1. d(a; (1.0)) = 1. Then no assignments are made at Step 1.0 and W (1.1) = {(i, a)}
where S(a; (1.0)) = {i}. Also sets A(1.1) = A(1.0) \ {a}, N(1.1) = N(1.0) \ {i} and

proceed to Step 1.1.

2. d(a; (1.0)) ≥ 2. Assign a to the pair of agents with the highest and second highest

priority in S(a; (1.0)). Now sets A(1.1) = A(1.0) \ {a}, N(1.1) = N(1.0) \ {i, j} where

i, j are the agents who have just been assigned a in this step and W (1.1) = ∅. Proceed

to Step 1.1.

Step 1.1: Step 1.1 repeats Step 1.0 with the sets A(1.1), N(1.1) and W (1.1) (determined at

the end of Step 1.0) but with an important difference.

As in Step 1.0, consider the project with the least non zero demand with appropriate tie

breaking. Suppose this project is b. Once again there are three possibilities.

1. d(b; (1.1)) = 1 and W (1.1) 6= ∅. Let (i, a) ∈ W (1.1) and S(b; (1.1)) = {j}. Then the

pair (i, j) is assigned b. Also A(1.2) = [A(1.1) ∪ {a}] \ {b}, N(1.2) = N(1.1) \ {j},
W (1.2) = ∅ and proceed to Step 1.2.

2. d(b; (1.1)) = 1 and W (1.1) = ∅. Then no assignments are made at Step 1.1 and

W (1.2) = {(j, b)} where S(b; (1.0)) = {j}. Also A(1.2) = A(1.1) \ {b}, N(1.2) =

N(1.1) \ {j} and proceed to Step 1.2.

3. d(b; (1.1)) ≥ 2. Assign b to the pair of agents with the highest and second highest

priority in S(b; (1.1)). Now A(1.2) = A(1.1) \ {b}, N(1.2) = N(1.1) \ {i, j} where

i, j are the agents who have just been assigned a in this step and W (1.2) = W (1.1).

Proceed to Step 1.2.

27

By construction at any stage, W (1.s) is either null or consists of one element.

Step 1.2 repeats Step 1.1 with the appropriate sets. Proceeding in this way, there exists

a step 1.T where d(a; (1.T)) = 0 for every a ∈ A(1.T). This is called the termination step.

Here three cases can arise.

I. N(1.T) = ∅ and W (1.T) = ∅. This means that all agents in F̃1 have been assigned a

partner and a project.

II. |N(1.T)| is even. Note that W (1.T) = ∅. Arrange the agents in N(1.T) using �N .

Form pairs of consecutive agents proceeding in sequence. Assign projects to pairs in

sequence using �A from A(1.T).

III. |N(1.T)| is odd. Then W (1.T) 6= ∅. Let W (1.T) = {(i, a)}. Arrange the agents in

N(1.T) using �N . Suppose j is the highest priority agent in this set. Form the triple

(i, j, a). Observe that |N(1.T) \ {j}| is even. For the remaining agents, partners and

projects are assigned as in (II) above.

This completes the assignment for all agents in the component F̃1. Let the set of projects

assigned to pairs in F̃1 be ∆(F̃1). We repeat the procedure for F̃2 with A(2.0) = A \∆(F̃1),

N(2.0) = F̃2 and W (2.0) = ∅. This completes the assignment for the agents in component

F̃2. Proceeding in this manner, at the end of Step L we have assigned partners and projects

to all agents in F̃1 ∪ F̃2 . . . ∪ F̃L.

Step L + 1: In this step, projects are assigned to agents in the set R. The set of available

projects is A(R) = A(F̃L) \ ∆(F̃L). Without loss of generality (and by suitable relabelling

of agents according to �N), let R = {1, 2, . . . , 2r} for r ≥ 0. We make assignments for the

agents in R in Steps L+ 1.1 through L+ 1.r∗. At each of these steps L+ 1.k, a set of agents

Rk is obtained. The procedure terminates in Step L+ 1.r∗ where ∪r∗k=1Rk = R.

Step (L + 1.1): In this step, we match agent 1 with the agent with the lowest index t > 1

in R such that G1(�1) ∩ Gt(�t) ∩ A(R) is non empty. This pair is assigned a project a

in G1(%1) ∩ Gt(%t) ∩ A(R) (ties are once again broken according to �A). In this case,

R1 = {i, t}. If no such agent t exists, then agent 1 is unmatched at this step and R1 = {1}.
The set of projects assigned in this step is denoted by ∆R(1) where ∆R(1) = ∅ if R1 = {1}

and {a} if R1 = {1, t} and a is assigned to (1, t).

The set of agents remaining for the next step is R \R1. The set of projects available for

the next step is A(R) \∆R(1).

Step (L + 1.2): We repeat Step (L + 1.1) with agent 1 being replaced by the agent with

the smallest index in R \ R1 and the set of projects A(R) replaced by A(R) \∆R(1). This

28

generates possibly another assignment. At the end of this step, we obtain R2 and the set of

available projects A(R) \ ∪2
k=1∆R(k).

Proceeding in this manner, there will exist a Step (L+ 1.r∗) where ∪r∗j=1Rj = R. The set

of projects available for assignment in Step (L+ 1.r∗) is A(R) \ ∪r∗k=1∆R(k).

There are two possibilities.

1. All agents in R have been assigned a partner and a project. In this case the algorithm

terminates.

2. Suppose 1 does not hold. Let R̄ be the set of agents who have not been assigned a

partner and a project. Note that R̄ must be even in cardinality. Proceed to Step L+2.

Step L+ 2: In this step, A(R) \ ∪r∗k=1∆R(k) is the set of available projects. Partition R̄ into

{R̄1, R̄2} where R̄1 consists of agents who have no good projects among the set of available

projects and R̄2 are the remaining agents.

Order the agents in R̄1 and R̄2 according to �N . Assign the highest priority agent in R̄1

with the highest priority agent in R̄2 and an available good project of the agent in R̄2, the

agent with the second highest priority in R̄1 with the agent with the second highest priority

in R̄2 and so on.

1. If
∣∣R̄1
∣∣ =

∣∣R̄2
∣∣, then the procedure will terminate with all agents in R being assigned

a project and partner.

2. If
∣∣R̄1
∣∣ > ∣∣R̄2

∣∣, then an even number of agents in R̄1 will be left unassigned. They are

now paired consecutively and are assigned a project from the available set according

to �A.

3. If
∣∣R̄1
∣∣ < ∣∣R̄2

∣∣, then an even number of agents in R̄2 are left unassigned. They are

paired consecutively and assigned a good project of the higher priority agent (ties are

broken according to �A).

This completes the description of the algorithm.

We make several salient observations about the MDPA which we shall use extensively in

the proofs.

Observation 1 Let k, l ∈ F̃q. Suppose they are paired together and assigned project a in

the MDPA. If a is not a good project for at least one agent in {k, l}, then k, l are present

in the termination step q.T for component F̃q. In Step q.T , the demand for every available

project is zero.

Observation 2 Let k ∈ F̃q. If k belongs to a waiting pair in some Step q.r (where 1 ≤ r <

T) of the MDPA, then k always receives a good project in the algorithm.

29

Observation 3 An agent is paired with someone who is not a friend only if she is a residual

agent. There can be at most one residual agent in every friendship component.

Observation 4 A residual agent who is assigned a project in Step L+ 1 always receives a

good project. A residual agent who is assigned a bad project in the MDPA must have been

assigned in Step L+ 2.

8 Appendix 2

We provide the proof of Theorem 1.

Proof of Theorem 1: Let % be an arbitrary profile and σ be the assignment generated by the

MDPA algorithm at %. Note that σ is also generated by MDPA at any %′ which is good-set

equivalent to %. We will show that σ cannot be strongly blocked by any coalition S at %′

which is good-set equivalent to %. This will establish that σ belongs to the robust weak core

at %.

Assume by way of contradiction that S blocks σ at %′ which is good-set equivalent to %.

We consider the following exhaustive possibilities: (A) |S| = 2 and (B) |S| > 2.

Case A: Let S = {k, l}. Suppose (k, i, a), (l, j, c) ∈ σ. Since S is a blocking coalition at %′,
there exists b ∈ X(S, σ) such that (k, l, b) �′k (k, i, a) and (k, l, b) �′l (l, j, c). It follows from

the definition of X(S, σ) that b is unassigned in σ i.e. b ∈ uσ.25

There are two possibilities to consider: (A.1) k, l ∈ Fq for some q and (A.2) k, l /∈ Fq for

any q.

Case A.1. There are two subcases to consider.

Case A.1.1. Agents k, l are paired together in σ i.e. (k, l, a) ∈ σ. Since k and l strictly im-

prove, we have a /∈ Gk(%′k) and a /∈ Gl(%′l). Moreover b ∈ Gk(%′k)∩Gl(%′l). By Observation

1, we know that agents k, l are present in Step q.T of the algorithm (the termination step

for the component F̃q) and the demand for each available project in this step is zero. Since

b ∈ uσ, b is available in Step q.T and d(b; (q.T)) = 2 in this step. We have a contradiction.

Case A.1.2. Agents k, l are not paired together in σ i.e. (k, i, a), (l, j, c) ∈ σ where i 6= l and

j 6= k. In the algorithm, there is at most one residual agent from each friendship component.

This implies that at least one of the agents among k and l is paired with a friend. Assume

without loss of generality k, i ∈ Fq. Since k strictly improves, we have a /∈ Gk(%′k) and

b ∈ Gk(%′k). By Observation 1, we know agent k is present in Step q.T of the algorithm and

25The only case where |S| = 2 and uσ ⊂ X(S, σ) is when agents k, l are matched together in σ. Let

(k, l, a) ∈ σ and a ∈ X(S, σ). Since agents k, l strictly improve by blocking, we know a is a bad project

for them. Here X(S), σ) \ {a} = uσ. So there exists b ∈ uσ such that the allocation (k, l, b) is a strict

improvement for agents k, l.

30

the demand for each available project in this step is zero. Since b ∈ uσ, b is available in Step

q.T and d(b; (q.T)) ≥ 1 in this step. We have a contradiction.

Case A.2. Suppose k ∈ Fq and l ∈ Fp. There are two cases.

Case A.2.1: Agents k, l are paired together in σ i.e. (k, l, a) ∈ σ. Since agents k and l

belong to different components, we have k, l ∈ R. Also we have a /∈ Gk(%′k), a /∈ Gl(%′l) and

b ∈ Gk(%′k) ∩ Gl(%′l). By Observation 4, we can conclude that (k, l, a) is being formed in

Step L+ 2. Suppose k �N l. Since b is unassigned, there will exist a substep of Step L+ 1,

say L+1.r (with r ≤ r∗) where k and l could have been paired together with project b which

is good for both agents. Therefore we have a contradiction.

Case A.2.2: Agents k, l are not paired together in σ. Let the partners of agents k and l in σ

be i and j respectively.

There are three possibilities to consider.

(a) %′k and %′l are both partner dominant. Since k and l are strictly improving, we must have

i /∈ Fq and j /∈ Fp. Thus k, i, l, j all belong to the residual set R. Also we have a /∈ Gk(%′k),
b ∈ Gk(%′k), c /∈ Gl(%′l) and b ∈ Gl(%′l). Since k and l are being assigned bad projects in σ,

we can conclude that (k, i, a) and (l, j, c) are being formed in Step L + 2 (Observation 4).

Suppose agent k �N l. Since b is unassigned, there will exist a substep of Step L + 1, say

L+ 1.r (with r ≤ r∗) where k and l could have been paired together with project b which is

good for both agents. Therefore we have a contradiction.

(b) %′k and %′l are both project dominant.

Suppose one of the pairs (k, i), (l, j) belongs to the same friendship component. Without

loss of generality let k, i ∈ Fq. Since agent k strictly improves, we have a /∈ Gk(%′k) and

b ∈ Gk(%′k). We then have a contradiction exactly as in Case A.1.2.

Finally, suppose neither k, i nor l, j belong to the same component. Thus k, i, l, j belong

to the residual set. This reduces to Case A.2.2 (a) which we have already dealt with.

(c) One of %′k and %′l is partner dominant while the other is project dominant. Suppose

%′k is partner dominant. Since agent k strictly improves, we conclude that i and k cannot

belong to the same friendship component. Also a /∈ Gk(%′k) and b ∈ Gk(%′k).
There are two further possibilities. Suppose l, j do not belong to the same component.

Then agents k, i, l, j are residual agents. Once again, we are back to Case A.2.2 (a). The

remaining case is l, j ∈ Fp for some p. Since l strictly improves, we have c /∈ Gl(%′l) and

b ∈ Gl(%′l). Note that this case is equivalent to Case A.1.2, where agent k is replaced by l

and i is replaced by j.

Therefore σ cannot be blocked by S.

Case B: We consider two subcases: (B.1) S ⊆ Fq for some q and (B.2) S 6⊂ Fq for any q.

31

Case B.1. Since S is even, |S| ≥ 4 and there is at most one residual agent from any friendship

component, there is at least one agent i ∈ S and a project a ∈ A such that (i, j, a) ∈ σ and

i, j ∈ Fq. Let agent i be paired with agent k ∈ S and project x ∈ X(S, σ) in the blocking

assignment. Clearly a /∈ Gi(%′i) and x ∈ Gi(%′i).
Suppose x ∈ uσ. By Observation 1, agent i is present in Step q.T of the algorithm

(the termination step for F̃q) where x is available i.e. d(x; q.T) ≥ 1. However this is a

contradiction to the specification of the termination step.

The remaining possibility is x ∈ X(S, σ) \ uσ. By the definition of X(S, σ), there exist

agent l1, l2 ∈ S such that (l1, l2, x) ∈ σ. Moreover l1, l2 strictly improve by blocking, it

must be the case x is not a good project for either l1 or l2. Therefore x is available in the

termination Step q.T . Since agent i is present in this step and x ∈ Gi(%′i), it must be the

case that d(x; q.T) ≥ 1. Once again, we have a contradiction to the specification of the

termination step.

Case B.2. Suppose there exists an agent in S who does not belong to the residual set R.

Hence we can find a component Fq such that Fq is the highest ranked component according

to the ordering �F which contains an agent i ∈ S. This agent i is not a residual agent and

was matched with j ∈ Fq in σ. Since i strictly improves by blocking, it must be the case

that i is assigned a bad project in σ. Moreover i must be assigned a good project, say x in

the blocking assignment σ′. There are two possibilities regarding x: either x is unassigned

in σ or x was assigned to some pair (l1, l2) in σ where l1, l2 ∈ S. We will argue that x

was available for allocation in the termination step q.T . If x is unassigned in σ, then it

is certainly available in the termination step q.T . Consider the second possibility in more

detail. It must be the case that both l1 and l2 belong to the same component or belong

to R. If they belong to a component different from Fq or to R, then x is available in the

termination step q.T . The only remaining case is when l1, l2 ∈ Fq. Since agents l1 and l2
strictly improve by blocking, x is a bad project for them. Thus the allocation of x to the

pair (l1, l2) was made in the termination step q.T and x was available in this step. We have

thus shown in all cases that x is available in the termination step q.T . We know that i is

present in Step q.T i.e. d(x; q.T) ≥ 1 (Observation 1). This contradicts the specification of

the termination step.

The second possibility is the one where all agents in S belong to the residual set R.

Consider an arbitrary agent i ∈ S. Let (i, j, a) ∈ σ and (i, k, b) ∈ σ′ where σ′ is the blocking

assignment. Since i strictly improves by blocking, a is a bad project for i while b is a good

one. Let (k, l, c) ∈ σ be the MDPA assignment for agent k, where k is agent i’s partner in

the blocking assignment σ′. Since k strictly improves by blocking, c is a bad project for k

while b is a good one. So agents i, k are assigned bad projects in σ. By Observation 4, we

can conclude that (i, j, a) and (k, l, c) are formed in Step L+ 2. Suppose k �N l.

Suppose b ∈ uσ. There exists a substep of Step L + 1, say L + 1.r (with r ≤ r∗) where

32

k and l could have been paired together with project b which is good for both agents. Thus

we have a contradiction.

The remaining possibility is b ∈ X(S) \ uσ. Then there exists m,n ∈ S such that

(m,n, b) ∈ σ. Since m,n strictly improve by blocking, b is a bad project for them. By

Observation 4, we know that (m,n, b) is formed in Step L + 2. So b is available in every

substep of Step L+ 1. Thus there exists a substep of Step L+ 1, say L+ 1.r (with r ≤ r∗)

where k and l could have been paired together with project b which is good for both agents.

This is a contradiction.

Thus the MDPA generates an assignment in the robust weak core at every preference

profile.

We now show that the MDPA generates an assignment in the Fq-friendship core whenever

|Fq| is even. We begin with an important preliminary lemma regarding the structure of the

MDPA assignment in any component.

Consider a component Fq with an even number of agents and a preference profile %. Let

A′ be the set of projects available for assignment to Fq in the MDPA. For convenience, we

will denote Fq by J . Also with a minor abuse of notation, we will write Gi(%i) ∩ A′ simply

as Gi(%i). Construct pairs of sets (J1, A1), . . . , (JT , AT) as follows:

(1.a) A1 = {a ∈ A′ : a ∈ Gi(%i) for all i ∈ J}.

(1.b) J1 = {i ∈ J : Gi(%i) = A1}.

(2.a) A2 = {a ∈ A′ \ A1 : a ∈ Gi(%i) for all i ∈ J \ J1}.

(2.b) J2 = {i ∈ J \ J1 : Gi(%i) = A1 ∪ A2}.

...

...

(t.a) At = {i ∈ A \ (A1 ∪ . . . ∪ At−1) : a ∈ Gi(%i) for all i ∈ J \ (J1 . . . ∪ Jt−1).

(t.b) Jt = {i ∈ J \ (J1 ∪ . . . ∪ Jt−1) : Gi(%i) = A1 ∪ . . . ∪ At−1}.

...

The set A1 consists of the available projects that are good for all agents in J . The set J1
consists of those agents whose set of good projects is exactly the set A1. Either J1 = J or

there exist some agents who have good projects not belonging to A1. Let A2 be the set of

projects which are good for all agents in J \J1. Similarly J2 are the agents whose set of good

projects is exactly the set A1∪A2. Note that A1∩A2 = ∅ and J1∩J2 = ∅. Proceeding in this

manner, we obtain sets (A1, J1), . . . , (AT , JT) where A1, . . . , AT and J1, . . . , JT are partitions

33

of A′ and J respectively. Notice that this procedure is well defined due to the assumption

of homophily. The set JT is the set of least fussy agents i.e. agents with the largest sets

of good projects (amongst available projects) while the set AT consists of projects that are

good only for the agents in JT . By homophily, agents in JT like all the projects in ∪Tt=1At.

In general, for any i ∈ Jt, G
i(%i) = ∪tr=1Ar. Also the projects in ∪Tr=t+1Ar are not good

projects for any agent i ∈ Jt.
Denote |Jt| by αt and 2|At| by βt for all t ∈ {1, . . . , T}. Since Fq has an even number

of agents, the MDPA matches all agents in Fq with a friend. We refer to agents who are

assigned good projects in Fq as happy agents. Likewise agents in Fq who receive bad projects

are referred to as unhappy agents.

Lemma 1 Let t∗ ∈ {1, . . . , T} be the smallest integer such that

t∑
r=t∗

αr ≤
t∑

r=t∗

βr for all t = t∗, t∗ + 1, . . . , T. (1)

In case no such t∗ exists, let t∗ = T + 1. Then

t∗−1∑
r=t

αr >
t∗−1∑
r=t

βr for all t = t∗ − 1, . . . , 1. (2)

The number of unhappy agents in the MDPA is γ =
∑t∗−1

r=1 (αr − βr).

Proof : Suppose t∗ is the smallest integer satisfying 1. We will show that 2 is satisfied by

induction on t ∈ {t∗ − 1, . . . , 1}. We first show that it holds for t∗ − 1. In the second step

we show that if it holds for all t′ ∈ {t∗ − 2, . . . , 2}, it also holds for t′ − 1.

Suppose αt∗−1 ≤ βt∗−1. Adding αt∗−1 and βt∗−1 to the LHS and RHS of Equations 1, we

obtain

t∑
r=t∗−1

αr ≤
t∑

r=t∗−1

βr for all t = {t∗ − 1, . . . , T}. (3)

Thus t∗−1 satisfies 1 contradicting our assumption that t∗ is the smallest integer satisfying

1.

Fix t′ ∈ {t∗ − 1, . . . , 2} and suppose

t∗−1∑
r=t

αr >

t∗−1∑
r=t

βr for all t = {t∗ − 1, . . . , t′}. (4)

but

34

t∗−1∑
r=t′−1

αr ≤
t∗−1∑
r=t′−1

βr. (5)

Pick and arbitrary s ∈ {t′ − 1, . . . , t∗ − 1}. Using 4 we have

t∗−1∑
r=s

αr >
t∗−1∑
r=s

βr. (6)

We can also rewrite 5 as

t∗−1∑
r=t′−1

αr =
s∑

r=t′−1

αr +
t∗−1∑
r=s

αr ≤
s∑

r=t′−1

βr +
t∗−1∑
r=s

βr +
t∗−1∑
r=t′−1

βr. (7)

Subtracting 6 from 7, we obtain

s∑
r=t′−1

αr ≤
s∑

r=t′−1

βr. (8)

Adding 8 for the case s = t∗ − 1 to 1, we have

t∑
r=t′−1

αr ≤
t∑

r=t′−1

βr for all t = t∗, t∗ + 1, . . . , T. (9)

Combining 9 with 8, we have

t∑
r=t′−1

αr ≤
t∑

r=t′−1

βr for all t = t′ − 1, . . . , T. (10)

Since t′−1 < t∗, we obtain a contradiction to our initial assumption that t∗ is the smallest

integer in {1, . . . , T} satisfying 1.

In our next step, we shall show that all agents in ∪Tt=t∗Jt are happy.

Let t̂1 be the largest integer in the set {t∗, t∗ + 1, . . . , T} such that
∑T

r=t̂1
αr ≤

∑T
r=t̂1

βr.

Such an integer must exist in view of the fact that
∑T

r=t∗ αr ≤
∑T

r=t∗ βr (from 1). If t̂1 < T ,

αT > βT , the MDPA will allocate all projects in AT (there are 2βT of them) to a subset of JT
of cardinality αT . A surplus of αT − βT agents are transferred to the next step where these

surplus agents are considered together with agents in JT−1 for projects in AT−1. If t̂1 < T−1,

a surplus of αT + αT−1 − βT − βT−1 agents are generated at this step and transferred to the

next step. By construction of t̂1, αT + αT−1 + . . . + αt̂1 ≤ βT + βT−1 + . . . + βt̂1 . Hence, at

step t̂1, all agents in ∪T
r=t̂1

Jr are all assigned good objects in ∪T
r=t̂1

Ar and are happy.

We can apply 1 to infer that
∑t̂1

r=t∗ αr ≤
∑t̂i

r=t∗ βr . Therefore there exists a largest integer

t̂2 in the set {t∗, t∗ + 1, . . . , t̂1} such that
∑t̂1

r=t̂2
αr ≤

∑t̂1
r=t̂2

βr. Repeating the argument in

35

the previous paragraph, we can conclude that all agents in ∪t̂1
r=t̂2

Jr are all assigned good

objects in ∪t̂1
r=t̂2

Ar and are happy. Proceeding in this way, we obtain integers t̂3, . . . , t̂k = t∗

and can apply the earlier argument to conclude that all agents in ∪Tr=t∗Jt are assigned good

projects and are happy.

Consider the step where agents in Jt∗−1 are allocated projects in At∗−1 by the MDPA.

Applying 2, αt∗−1 > βt∗−1 so that a surplus of αt∗−1 − βt∗−1 is transferred to the nest step

where projects in At∗−2 are allocated. Again, applying 2, αt∗−1 + αt∗−2 > βt∗−1 + βt∗−2 and

a surplus of αt∗−1 + αt∗−2 − βt∗−1 − βt∗−2 is transferred to the step where projects in At∗−3
are allocated. Proceeding in this manner and applying 2 at every step, we conclude that

a surplus of γ =
∑t∗−1

r=1 αr −
∑t∗−1

r=1 βr remains in the final step when projects in A1 are

allocated. These are clearly the agents who remain unhappy.

This establishes the lemma. �

Since |Fq| is even, all agents in this friendship component are assigned in Step q and no agent

is placed in the residual set R. According to the MDPA, all agents in Fq are paired with

each other - let σ denote this assignment.

Suppose σ can be weakly blocked by S ⊆ Fq i.e. |S| is even and there is an assignment

σ′ where agents S are paired with each other with projects in X(S, σ) such that all agents

in S are at least as well-off as under σ and at least one agent is strictly better-off.

According to our notation for the MDPA, A(q.0) is the set of projects available to Fq at

Step q.0. Applying Lemma 1 with A′ = A(q.0), we can infer that there exists t∗ satisfying

inequalities 1 and 2. For convenience, we denote the sets ∪Tt=t∗At and ∪t∗−1t=1 At by A and A

respectively and the sets ∪Tt=t∗Jt and ∪t∗−1t=1 Jt by J and J respectively. Let Hσ(J) ⊂ J denote

the set of happy agents in J i.e. the agents who receive good projects in σ.

We make three observations regarding σ below using Lemma 1 and the properties of the

MDPA.

Observation 5 All agents in J are assigned objects in A and are happy. All unhappy

agents in Fq belong to J . All happy agents in J are assigned projects in A.

Observation 6 In view of inequalities 2, all projects in the set A are assigned.

Observation 7 A project that has been assigned to two agents in Fq who are both unhappy

cannot be a good project for any agent in J . This follows from the fact that for every At
(t ∈ {1, . . . , t∗− 1}), the number of agents who demand projects in At strictly exceeds twice

the number of projects in At. Thus every project in MDPA is assigned to a pair of agents

for whom the project is good.

We now return to the proof. Let i1 ∈ S be an agent who strictly improves by blocking.

By Observation 5, i1 ∈ J . Let (i1, i2, x1) ∈ σ′. It follows from the construction of the sets

36

(At, Jt), t = 1, . . . , T that i1 ∈ J implies x1 ∈ A. This is so because i1 does not like any

project in the set A = ∪Tt=t∗At. According to Observation 6, x1 was assigned to some pair

(i3, i4) in σ. By the definition of weak blocking, i3, i4 ∈ S. Also Observation 7 implies that

x1 is a good project for i3 and i4. Since x1 ∈ A, we have i3, i4 ∈ J . Observe i3, i4 ∈ Hσ(J)).

Thus agents i3, i4 must continue to be assigned good projects in σ′. Let x2 be the project

assigned to i3 in σ′.

Replicating the arguments in the previous paragraph, we infer that there exists (i5, i6, x2) ∈
σ such that (i) i5, i6 ∈ S, (ii) x2 is a good project for i5, i6, (iii) i5, i6 ∈ J and (iv) x2 ∈ A.

Observe i5, i6 ∈ Hσ(J).

Proceeding in this manner, we conclude that there exists a sequence of distinct agents

i1, i3, i4, i5, . . . all of whom belong to both S and J who also receive good projects in σ′. Let

Q denote the set of these agents. Note that agents i3, i4, i5, . . . are chosen successively from

Hσ(J). Since Hσ(J) is finite, it must be the case that Q = {i1} ∪Hσ(J) i.e. |Q| > |Hσ(J)|.
Applying Lemma 1, |Hσ(J)| = |J | − γ. Consider an arbitrary allocation of projects in

A to agents in J . By construction, the good projects of agents in J must belong to the set

A. Therefore the set of unhappy agents amongst the set of agents J must at least be γ i.e.

|Q| ≤ |S| − γ = Hσ(J). However this contradicts our earlier conclusion that |Q| > |Hσ(J)|.
Therefore σ belongs to the Fq-friendship core. If |Fq| is even for all q, it follows immedi-

ately that σ belongs to the friendship core. �

9 Appendix 3

We provide a proof of Theorem 2.

Proof of Theorem 2: Let i be an agent such that i ∈ Fq. Let %i be a preference ordering

for agent i and % be a preference profile. We will show that there does not exist %′i such

that σ(%′i,%−i) �i σ(%). Note that the outcome in the MDPA does not depend on whether

%i is partner or project dominant. We therefore only need to show that i cannot benefit by

misreporting Gi(%i) or equivalently her threshold project. In view of the assumptions made

on the sets of good projects, this is equivalent to checking that i cannot benefit by changing

her threshold project.

Suppose (k, i, a) ∈ σ(%). There are two separate cases to consider: Case 1 where i is a

residual agent and Case 2 where i is matched with a friend. We consider each case in turn.

Case 1: Note that a misreport by agent i will not change her residual status as the MDPA

algorithm always picks the minimum agent in Fq according to �N . Suppose there exists a

misreport %′i such that i strictly improves. In both cases, i is not matched with a friend;

therefore a /∈ Gi(%i) while the misreport yields a project b ∈ Gi(%i).
Since a /∈ Gi(%i), it must be the case that i is assigned in Step L + 2 (Observation 4).

for the profile %. Suppose b is assigned in Step L+ 1 at (%′i,%−i) and (i, k′, b) ∈ σ(%′i,%−i).

37

Assume k′ �N i. It must be the case that the pair (k′, i) was considered in σ(%) in some

substep of L + 1; otherwise the pair would not be considered in (%′i,%−i). Since (i, k′, b) ∈
σ(%′i,%−i) is formed in Step L + 1, we have b ∈ Gk′(%k′) (Observation 4). Also b ∈ Gi(%i)
as agent i strictly improves by misreporting. So b ∈ Gi(%i) ∩ Gk′(%k′) and i would have

received a good project in σ(%) which is a contradiction. Assume that i has a higher priority

than k′. Then the pair (i, k′) would have been considered in some substep in Step L+ 1 and

i would have received a good project in σ(%). We therefore conclude that (i, k′, b) could not

have been formed in Step L + 1 in (%′i,%−i) i.e. b is assigned to (k′, i) in some substep of

L+ 2.

It is clear that the set of unassigned agents and available projects in Step L + 2 is

the same in % and (%′i,%−i). Moreover the sets R̄1 and R̄2 are the same in both cases.

Since b is available in this step, i ∈ R̄2. If k′ ∈ R̄1, then (i, k′, b) ∈ σ(%) which is a

contradiction. Finally if k′ ∈ R̄2, i and k′ must be consecutive in priority in R̄2 which

implies that (i, k′, b) ∈ σ(%). This is a contradiction.

Case 2: In this case, k, i ∈ F̃q. Agent i will continue to be matched to another agent in F̃q
for any misreport. Assume without loss of generality that the set of available projects to F̃q
is {a1, a2, . . . , aT} and aT �Oq aT−1 �Oq . . . �Oq a1.

Consider an arbitrary preference profile %. Then its associated good set profile for com-

ponet F̃q is {Gj(%j)}, j ∈ F̃q. As described earlier, it is equivalent to a profile of threshold

projects, {aj}, j ∈ F̃q. This profile generates a demand vector d(at), t = 1, . . . , T . By as-

sumption, the good project profile is homophily consistent and d(a1) ≥ d(a2) ≥ . . . ≥ d(aT).

The profile also specifies the sets of agents who demand each project S(a1), S(a2), . . . , S(aT).

According to the MDPA and as a consequence of homophily (and the tie breaking as-

sumption), projects are considered in the sequence aT , aT−1, . . . , a2, a1. Abusing notation

slightly, let dr(at) denote the demand for project at when ar is considered by the algorithm

i.e. ar has the least demand and is chosen after tie breaking. Thus dT (at) = d(at) in the

demand vector in the first step when project aT is being considered. When ar is being con-

sidered, all projects at, t > r have already been considered. Note that these projects have

not necessarily been allocated to some pair; however for the purpose of the algorithm we

can regard dr(at) = 0 whenever t > r. Let Sr(at), t ≤ r denote the set of agents who have

positive demand for project at.

Suppose i’s threshold project in the profile {Gj(%j)}, j ∈ F̃q is ak, i.e she has positive

demand only for projects at where t ≤ k. We begin with an important observation. Agent

i can manipulate only if she does not receive a good project when being truthful. By

Observation 1, we know that agent i is present in the termination step for F̃q (Step q.T) for

the profile %. Thus agent i is present in all substeps of Step q.26 We claim that dt(at) ≥ 3

for all t ≤ k. Moreover there are at least two agents in each set St(at) who are ahead of i

26Note that it is possible that i belongs to a waiting pair in a substep.

38

in the order �N . Let at be a project with t ≤ k. If i belongs to a waiting pair when at is

being considered, she will receive a good project (Observation 2). Therefore it must be the

case that i ∈ St(at). If dt(at) = 1, agent i will be a waiting pair and by Observation 2, must

receive a good project. If dt(at) = 2, i gets at. Hence dt(at) ≥ 3 so that project at must be

allocated when it is considered. There must therefore be two agents who are ahead of i in

the numerical order in the set St(at) who are allocated at.

Agent i can misreport in only one of two ways: (i) by announcing a threshold am where

T ≥ m > k, i.e by expanding the set of good projects and (ii) by announcing a threshold am
where 1 ≤ m < k, i.e by contracting the set of good projects.

We consider case (i) first. Let d̂r(at), t ≤ r denote the demand of projects when project

ar is being considered, i.e these are the demands in the various substeps for F̃q when the

MDPA is run on the profile where i misreports. Similarly Ŝr(at) denotes the set of agents

who demand at at the misreported profile. We will track the project received by i in this

profile and show that it cannot belong to the set {a1, a2, . . . , ak}.
Consider projects ar where r > m. For such projects, d̂r(ar) = dr(ar) and Ŝr(ar) =

Sr(ar). Hence these projects if allocated, are allocated to the same agents in the truthful

and misreported profiles. In addition any agent, project pair that is a waiting pair in one of

the profiles is also a waiting pair in the other.

We now turn to the case where am is being considered in the misreported profile. By

assumption, i ∈ Ŝm(am). Let d̂m−i(am) = d̂m(am) − 1 and Ŝm−i(am) = Ŝm(am) \ {i}. Note

that dm(am) = d̂m−i(am) and Sm(am) = Ŝm−i(am) by virtue of the argument in the previous

paragraph.

There are several cases to consider at this point. If d̂m−i(am) = 0, (i, am) is the waiting

pair at this step. If there already exists a waiting pair, then i is allocated am which is, by

assumption, a bad project. Otherwise (i, am) is a waiting pair and will be assigned a project

later. Note that d̂m−1−i (am−1) = dm−1(am−1) and Ŝm−1−i (am−1) = Sm−1(am−1).

Suppose d̂m−i(am) = 1 or d̂m−i(am) ≥ 2 and i is one of the two highest priority agents in

the set Ŝm(am). Then i is allocated am which is a bad project. Otherwise, since Sm(am) =

Ŝm−i(am), am will be allocated to the same two agents who were assigned am in the truthful

profile. Once again, d̂m−1−i (am−1) = dm−1(am−1) and Ŝm−1−i (am−1) = Sm−1(am−1).

We can therefore conclude the following: if i is assigned a project at this step, it must

be to a bad one; otherwise d̂m−1−i (am−1) = dm−1(am−1) and Ŝm−1−i (am−1) = Sm−1(am−1).

Suppose i is not assigned a project at Step q.am.27 Consider Step q.am−1. Suppose

i /∈ S(am−1), i.e. m − 1 > k and am−1 is not a good project for i. If d̂m−1−i (am−1) = 0, i

remains waiting with am. If d̂m−1−i (am−1) = 1, i is allocated am−1 with the other demander

for am−1. Since am−1 is not a good project for i, misreporting is not beneficial. Similarly

27Step q.am denotes the step in which project am is the least demanded project that is chosen after tie

breaking.

39

D̂m−1
−i (am−1) ≥ 2 and i is one of the two highest priority agents in Ŝm−1(am−1); i is assigned

am−1. The only remaining case is when i is not among the two highest agents Ŝm−1(am−1)

according to the numerical order. In this case, Ŝm−1−i (am−1) = Sm−1(am−1) implies that the

same pair of agents are allocated am−1 in the misreported as in the truthful profile.

Summarizing, we have reached the same conclusion in stage am−1 as in stage am. Suppose

am−1 is a bad project for i. If i is allocated an project in stage am−1, it must be to a bad

project. If i has not been allocated an project, it must be true that d̂m−2−i (am−2) = dm−2(am−2)

and Ŝm−2−i (am−2) = Sm−2(am−2).

In fact, the same argument can be replicated for all stages am−t, t = 0, . . . ,m− k till one

reaches ak where the project been considered by the algorithm in the misreported profile is

a good project of i. In particular, we can conclude that either i is allocated a bad project or

the algorithm reaches stage ak with d̂k−i(ak) = dk(ak) and Ŝk−i(ak) = Sk(ak).

At Step q.ak, we have already argued that dk(ak) ≥ 3 and there are two agents other than

i in Sk(ak) who are ahead of i in the priority order �N . Therefore d̂k−i(ak) ≥ 2. Moreover

Ŝk−i(ak) = Sk(ak) implies that the same pair of agents who were assigned ak in the truthful

profile are also allocated ak in the misreported profile. The same argument can be applied

repeatedly to show that if i has not been assigned at Step q.ak+1, she cannot be assigned

any of the projects a1, . . . ak−1, ak. The algorithm then assigns a bad project to i. This can

happen in one of two ways. If i is waiting with an project al, k < l ≤ T , after a1 has been

allocated, i will be allocated al. Otherwise, i will receive a bad project after allocation of

good projects in Fq has been completed. In any case, manipulation does not succeed.

Finally, consider case (ii) where i misreports by contracting her good set. Following the

earlier argument, it is clear that assignment proceeds in exactly the same manner in the

misreported profile as in the truthful profile until Step q.ak is reached. This implies that

the same agents who were assigned projects a1, . . . ak are not assigned in Steps q.ak+1 and

earlier. Hence at each Step q.at, t = k, k − 1, . . . , 1, d̂−i(at) ≥ 2 and Ŝ−i(at) contains two

agents with higher priority than i. Therefore these agents are assigned a1, . . . , ak and i does

not receive a good project. This completes the proof.

References

Abizada, A. (2016): “Exchange-stability in roommate problems,” Review of Economic De-

sign, 1–10.

Alkan, A. (1988): “Nonexistence of stable threesome matchings,” Mathematical social sci-

ences, 16, 207–209.

Barberà, S., H. Sonnenschein, L. Zhou, et al. (1991): “Voting by committees,”

Econometrica, 59, 595–609.

40

Biró, P. and E. McDermid (2010): “Three-sided stable matchings with cyclic prefer-

ences,” Algorithmica, 58, 5–18.

Bogomolnaia, A. and H. Moulin (2004): “Random matching under dichotomous pref-

erences,” Econometrica, 72, 257–279.

Bogomolnaia, A., H. Moulin, and R. Stong (2005): “Collective choice under dichoto-

mous preferences,” Journal of Economic Theory, 122, 165–184.

Border, K. C. and J. S. Jordan (1983): “Straightforward elections, unanimity and

phantom voters,” The Review of Economic Studies, 50, 153–170.

Breton, M. L. and A. Sen (1999): “Separable preferences, strategyproofness, and de-

composability,” Econometrica, 67, 605–628.

Burkett, J., F. X. Flanagan, and A. L. Griffith (2018): “Allocating group housing,”

Social Choice and Welfare, 50, 581–596.

Carroll, G. (2017): “Robustness and separation in multidimensional screening,” Econo-

metrica, 85, 453–488.

Cechlárová, K. and T. Fleiner (2005): “On a generalization of the stable roommates

problem,” ACM Transactions on Algorithms (TALG), 1, 143–156.

Cohen, J. M. (1977): “Sources of peer group homogeneity,” Sociology of education, 227–241.

Combe, J. (2017): “Matching with Ownership,” .

Gaurav, A., J. Picot, and A. Sen (2017): “The decomposition of strategy-proof random

social choice functions on dichotomous domains,” Mathematical Social Sciences, 90, 28–34.

Golub, B. and M. O. Jackson (2012): “How homophily affects the speed of learning and

best-response dynamics,” The Quarterly Journal of Economics, 127, 1287–1338.

Gudmundsson, J. (2014): “When do stable roommate matchings exist? A review,” Review

of Economic Design, 18, 151–161.

Hart, S. and N. Nisan (2017): “Approximate revenue maximization with multiple items,”

Journal of Economic Theory, 172, 313–347.

Hart, S. and P. J. Reny (2015): “Maximal revenue with multiple goods: Nonmonotonic-

ity and other observations,” Theoretical Economics, 10, 893–922.

Hatfield, J. W. and S. D. Kominers (2012): “Matching in networks with bilateral

contracts,” American Economic Journal: Microeconomics, 4, 176–208.

41

Kandel, D. B. (1978): “Homophily, selection, and socialization in adolescent friendships,”

American journal of Sociology, 84, 427–436.

Khare, S. and S. Roy (2018): “Stability in Matching with Couples having Non-Responsive

Preferences,” Available at SSRN 3288195.

Klaus, B. and F. Klijn (2005): “Stable matchings and preferences of couples,” Journal

of Economic Theory, 121, 75–106.

——— (2007): “Paths to stability for matching markets with couples,” Games and Economic

Behavior, 58, 154–171.

Klaus, B., F. Klijn, and J. Massó (2007): “Some things couples always wanted to

know about stable matchings (but were afraid to ask),” Review of Economic Design, 11,

175–184.

Kurino, M. (2014): “House allocation with overlapping generations,” American Economic

Journal: Microeconomics, 6, 258–89.

McPherson, M., L. Smith-Lovin, and J. M. Cook (2001): “Birds of a feather: Ho-

mophily in social networks,” Annual review of sociology, 27, 415–444.

Mishra, D. and S. Roy (2013): “Implementation in multidimensional dichotomous do-

mains,” Theoretical Economics, 8, 431–466.

Ostrovsky, M. (2008): “Stability in supply chain networks,” American Economic Review,

98, 897–923.

Pycia, M. (2012): “Stability and preference alignment in matching and coalition formation,”

Econometrica, 80, 323–362.

Raghavan, M. (2018): “Pairwise Allocation Via Partner Trading,” .

Roth, A. E. and A. Postlewaite (1977): “Weak versus strong domination in a market

with indivisible goods,” Journal of Mathematical Economics, 4, 131–137.

Roth, A. E., T. Sönmez, and M. U. Ünver (2005): “Pairwise kidney exchange,”Journal

of Economic theory, 125, 151–188.

Roth, A. E. and M. A. O. Sotomayor (1992): Two-Sided Matching: A Study in Game-

Theoretic Modeling and Analysis, 18, Cambridge University Press.

Sethuraman, J. and A. Smilgins (2016): “Two-sided matching with objects,” .

42

Shapley, L. and H. Scarf (1974): “On cores and indivisibility,” Journal of mathematical

economics, 1, 23–37.

Tan, J. J. M. et al. (1991): “A necessary and sufficient condition for the existence of a

complete stable matching,” Journal of Algorithms, 12, 154–178.

Verbrugge, L. M. (1983): “A research note on adult friendship contact: a dyadic per-

spective,” Soc. F., 62, 78.

43

