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Abstract

By a discrete version of Tchakaloff Theorem on positive quadrature formulas, we prove that any real
multidimensional compact set admitting a Markov polynomial inequality with exponent 2 possesses a
near optimal polynomial mesh. This improves for example previous results on general convex bodies
and starlike bodies with Lipschitz boundary, being applicable to any compact set satisfying a uniform
interior cone condition. We also discuss two algorithmic approaches for the computation of near optimal
Tchakaloff meshes in low dimension.
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1 Introduction

Let K ¢ R?Y (or C%) be a polynomial determing compact set (i.e., polynomials vanishing on K vanish everywhere). We recall that
a polynomial mesh on K is a sequence of finite norming sets X, C K, such that
lplix < Cliplly, » Vp €BY, card(X,)=0(n’), €y

n?

for some constant C > 1 and s > d, where ]P’ﬁ denotes the subspace of polynomials of total-degree not exceeding n with dimension
N=N(n)= dim(]P’g) = (”gd), and ||p||y the uniform norm on a continuous or discrete compact set Y).

When s = d the mesh is called “optimal” in the literature, since necessarily necessarily card(X,) > N ~ n?/d!, n — 0o, so
that it has the lowest possible order of growth with respect to n, whereas it is called near optimal when a logarithmic factor in n
multiplies n¢, such as O(n? logk n), k <d.

Polynomial meshes, that are ultimately good discrete models of compact sets when polynomials are involved, have been
playing an important role in multivariate polynomial approximation during the last decade, from both the theoretical and the
computational point of view. The latter is witnessed by the role of polynomial meshes in interpolation (Fekete-like subsets) and
least squares, Bernstein-Markov measures and pluripotential numerics, and more recently in polynomial optimization. We may
refer the reader for example to [2, 5, 8, 11, 15, 16, 20, 19], with the references therein.

We shall focus here on compact sets in R%. It is well-known by the fundamental construction of Calvi and Levenberg [5, Thm.
5] that any real compact set admitting a Markov polynomial inequality with exponent r, i.e. there exists a constant M > 0 such
that

IVp(x)ll, < Mn"[Ipllc , Vp€PE, @)

possesses a polynomial mesh with O(n"?) points.

On the other hand, optimal polynomial meshes have been constructed on several classes of compact sets, such as for example
starlike and more general bodies with smooth boundary [11, 12, 15], bidimensional general convex bodies [13], general polytopes
[11], and suitable sections of disk, sphere, ball and torus [8, 24]. Near optimal meshes are known on C* starlike bodies with
a =2—2/d (in particular on planar Lipschitz starlike bodies, [12]), and on the general class of fat real subanalytic sets (essentially,
finite unions of analytic images of boxes, cf. [20]). It should also be recalled that near optimal polynomial meshes are known to
exist on any compact set in C? (cf. [1, 3], and also [4]), but such results are essentially based on Fekete interpolation sets of
suitable degree, that are explicitly available only in very few instances and are extremely hard to compute.
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On the contrary, in this note we show that any real compact set satisfying a Markov polynomial inequality (2) with exponent
r = 2 possesses a near optimal mesh, in view of a discrete version of Tchakaloff Theorem on positive quadrature, and that such a
mesh can be computed by standard Linear and Quadratic Programming algorithms (at least in low dimension and for moderate
degrees). Such a class includes for example any convex body [26], and more generally any compact body satisfying a uniform
interior cone condition (that is with locally Lipschitz boundary), cf. [9].

We recall as a Lemma a discrete version of Tchakaloff Theorem on the existence of positive multivariate quadrature formulas
exact on polynomial spaces. Originally proved by V. Tchakaloff in 1957 for absolutely continuous measures [23], it has then been
extended to any measure with finite polynomial moments, cf. e.g. [7].

Lemma 1.1. Let u be a multivariate discrete measure supported at a finite set X = {x;} C R?, with correspondent positive weights
(masses) A={A;},i=1,...,M.

Then, there exist a quadrature formula with nodes T, = {t;} € X, that we may term the “Ichakaloff points” of (X, u), and positive

weights w ={w;}, 1<j<m<N= dim(]P’fl), such that

M m
J-p(X)du=Z?\ff(pi)=ijp(t,~), VpeP;. ®)
X i=1 j=1

Proof. We recall also the proof (cf. e.g. [17]), since it gives the base for a numerical algorithm to compute Tchakaloff points and
weights. Let {p;,...,py} be a basis of ]P’:, and V = (v;;) = (p;(x;)) the Vandermonde-like matrix of the basis computed at the
support points. If M > N (otherwise there is nothing to prove), existence of a positive quadrature formula for u with cardinality
not exceeding N can be immediately translated into existence of a nonnegative solution with at most N nonvanishing components
to the underdetermined linear system

Viu=b, uzo0, @
where

b=th={f pj(x)d,u}, 1<j<N, 5)
X

is the column vector of y-moments of the basis {p;}.

Existence then holds by the well-known Caratheodory Theorem applied to the columns of V', which asserts that a conic
(i.e., with positive coefficients) combination of any numer of vectors in R can be rewritten as a conic combination of at most N
(linearly independent) of them; cf. [6]. O

We can now state and prove our main result.
Proposition 1.2. Let K C R? be a compact set admitting a Markov polynomial inequality like (2) with exponent r = 2.

Then, K possesses a polynomial mesh Z, with cardinality O(n?®). Moreover; the Tchakaloff points Ty, extracted from Z; with
unit mass measure, where k, = nt,, £, =[logn] + 1, form a near optimal polynomial mesh for K with card(T,, ) = O((nlog ).

Proof. The first part is Calvi-Levenberg construction in [5, Thm. 5]. Let L be the maximal length of the convex hulls of the

projections of K on the cartesian axes. Since polynomial meshes are affinely invariant, we may assume up to a translation that
K C[0,L]%. Fix 8 € (0,1) and define v = [%—I. Consider in [0, L]¢ a uniform grid with stepsize h = L/v. For every box
of the grid which intersects K choose a point in the intersection, and denote with Z, the (finite) set of such points.

Observe that, by the estimate |q(z)| < exp(d Mn25) ||q|lx, valid for every q € ]P’g and for every z € R such that dist o, (z,K) < &
(cf. [5, Lemma 6]), applied to the components of Vp = (J,p,...,d;p), we get

IVp()ll, < M0 ||Wpllx, VzeR?: disto(2,K)< 6. ©)

Now, for every x € K we can choose y € Z, such that § = ||x — y||oo < h < 0/(¥d Mn?)exp(—+vd 0) < 6/(vd Mn?). By
the mean value theorem, for every x, y € K we have

Ip() —pNI < IVP(E2 [1x — ¥l
for a suitable & in the segment [x, y]. Then by (6) with z = &, together with ||x — y|l,/v/d < ||x — ¥|loo < h, We get

Ip(x) = p(Y)I < eM%°% Mn® [lx =y, lIpllx < ¢ Vdhllplle < 6 lplli »
and thus
Ip()| < PO+ p(x) = pI < lpllz, + 60 lIplix

from which (1) follows with C = 1/(1 — 0). Notice that card(Z,) does not exceed the fraction of grid boxes intersecting K, and
thus it is bounded by the overall number of grid boxes

d
VdLM w . o

card(Z) < v <cyn™, ¢y = [—
a a 0 exp(—vd 6)

In the case of convex bodies, the proof can use simply the mean value theorem, so that the factor exp(—+/d ) in the denominator
is dropped, in both the definition of v and (7) (we omit the details for brevity).
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Concerning the second part, first observe that for every p € ]P’ﬁ the polynomial p‘» is in ]P’Z and thus

L
lplly = 1plle < Clip™llz,, -

Now, consider on X = Z, the discrete measure y with unit masses. By Lemma 1 we get for every g € ]P’Z
n n

lall,, < Nl , = gl =D wsa(E))
j=1
m
< (wa) lali3,, = p(zi)lally, =card(z,)lqll, -
j=1

ol < C y/card@Z ) llpllny, < C y/eak2 lIpllr,,

1t
lIplle < (k&€ v/cq) ™" lpllny, = O lplls,,

Then we can write
and thus

since
logkd

(e v —emp( 225 ) (c va)
— exp (d logn—l:-logén) (C m)l/e,l

Sexp(d (1+lo§_€n)) (C\/a)l/én ~el nooo.

Notice finally that card (T, ) = O((nlog n)?) as n — oo, since

—o00. (€)

2nlogn)?
card(Ty,) < dim(]P’gkn) = (Zk” + d) ~ M

d d! ’

The class of compact sets covered by Proposition 1 is very wide. Indeed

Corollary 1.3. Any compact domain (the closure of a bounded open set) in R? satisfying a uniform interior cone condition (each
point of K is the vertex of a suitably rotated fixed cone contained in K) possesses a near optimal polynomial mesh. This holds in
particular for any convex body.

In fact, such a property implies the fulfillement of a Markov inequality with exponent 2, which is inherited from the cone, cf.
e.g. [25]. This is valid on any compact domain with (locally) Lipschitz boundary, the latter property implying the fulfillement of a
uniform interior cone condition [9].

In particular, Proposition 1 is valid on any convex body, where one can prove that a Markov inequality holds with r =2 and M
proportional to the reciprocal of the body width (the minimum distance between parallel supporting hyperplanes) by a factor 4
(or 2 on centrally symmetric bodies), cf. [26]. This improves the previous results for general convex bodies and starlike Lipschitz
bodies in dimension d > 2, where the best known cardinality for polynomial meshes was O(n?¢~2), cf. [11, 12]. It can also be
seen as a further step towards the proof of the Conjecture: “Every convex body in R? possesses an optimal polynomial mesh”, cf.
[11].

The proof of Proposition 1 is completely constructive, and easily implementable, at least in low dimension. In particular,
differently from other relevant families of points in multivariate polynomial approximation, such as Fekete points or Lebesgue
points, Tchakaloff points can in principle be computed by basic algorithms of Linear and Quadratic Programming.

In fact, the discrete version of Tchakaloff Theorem in Lemma 1, requires ultimately to compute a sparse nonnegative solution
to the underdetermined linear system (4)-(5). In the literature on quadrature compression, essentially two approaches have been
used.

The Linear Programming (LP) approach consists in minimizing the linear functional c¢‘u for a suitable choice of the vector c,
subject to the constraints V'u = b and u > 0. In fact, the solution is a vertex of the polytope defined by the constraints, which
has (at least) M — N null components, cf. e.g. [21]. Observe that a usual choice of the popular compressed sensing field (Basis
Pursuit, cf. [10]), namely ¢ = (1,..., 1) that is minimizing ||u||,; subject to the constraints, is not feasible in the present context,
since ||u||; = u(X) for any u satisfying (4) by exactness of the quadrature formula on the constants.

As an alternative, the Quadratic Programming approach consists in solving the NonNegative Least Squares (NNLS) problem

compute u* : ||[V'u*—bl||, =min|[V'u—b]|,, u=>0, 9

that can be done by the well-known Lawson-Hanson active set optimization method [14], which automatically seeks a sparse
solution and is implemented for example by the 1sqnonneg native algorithm of Matlab. Our limited computational experience,
in low dimension (d = 2,3) and with moderate degrees (polynomial spaces of dimension up to the hundreds), has shown that
in such setting Lawson-Hanson NNLS is more efficient than the most common implementations of LP A Matlab code for the
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computation of Tchakaloff points based on NNLS is provided in the software packages quoted in [17, 22], where the reader can
find a more detailed discussion.

In order to make an illustrative example, in Figure 1 we display for degree n = 4 the grid-based mesh Z, = Z, with 6 =1/2
(approximately 8800 points) and the near optimal Tchakaloff mesh Ty, = Ty (153 points extracted from the approximately
140000 points of Z; = Zg) on a quarter of a Cassini oval, that is

K={x=(x;,x) €R*: (6 —a)* + x)((x; + a)* + x3) < b*, x;,x, > 0},

with a = 1, b = 2 (the Cassini ovals are convex for b/a > +/2); the Tchakaloff points have been computed by Lawson-Hanson
NNLS algorithm.
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Figure 1: Grid-based polynomial mesh (around 8800 points) and Tchakaloff near optimal mesh (153 points) for degree n = 4 on a quarter of a
Cassini oval.

Acknowledgments. Work partially supported by the DOR funds and the biennial project BIRD163015 of the University of Padova,
and by the GNCS-INdAM. This research has been accomplished within the RITA “Research ITalian network on Approximation”.

References
[1] T Bloom, L. Bos, J.R Calvi and N. Levenberg. Polynomial Interpolation and Approximation in C¢. Ann. Polon. Math., 106: 53-81, 2012.
[2] T Bloom, N. Levenberg, E Piazzon and E Wielonsky. Bernstein-Markov: a survey. Dolomites Res. Notes Approx. DRNA, 8: 75-91, 2015.
[3] A.Brudnyi. On near-optimal admissible meshes. arXiv preprint 1402.2303, 2014.
[4] A.Brudnyi. Banach spaces of polynomials as “large” subspaces of £ °°-spaces. J. Funct. Anal., 267: 1285-1290, 2014.
[5] J.B Calvi and N. Levenberg. Uniform approximation by discrete least squares polynomials. J. Approx. Theory, 152: 82-100, 2008.

[6] C. Caratheodory. Uber den Variabilittsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat.
Palermo, 32: 193-217, 1911.

[7] R.E. Curto and L.A. Fialkow. A duality proof of Tchakaloff’s theorem. J. Math. Anal. Appl., 269: 519-532, 2002.

[8] S. De Marchi, E Piazzon, A. Sommariva and M. Vianello. Polynomial Meshes: Computation and Approximation. Proceeedings of CMMSE
2015, 414-425, ISBN 978-84-617-2230-3, preprint online at: http://www.math.unipd.it/ marcov/pdf/wams.pdf.

[9] M.C. Delfour and J.P Zolesio. Shapes and Geometries. SIAM, Philadelphia, 2011.
[10] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhéuser, 2013.
[11] A.Kro6. On optimal polynomial meshes. J. Approx. Theory, 163: 1107-1124, 2011.
[12] A. Kro6. Bernstein type inequalities on star-like domains in RY with application to norming sets. Bull. Math. Sci., 3: 349-361, 2013.
[13] A.Kro6. On the existence of optimal meshes in every convex domain on the plane. J. Approx. Theory, Published online 15 March 2017.
[

14] C.L. Lawson and R.J. Hanson. Solving least squares problems. Revised reprint of the 1974 original. Classics in Applied Mathematics 15,
SIAM, Philadelphia, 1995.

[15] E Piazzon. Optimal polynomial admissible meshes on some classes of compact subsets of R%. J. Approx. Theory, 207: 241-264, 2016.
[16] E Piazzon. Pluripotential Numerics. Constr. Approx., published online 21 June 2018.
[17] E Piazzon, A. Sommariva and M. Vianello. Caratheodory-Tchakaloff Subsampling. Dolomites Res. Notes Approx. DRNA, 10: 5-14, 2017.

Dolomites Research Notes on Approximation ISSN 2035-6803


http://www.math.unipd.it/~marcov/pdf/wams.pdf

/O‘A\,\ Vianello 83

[18] F Piazzon and M. Vianello. Constructing optimal polynomial meshes on planar starlike domains. Dolomites Res. Notes Approx. DRNA, 7:
22-25, 2014.

[19] E Piazzon and M. Vianello. A note on total degree polynomial optimization by Chebyshev grids. Optim. Lett., 12: 63-71, 2018.
[20] W. Plesniak. Nearly optimal meshes in subanalytic sets. Numer. Algorithms, 60: 545-553, 2012.

[21] E.K. Ryu and S.P Boyd. Extensions of Gauss quadrature via linear programming. Found. Comput. Math., 15: 953-971, 2015.

[

22] A. Sommariva and M. Vianello. Compression of multivariate discrete measures and applications. Numer. Funct. Anal. Optim., 36: 1198-1223,
2015.

[23] V. Tchakaloff. Formules de cubatures mécaniques a coefficients non négatifs. (French) Bull. Sci. Math., 81: 123-134, 1957.

[24] M. Vianello. Subperiodic Dubiner distance, norming meshes and trigonometric polynomial optimization. Optim. Lett., 12: 1659-1667,
2018.

[25] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2005.
[26] D. R. Wilhelmsen. A Markov inequality in several dimensions. J. Approx. Theory, 11: 216-220, 1974.

Dolomites Research Notes on Approximation ISSN 2035-6803



	Introduction

