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Price dynamics in the European Union
Emissions Trading System and evaluation of
its ability to boost emission-related investment

decisions

Maria Flora ∗ Tiziano Vargiolu †

Abstract

The price of permits in the European Union Emissions Trading System
(EU ETS) has historically been highly sensitive and prone to jumps.
We consider different stochastic processes to model the price of per-
mits, and show that the Variance Gamma (VG) model provides the
best fit for the price distribution, among a selection of infinite activity
processes. Using this result as a starting point, we assess the effects
of the EU ETS in delivering low-carbon investments at the firm level,
by modeling a price taker electricity producer subject to the EU ETS
jurisdiction. We compute, via Least Squares Monte Carlo, the value
of the real option the greenhouse gas emitter has, consisting in the
opportunity to switch from its current high-carbon technology to a
cleaner one. We use a VG specification for carbon prices, and a mean-
reverting (Brennan-Schwartz) process for the price of fuel. Moreover,
we further analyze the investment decision problem, in case of a CO2

price stabilization mechanism in the form of a price floor, by explicitly
computing the expected value of the investment project by means of
Fourier methods. Our results show that the introduction of the price
stabilization mechanism significantly affects the timing of the invest-
ment decision, and supports emission-related investments.
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1 Introduction

In the past decades, it has become increasingly clear that a development
model heavily based on fossil fuels is hardly sustainable on the long term.
This is why the recent international environmental agreements (UNFCCC,
Kyoto Protocol) have urged countries to adopt emission reduction measures
and to invest in alternative energy projects. One of the policy tools of newest
implementation, aimed at reducing greenhouse gas (GHG) emissions, is emis-
sion trading. Such a tool is aimed at internalizing the negative externalities
generated through the production processes, by making the polluting pri-
vate firms buy a number of emission allowances, corresponding to the tons
of GHG they emit in the atmosphere.

Emission trading systems (ETS) are usually cap-and-trade schemes, in
which the regulator sets the maximum amount of CO2 and other polluting
gases that can be emitted in the system, and then firms buy and trade
the emission permits on the base of their needs. Each emission permit (or
emission allowance) grants its owner the right to emit one ton of GHG.

The aim of this paper is to give a quantitative view on the evolution of the
European Union Emissions Trading System (EU ETS) carbon market, and
to analyze the emission reduction problem from the point of view of an elec-
tricity producer running a fossil fuel-fired power plant. The carbon-intensive
electricity producer is confronted with the choice of either submitting to the
ETS jurisdiction, or changing the production model, by switching production
to low carbon sources of energy.

We take into account the uncertainty involving future European Union
Allowance (EUA) prices and the irreversible costs connected to a new renew-
able power plant investment, and we consider the opportunity of switching
production method as a real option. Computing the price of such a real
option gives a measure of how convenient it is for the GHG emitter to shut
down the fossil fuel-fired power plant and to invest in a renewable energy
project. In this paper, we focus on an oil-fired power plant, and we choose
photovoltaic (PV) energy as the alternative source of energy considered.

A proper valuation of the real option relies on a correct modeling choice
of the EUA price dynamics. In the pertinent modeling literature, the appro-
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priate stochastic modeling of the carbon price is still an open question (see
Lukas and Welling (2014) and references therein), and the common approach
is that of assuming that the carbon price follows a geometric Brownian mo-
tion (GBM). This paper aims at taking an additional step towards filling this
gap. We consider different infinite activity stochastic processes, and deter-
mine which one is more suitable for replicating the carbon price behavior.
Moreover, we model oil prices using a Brennan-Schwarz (BS) model. Our fi-
nal result confirms qualitatively the findings of Brauneis et al. (2013), which
had a research question similar to ours, but we find out that the choice of
the driving processes for carbon and fuel prices heavily affects the shape of
the expected optimal switching time.

Section 2 places this paper in the relevant literature on the subject. Sec-
tion 3 presents the model and the methodology. As mentioned, pricing a real
option requires consistently defining the price dynamics of the underlying
assets, and this is why the first part of Section 3 is devoted to analyzing the
EUA spot prices, in order to define a stochastic process able to consistently
replicate their trend over time, while the subsequent parts are devoted to
modeling oil price, PV energy cost and the real option payoff. Section 4
presents the results and conducts a sensitivity analysis, both with respect to
parameters as with respect to the stochastic processes used to model prices.
Section 5 concludes.

2 Relevant Literature

Since the European Union carbon market was established in 2005, the un-
certainty related to the magnitude of compliance costs and to the impact of
this type of climate policy on the power sector has motivated some research
on this field. Some of the early contributions can be traced back to Barreto
and Kypreos (2004) (see also Kunsch et al. (2004)), Laurikka and Koljonen
(2006) and Szolgayova et al. (2008).

As time went by, the magnitude of the downward risk in the EU ETS
started to motivate some research aimed at discussing the effects of bounding
carbon prices by means of a regulatory minimum price for EU allowances.
The theoretical studies by Weber and Neuhoff (2010), Grüll and Taschini
(2011) and Wood and Jotzo (2011) act in this sense, analyzing the possi-
bility of enhancing the incentives provided by the EU ETS, by introducing
a CO2 price floor. Franco et al. (2015) study the British electricity market
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reform and support the carbon floor policy as well, even if they advise to
also simultaneously implement a feed-in tariff and a capacity mechanism for
improved effectiveness. The carbon floor has been actually adopted in the
UK and has evidenced its positive contribution in changing the energy mix.
In fact, it led to the a 76% drop in coal consumption for electricity genera-
tion in 2016, compared to 2013 – when the carbon price floor was introduced
(World Bank, 2017). Such a political intervention has been also envisaged
for other emission trading schemes. For instance, Weng et al. (2018) suggest
to introduce it in the new Chinese ETS, which has been officially announced
on December 2017, and will become fully operational by 2020.

Most similar to our work are those of Abadie et al. (2011) and Brauneis
et al. (2013), who also analyze the possibility of a carbon price floor, in a
real options-based approach framework, to assess the effects on the firm-level
investment decisions. Both compute the value of the option to abandon a
fossil-fueled power plant, as a function of carbon prices. The former em-
ploys a binomial lattice model where the prices of coal and electricity follow
a mean-reverting Brennan Schwartz model and the CO2 permit price follows
a geometric Brownian motion (GBM). The latter, instead, uses the least-
squares Monte Carlo approach to solve the optimization problem of decision
making in case of an electricity producer who has the option to replace the ex-
isting coal-fired power plant with a “cleaner” nuclear one, when both energy
and CO2 prices follow a GBM. Brauneis et al. (2013), moreover, compute the
floor price required to trigger investment in the new low-carbon plant, and
propose a number of different designs for the floor price.

In this paper, we study a problem similar to that of Brauneis et al. (2013),
introducing a different stochastic process, both for fuel and carbon prices,
in place of the GBMs originally used, and improving the way of how the
option value is computed. For the fuel price, we choose a Brennan-Schwartz
model, in analogy with Abadie et al. (2011), as energy commodity prices
typically exhibit mean-reversion in their price levels. Conversely, carbon
is a special asset that may resemble energy commodities in some aspects
but differentiates itself in others. In fact, its price somewhat depends on
an exogenous political decision, which caps the total supply of the product.
This aspect reflects in the price process, featuring extreme events such as
jumps and spikes, as well as heavy tails and leptokurtic behavior in the
distribution. The majority of the papers on the ETS subject have used, for
ease of modeling, GBM processes to describe the EUA price behavior (cfr.
Szolgayova et al. (2008), Yang et al. (2008), Abadie et al. (2011), Brauneis
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et al. (2013), Lukas and Welling (2014), Compernolle et al. (2017), among
others). Instead, we provide empirical evidence that the carbon log-returns
are not normally distributed, and propose a different specification for the
allowances price, based on geometric Lévy processes more general than the
GBM. We base our analysis on historical data of EUA spot prices, and we
deem that the most well-suited process to model carbon prices is a Variance
Gamma (VG) process, which, to our knowledge, has never been used for this
purpose.

We use this finding in a real option framework, to evaluate the real option
value of replacing a polluting power plant with a renewable one, under the EU
ETS jurisdiction. The underlying asset of the real option moves accordingly
to both a Brennan-Schwartz and a VG process, as it depends on both fuel and
carbon prices. On the other hand, the exercise price of the option (i.e., the
renewable plant investment cost) depends on the levelized cost of electricity
(LCOE) of the selected renewable technology. We base our analysis on Biondi
and Moretto (2015) and Fraunhofer ISE (2015), who find that the LCOE of
a PV plant is well modeled as a decreasing exponential in a horizon (1976–
2010) of more than 30 years (Biondi and Moretto (2015)), and expected to
follow a similar trend up to 2050 (Fraunhofer ISE (2015)). By using the
ingredients above, we are able to compute the option payoff, both in a base
scenario and in a regulatory intervention one, using closed formulas whenever
possible, fact that effectively lowers the computational burden.

3 Methodology

We consider a price-taker and risk-neutral power generating firm, that op-
erates a “dirty” electricity generation technology in Italy.1 Being subject to
the EU ETS jurisdiction, the firm has either to buy the necessary EUAs to
run its business, or it can decide to switch production model towards more
sustainable energy sources, in order to avoid the compliance costs. In either
case, we require the firm to always have exactly one power plant under op-
eration, with a similar electricity output: this also has the side effect that
the agent’s switching decision does not affect market prices. As previously

1Choosing a specific geographic region where to base our project is just a tool for
consistently defining the technical characteristics and output of the new plant, powered
by renewable sources. Nevertheless, our model can be used for different geographical
locations.
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mentioned, we focus on an oil-fired power plant, and choose PV technology
as a case study. In order to reduce the dimensionality of the problem, we
suppose that the two alternative plants, the “clean” and the “dirty” one,
produce roughly the same amount of electricity per year, with the same as-
sumed revenue in terms of electricity sold2. In this way, when evaluating
the real option, we get rid of the electricity price variable3. The technical
characteristics of the firm at t = 0 are reported in Table 1.4

3.1 Price modeling

In what follows, we model the three relevant variables, i.e. the carbon and oil
spot prices and the levelized cost of PV-generated electricity, with three dif-
ferent specifications. As concerns EUA and WTI crude oil prices, which are
the two state variables that we assume to be stochastic, their correlation is as-
sumed to be equal to zero, after Chevallier (2012), who finds the time-varying
correlation between these two variables to be in the range [−0.05; 0.05].

3.1.1 Carbon price

EU carbon prices have followed a particular path over time. We are currently
in the third carbon trading phase, but the price behavior is still marked
by high volatility and uncertainty. As Grüll and Kiesel (2012) show, the
high price sensitivity of permits and their proneness to jumps are structural
features of the EU ETS in its present configuration. For these reasons, a
simple GBM model does not seem appropriate to describe carbon prices. We
perform a data analysis to verify this conjecture, using daily spot prices of
EUAs traded on the European Energy Exchange (EEX). The sample period

2Here we must emphasize that oil plants deliver base power, while PV typically has
a high peak on mid-day, i.e. when the electricity price is higher. However, this also
depends on the solar radiation level reaching the ground, i.e. on the cloudiness during a
given day. Therefore, the profit from selling electricity has to be adapted to this. Luckily,
the synthetic indicator that we use in the paper (LCOE) allows to average out all these
differences and gives, as a result, the average cost of electricity along the entire life of a
power plant.

3Although other options are in principle possible, as dismissing the old polluting plant
or substituting it with a newer one with the same technology, Brauneis et al. (2013) found
out that these two choices are almost never optimal: for this reason, we exclude them from
the beginning, with the effect of reducing the number of state variables.

4We refer the reader to Appendix A.1 for the computation of some of the values in the
table.
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Table 1: Technical characteristics of the oil-fired power plant.

Variable Unit Value

Capacity MW 10
Residual lifetime years 25
Capacity factor∗ rate 80%
Efficiency¶ rate 40%
Electricity produced kWh/year 7.01 ·107

Fuel consumption tons/year 1.48·104

CO2 emission factor tons/kWh 2.64·10−4

CO2 emissions per year tons/year 46,200
Operating & maintenance costs million EUR/year 0.5
Decommissioning costs million EUR 1

∗The capacity factor is the ratio of a power station actual generation to its
maximum potential generation. This value represents the theoretical
capacity factor of an oil-fired power station in good condition. In Italy
there are some examples of fuel oil plants which have been running in full
swing over the recent years: the Livorno Marzocco power plant, Tuscany,
operating since 1965, in 2007 had a capacity factor of 79%
(see http://enipedia.tudelft.nl/wiki/Livorno Powerplant).
¶The efficiency of a power station is a percentage measure given by the

ratio between the electricity produced and the heat energy needed in
order to produce it. According to IEA (2008), the average efficiency of
oil-fired electricity production in Italy, over the 2001-2005 period, was
41%. For ease of calculation, 40% is taken as a proxy.

stretches from 01/01/2015 to 01/06/2017, i.e. 574 observations. The chi-
squared goodness of fit test of a Gaussian distribution on log-returns gives
an extremely low p-value (7.76 ·10−10) and the null hypothesis of normality
is rejected at the 1% significance level. This is mainly due to the pronounced
leptokurtic behavior of the log-return distribution, which causes the high
peakedness about the mean and lack of shoulders.

These characteristics suggest to use more general stochastic processes to
model this variable. In particular, we focus on infinite activity Lévy pro-
cesses rather than on jump-diffusion ones, as it has been argued that these
processes lead to a more realistic description of the price dynamics at var-
ious time scales (see Cont and Tankov (2004) Chapter 4.1.1 and references
therein). Among the most popular choices of such processes, we compare the
Variance Gamma (VG), the Normal Inverse Gaussian (NIG) and the Gener-
alized Hyperbolic (GH) processes. Figure 1 shows the comparison between
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Figure 1: Variance-Gamma, Normal Inverse Gaussian and Generalized Hyper-
bolic fits on EUA spot prices, listed at the European Energy Exchange (EEX).

the empirical probability density function (PDF) and the PDFs of the three
selected processes. The three processes all provide a close fit to the historical
price distribution.

However, Table 2 indicates that, among the three, the VG process is the
most indicated to describe the price dynamics, as it displays the highest p-
value in Pearson’s chi-squared goodness-of-fit test (which thus fails to reject
the null hypothesis of VG distribution with a high probability), and the
lowest value of the Bayesian Information Criterion (BIC). It must be noted,
however, that the other two infinite activity candidates, the NIG and the
GH, appear to be almost equally good, with closely equivalent BIC values.
The three of them are all markedly superior to the GBM, whose BIC value
is remarkably higher.

The bottom panels of Figure 2 show that, in particular, the VG process
graphically fits the data on spot carbon prices better than the GBM, both for
the cumulative density function (CDF, bottom left panel) and for the prob-
ability density function (PDF, bottom right panel). The carbon parameters
of the VG model, estimated via maximum likelihood estimation (MLE), are
reported in Table 3.
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χ2 GoF
p-value

BIC

GBM 7.76 · 10−10 −2362.68
VG 0.44 −2454.34
NIG 0.25 −2453.90
GH 0.36 −2449.55

Table 2: The table shows the p-value of Pearson’s chi-squared goodness-of-fit
test (χ2 GoF) and the value of the Bayesian Information Criterion (BIC) for each
model considered. The results of the chi-squared test show that the null hypothesis
is rejected only for the GBM case. The BIC test shows that the VG model is the
one providing the best fit.

Parameter Estimated value

µ̂ −5.09 · 10−4

σ̂P 0.030

θ̂P −3.59 · 10−9

α̂ 0.935

Table 3: Estimated daily parameters for carbon spot data fitted via maximum
likelihood estimation (MLE) using a VG model.

3.1.2 Oil price

In commodity markets, a widely accepted assumption is that of mean revert-
ing spot prices (see for example Lutz (2010)). Thus, in analogy with Abadie
et al. (2011) who use it for coal and gas prices, we choose a Brennan-Schwartz
(BS) process (see Brennan and Schwartz (1980)) for the WTI crude oil spot
price Dt:

dDt = k(θD −Dt) dt+ σDDt dWt (3.1)

where k is the speed of reversion toward the mean, θD is the long run mean
price level, σD is the volatility of the process and dW (t) is the increment of a
Wiener process. We estimate the parameters using daily WTI crude oil spot
prices from 01/01/2000 to 01/01/2017, available on the U.S. Energy Infor-
mation Administration website. The estimated oil parameters are reported
in Table 4.
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Figure 2: Variance-Gamma vs. Normal fit on EUA spot prices. The left top panel
shows observed EUA prices (solid black line) compared with those simulated using
a VG process. The right top panel displays the normal probability plot of EUA
log-returns. The data points form a curve that markedly deviates from the straight
line, which indicates that data are not normally distributed. The bottom panels
show the empirical CDF and PDF against the estimated VG and normal ones.

3.1.3 The LCOE of PV technology

Once defined the total electricity output produced in the entire lifetime of
the solar plant, the investment required to build it is expressed by its LCOE.
Taking into account the benefits given by the so-called “learning curves” over
time, the LCOE is modeled as a decreasing exponential, as seen in Biondi
and Moretto (2015):

LCOE(t) = LCOE(0) eαCt , (3.2)

where αC < 0 is the product between the negative learning curve coefficient
and the average growth rate of the PV industry.

In our case, the LCOE depends on a number of factors, including the
price of PV modules, the capacity factor of the plant, and the installation,
maintenance, insurance and decommissioning costs. Due to the uncertainty
related to government incentives, we did not include them in our analysis.
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Parameter Estimated value

k̂ 0.0014

θ̂D 445.64
σ̂D 0.025

Table 4: Estimated daily parameters for WTI crude oil spot data fitted via MLE
using a BS model.

To estimate the current LCOE and the LCOE parameter αC in (3.2), we first
need to estimate the magnitude of the costs outlined above and to compute
the learning curve coefficient and the average growth rate of the PV industry,
as αC is the product of the two.

The learning curve coefficent. According to Fraunhofer ISE (2015), the
learning rate LR of PV industry ranges between 0.19 and 0.23. We take the
average 0.21 as a proxy. The economic meaning of such a value is that, each
time the cumulated capacity doubles, the unitary cost decreases by 21%. The
learning curve coefficient is then log(1−LR)

log 2
= −0.34.

Growth rate of the PV industry. According to Fraunhofer ISE (2015),
in a pessimistic scenario the 2015-2050 compound annual growth rate will
be 5%, in the intermediate scenario it will be 7.5%, while, in the optimistic
one, the growth rate will be 10%. We take 7.5% as a proxy. The LCOE
parameter αC is thus equal to −0.0255.

The current cost of PV technology. Since the plant will be built in
Italy, we assume an average full load hours value of 1250 kWh/kW, which
corresponds to a 14.3% capacity factor. As for the cost estimates, Fraun-
hofer ISE (2015) provides an estimate of the costs of a 1 MW PV utility in
Germany, related to 2014. We use them to compute the LCOE relative to
year 2014, and then update it to year 2017 with the exponential relationship
in (3.2). The LCOE relative to 2014, resulting from these assumptions, is
equal to 0.087 AC/kWh. Thus, according to (3.2), the LCOE for 2017 is 0.081
AC/kWh.
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3.2 The real option payoff - A closed-form solution

At the beginning of each period, until the end of its economic life, the com-
pany can choose to replace the existing power plant with another one, based
on PV technology, with no carbon emissions. Given the fact that this deci-
sion (1) can be taken at any moment in time prior to the end of the economic
life of the oil-fired power plant, (2) is irreversible in that it implies high sunk
costs (decommissioning of the existing plant and construction of the PV one),
and (3) is affected by the uncertainty related to some key variables, such as
the price of CO2 and that of fuels, it can be modeled as a real option.

In case the firm decides to invest in the alternative energy plant, it will
have to pay for the decommissioning of the oil-fired plant, whose cost is
reported in Table 1. Given the negligible construction time of PV plants, we
assume the switching decision to have immediate effect. We further assume
the PV plant to have an economic lifetime of 25 years (average economic
lifetime of PV plants according to IEA (2014a)).

The real option, thus, has a strike price K equal to the sunk costs the
firm incurs once it decides to invest:

K(t) = c+Q · LCOE(t) ,

where c represents the decommissioning cost of the high-carbon plant, and
Q is the total electricity produced over the PV plant lifetime. On the other
hand, exercising the option grants Φ, which represents the conditional ex-
pected value, under a suitable risk-neutral probability Q, of the savings the
company obtains by investing in the clean technology plant, discounted with
a risk-free factor r, and summed up from the moment when the investment
takes place, t, until the end of the model horizon, T . This payoff depends on
whether the CO2 permits are priced on a baseline scenario, where the mar-
ket price simply follows the VG process seen previously, or on a regulatory
intervention scenario, where there is a price floor on CO2 permits.
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3.2.1 Baseline scenario

Given the price dynamics in the previous section, the payoff of exercising the
option is

Φ(Dt, Pt, t) = EQ
[∫ T

t

BDs e−r(s−t) ds +

∫ T

t

XPs e−r(s−t) ds+

+

∫ T

t

Op e−r(s−t) ds

∣∣∣∣ Ft]+K(T )
Tpv − (T − t)

Tpv
e−r(T−t) (3.3)

where D is the oil spot price, P is the carbon spot price, which are multi-
plied respectively by the fuel consumption coefficient of the oil-fired plant B,
and by its yearly CO2 emissions X, while Op represents the operating and
maintenance costs of the high-carbon technology plant. The model horizon is
set to coincide with the residual economic lifetime of the fossil fuel-powered
plant (25 years). If the end of the model horizon does not also coincide with
the end of the economic lifetime of the low-carbon plant (Tpv), in t = T , the
existing plant is sold for its book value, and an additional positive cash flow
is given.

With the dynamics seen above, it is very simple to provide the solution
to (3.3) in closed form (we refer the reader to Appendix A.2 for the detailed
procedure):

Φ(Dt, Pt, t) =B

[
1− e−(T−t)(r+k)

r + k
(Dt − θD) +

θD
r

(
1− e−r(T−t)

)]
+X Pt (T − t) +

Op

r

(
1− e−r(T−t)

)
+K(T )

Tpv − (T − t)
Tpv

e−r(T−t) .

(3.4)

3.2.2 Regulatory intervention scenario

If we include a price stabilization mechanism in the model, we need to re-
consider the total payoff of the producer in Equation (3.3). In presence of a
floor F on EUA prices, we need to substitute max (Ps , F ) in place of Ps in
Equation (3.3). It can be noticed that

max (Ps , F ) = Ps + (F − Ps)+ . (3.5)
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Then, the new benefits equation ΦF becomes

ΦF (Dt, Pt, t) =Φ(Dt, Pt, t) + Fl(Pt, t) (3.6)

where

Fl(Pt, t) := X

∫ T

t

e−r(s−t) EQ [(F − Ps)+∣∣ Ft] ds .

In fact, bounding carbon prices downwards with a floor F is equivalent to
having a put option with F as strike price, and the solution to (3.6) is again
the solution to (3.3), plus the integral on [t, T ] of the price of such a put
option.

To compute the value of this additional term, we employ Fourier tech-
niques. Fourier methods give the price of the put option as an integral for-
mula involving the characteristic function of the underlying process. This,
combined with the time integral, returns a semi-explicit formula for the pay-
off. The formula for the put option price (see Theorem 15.9 in Pascucci
(2011)) is

Price(Pt, F, T ) =
e−r(T−t)P γ

t F
1−γ

π

∫ ∞
0

e−iu log
Pt
F

φXT
(−(u+ iγ))

(iu− γ)(iu− γ + 1)
du ,

(3.7)

where φXT
(u) is the characteristic function, under Q, of the underlying log-

price process X. This formula returns the price of a put for all γ < 0 such
that EQ[P γ

T ] is finite (thus for all γ ∈ (−45, 0) with our parameters).
As Madan et al. (1998) show, the characteristic function for the VG pro-

cess is

ϕXT
(u) = E

[
eiuXT

]
= eiµTu

(
1− iθP

u

α
+

1

2
σ2
P

u2

α

)−Tα
. (3.8)

As shown in Appendix A.2, as a necessary condition for (3.8) to be under
the EMM Q, we need to have

µ = r + α log

(
1−

θP + 1
2
σ2
P

α

)
. (3.9)

Looking back at (3.6), and using (3.7) along with (3.8), we get that the value
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of the additional term in the payoff is:

Fl(Pt, t) = X

∫ T

t

e−r(s−t)P γ
t F

1−γ

π
·

·
∫ +∞

0

e−iu log
Pt
F

+µ(s−t)(γ−iu)
(

1 + iθP
u+iγ
α

+ 1
2
σ2
P

(u+iγ)2

α

)−(s−t)α
(iu− γ)(iu− γ + 1)

du ds =

= X
P γ
t F

1−γ

π

∫ +∞

0

e−iu log
Pt
F

(iu− γ)(iu− γ + 1)

[
e(T−t)m(u) − 1

m(u)

]
du , (3.10)

where

m(u) = −r − iµ(u+ iγ)− α log

(
1 + iθP

u+ iγ

α
+

1

2
σ2
P

(u+ iγ)2

α

)
,

with µ satisfying (3.9).

Choice of the damping parameter
Even if, theoretically, Equation (3.7) is valid for any suitable γ (here, γ ∈
(−45, 0)), many authors have noticed that the integrand in the pricing for-
mula may be oscillatory or highly peaked, depending on the choice of γ.

As a criterion for the selection of the damping parameter, we plot the
integrand in (3.7) as a function of the different variables, and examine the
graphs in order to detect oscillatory behaviors. For example, as Figure 3
shows, the more the maturity increases, the smaller γ needs to be. According
to our graphical results, with the estimated VG parameters, an optimal choice
for γ lies in the interval [−1, 0). Specifically, we choose γ = −0.8.

3.3 The investment decision problem

If the firm exercises the option, it has to pay the strike price K(t) in ex-
change for Φ(Dt, Pt, t). The real option R to defer the investment is thus an
American call option on the value of the project:

R(Pt, Dt, t) = max
τ

E
[
e−r(τ−t) (Φ(Dτ , Pτ , τ)−K(τ))

]
,

where the maximum is taken over all stopping times τ with t < τ < T .
The classical method of dealing with real options is to solve a partial in-

tegral differential equation (PIDE) subject to two key boundary conditions,
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(a) T = 2, γ ∈ [−5, 0] (b) T = 20, γ ∈ [−1.5, 0]

Figure 3: Integrand for the VG model with the estimated parameters.

the value-matching and the smooth-pasting ones. In many practical cases
(in particular in multidimensional cases like ours), however, it is not possible
to do so, and instead of finding a closed-form solution, numerical methods
are employed. As a computational method, the traditional choice is that of
recombining binomial trees. However, binomial trees are well suited to ap-
proximate models where all the state variables are diffusions (see Edoli et al.
(2016) for a general treatment and Abadie et al. (2011) for an implementa-
tion with Brennan-Schwartz processes). Instead, when some state variables
present the possibility of jumps, binomial models are not suitable anymore:
in principle, they can be generalized to more complex multinomial models,
but at the price of needing a potentially infinite number of nodes to capture
all the moments of the jump process (for the special case of the VG process,
see Cantarutti and Guerra (2018)). For this reason, we implement a Least
Squares Monte Carlo (LSMC) simulation, which is much more flexible and
is able to reproduce a VG process with its exact distribution.

Once the payoff given by exercising the option is computed at each point
in time, an efficient exercise rule is to assess the convenience of investing in
the project, as opposed to deferring the investment at every point in time
when the decision has to be made. The value given by deferring the invest-
ment decision to the following period is the so-called continuation value. As
outlined in Longstaff and Schwartz (2001), this can be computed by means
of a least-squares Monte Carlo simulation. We follow Brauneis et al. (2013),
and assume a quadratic relationship between the value of continuing, CVt,i,
and the value our relevant simulated variables assume at each time the in-
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vestment decision has to be made.

CVt,i = αt + β1Dt,i + β2Pt,i + β3(Dt,i)
2 + β4(Pt,i)

2 + εt,i , (3.11)

where i indicates the different Monte Carlo simulated paths and t ∈ [0, T ].
Through the least-squares analysis, we determine the regression coefficients
providing the best fit. Using these estimated coefficients and working back-
wards, at each point in time the payoff given by exercising the option is
compared to the continuation value.

4 Results

This section discusses the results obtained using our model. In what follows,
we use an initial market price for oil of 54.00 $ per barrel (365.73 AC/ton),
and an initial carbon price of 5.05 AC/ton of CO2. We use a risk-free annual
interest rate r equal to 2.5%. All other parameters are as stated in the
previous sections. The results are shown in terms of expected value of the
option (computed as the average of the values on all simulated paths) and
of cumulative investment probability, defined as the sum of the number of
paths in which the investment takes place before a certain year, over the
total number of simulated paths. We run our model on MATLAB, with
10,000 simulated paths.

4.1 Baseline scenario

Using the parameters stated above, and assuming no policy interventions
in the carbon market, the probability to invest in the clean energy project
before 10 years reaches 50%. Before the end of the model horizon, the optimal
strategy consists in replacing the oil-fired power plant in 92% of the cases
(Fig. 4a, dashed purple line).

This result, however, is quite sensitive to the choice of the discount rate r,
as shown in Fig. 4. If r is higher than the one assumed in our model, the in-
vestment probability shifts downward and the expected option value declines.
On the contrary, the lower the discount rate, the higher the probability of
switching production method, with r = 1% suggesting almost immediate
investment.

As a second sensitivity test, we look at the impact that different long
term mean prices for oil θD have on the optimal timing of the investment.
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We thus run our model with a set of different θD, corresponding to a reduction
or increase of 3%, 6% or 9% with respect to the initial θD estimate. Figure
5 shows that having higher long term mean values for oil prices results in
earlier investment for a given probability value, and this is contextual to an
increase in the expected option value. An increase in θD of 9% with respect to
our estimate leads to a probability of 100% that it is optimal to exercise the
option before the end of the model horizon. On the other hand, a decrease of
9% in the same initial value results in a decrease by 20% in the corresponding
probability.

(a) Cumulative investment probability (b) Expected option value

Figure 4: Sensitivity analysis of the results using different annual risk-free interest
rates r.

4.2 Regulatory intervention scenario

The impact of introducing a minimum price for EU emission allowances is
shown in Fig. 6. In Fig. 6a and 6b, we show the results on the investment
probability and on the expected option value, respectively, of having a carbon
floor price equal to {10, 20, 30, 40} AC/ ton of CO2. As the floor gets higher,
the number of simulation runs in which it is convenient to invest in the clean
energy project increases for each point in time, and the option to replace the
“dirty” technology with a “clean” one appreciates in value. Specifically, with
a floor of 10 AC, the probability that exercising the real option before 10 years
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(a) Cumulative investment probability (b) Expected option value

Figure 5: Sensitivity analysis of the results using different long term means θD
for oil.

is optimal shifts from about 50% to almost 80%. With a floor as high as 20
AC/ton (in line with the current market price as of February 2019), in about
55% of the cases it is optimal to invest immediately in the project, and the
probability rises to 100% if the floor is 30 AC/ton. Finally, we run again our
model using two different risk-free interest rates r, and the results, reported
in Fig. 7, confirm the positive effect of a floor on carbon prices.

4.3 Further considerations

As previously mentioned in Section 2, this paper investigates a similar prob-
lem to that of Brauneis et al. (2013). Our results corroborate the core finding
in their paper, namely that a carbon floor is beneficial for low-carbon invest-
ments, as it increases the probability than it is optimal to invest. However,
the result in Figures 6 and 7 qualitatively differs from those obtained in the
aforementioned work: the higher the floor, the higher, but also the steeper,
the cumulative investment probability curve. This discrepancy could be due
either to the difference in the models (different types of firm considered,
different switching options, different number and nature of the stochastic
variables considered), or to the different modeling choices of the stochastic
variables, or to both these changes.

As previously mentioned, both the fuel and carbon prices in Brauneis et
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(a) Cumulative investment probability (b) Expected option value

Figure 6: Investment probability evolution over the years (6b) and expected
option value (6b) with different carbon floor prices, r = 2.5%.

al. (2013) follow a GBM. To understand whether this choice acts as a source
of divergence in the results, we first analyze an intermediate alternative model
where the carbon price follows a GBM (as in Brauneis et al. (2013)) instead
of a VG process (as in the previous section), while the fuel price is still
represented by a BS process.

4.3.1 The effect of the VG process in carbon prices

Figure 8 shows the corresponding investment probabilities and expected
option values. The carbon floor affects the timing of the green investment
by inducing a “left-up” shift on the probability curves, quite similar to our
original model. For this reason, we can conclude that the effect of substituting
a VG process for carbon prices to the original GBM, while better representing
the descriptive statistics of carbon prices’ time series, does not significantly
affect the decision process.
4.3.2 The effect of the BS process in fuel prices

We then consider a model that implements the original modeling choice of
Brauneis et al. (2013), i.e. two GBMs for fuel and carbon prices. The effect of
this modeling choice on the cumulative switching probability, in the presence
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(a) Cumulative switches, r = 2% (b) Expected option value, r = 2%

(c) Cumulative switches, r = 3% (d) Expected option value, r = 3%

Figure 7: Sensitivity analysis of the results with a floor, using different annual
risk-free interest rates r.

of various carbon floor levels, is reported in Figure 9. The consequence of the
increasing floor levels is now qualitatively similar to that of Brauneis et al.
(2013): there is a parallel upward shift in the cumulative probability curve
as the floor gets higher, and each curve has roughly the same slope. The
interesting fact is that the expected value of the real option is comparatively
higher in the GBM+GBM case (Figure 9b) than in the VG+BS case (Figure
6b), even though the optimal timing of the investment is postponed. It can
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(a) Cumulative investment probability (b) Expected option value

Figure 8: Sensitivity of the results to the choice of the carbon price dynamics.
This figure shows the results in presence of a carbon floor price, when the carbon
price follows a GBM rather than a VG. r = 2.5%.

(a) Cumulative investment probability (b) Expected option value

Figure 9: Sensitivity of the results to the choice of the carbon and oil price
dynamics. This figure shows the results in presence of a carbon floor price, when
both the carbon and oil prices follow a GBM. r = 2.5%.

be conjectured that the reason for this behavior lies in the fact that, when
the price of oil is modeled as a GBM, its volatility and drift make the option
value grow larger as time goes by. This increases the convenience to wait
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rather than to invest immediately, anticipating further future growth of the
payoff.

These results indicates the importance of the modeling choices of the
relevant stochastic variables in the model, and their different impact on the
final outcome. By using models more sophisticated and realistic than the
standard ones used in the literature for fuel and carbon prices, the optimal
investment timing is anticipated with respect to GBM-based models.

5 Conclusions

In this paper, we depart from the usual assumption of GBM used in the
literature for the carbon spot price, and provide empirical evidence that in-
finite activity Lévy processes, and VG processes in particular, are able to
consistently replicate the carbon log-returns empirical distribution. We then
use this result to evaluate the impact of the EU ETS on renewable energy
investments in the power generation sector. We consider two different sce-
narios: a baseline scenario (the EU ETS market in its current configuration),
and a regulatory intervention one, where a floor price on carbon allowances
is applied.

Our results show that a minimum CO2 price of 30 AC/ton of CO2 would
trigger immediate investment in the clean energy plant, and this result is
quite robust to changes in the risk-free interest rate. On the other hand,
without regulatory interventions, only in 50% of the simulated paths the
optimal decision consists in exercising the option before 10 years. We also
find out that these results are heavily affected by the choice that one does in
modelling carbon and fuel prices.

Thus, according to the results of our model, a pure carbon trading system
has a limited impact on renewable energy investments, and a policy inter-
vention in the EU ETS seems advisable. Through a floor price, one of the
goals of the EU ETS, namely boosting low-carbon investments in the power
generation sector, could be achieved. Such a price management mechanism
has already been implemented in the UK, as well as in other emission trading
programs, the northeastern US Regional Greenhouse Gas Initiative (RGGI),
the California emission trading program and the Québec one. The floor, in
these programs, has been successful in enhancing environmental outcomes
(see World Bank (2017), Narassimhan et al. (2018), Borghesi and Montini
(2016)). This work confirms the positive impact of such a policy interven-
tion, even with models more sophisticated and realistic than the standard
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ones used in literature.
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A Appendix

A.1 Technical characteristics of the oil-fired power plant

Given the capacity and the capacity factor values reported in Table 1 (10
MW and 80%, respectively), the yearly electricity output is computed:

Electricity output = 10, 000 kW · 0.8 · 365 · 24h = 7.01 · 107 kWh/year.

The corresponding amount of energy needed to produce such an output is
retrieved by simply dividing the electricity output by the efficiency rate of
the plant (40%, as reported in Table 1), which results in 1.75·108 kWh/year.
Given that the calorific value of crude oil is 42.5 MJ/kg, or 11,800 kWh/ton,
the fuel consumption of the oil-fired plant is computed:

Fuel consumption =
1.75 · 108 kWh/year

11, 800 kWh/ton
= 1.48 · 104 tons/year.

As stated by the Intergovernmental Panel on Climate Change, the default
CO2 emission factor for crude oil is 73,300 kg/TJ IPCC (2006), or 2.64 ·
10−4 tons/kWh (since 1 kWh = 3.6 MJ). The yearly carbon emissions are
thus given by

CO2 emissions = 1.75·108 kWh/year · 2.64·10−4 tons/kWh = 46, 200 tons/year.

24



A.2 Solving the benefits equation

A.2.1 The oil spot price

The oil spot price follows a Brennan-Schwartz process, defined as

dDt = k(θD −Dt) dt+ σDDt dWt . (A.1)

Given an initial time t ∈ [0, T ], a quantity of interest in computing the real
option payoff is y(s) := E [Ds | Ft], which can be easily inferred from the
dynamics (A.1). In fact, this dynamics can be written in integral form as

Ds = Dt +

∫ s

t

k(θD −Du) du+

∫ s

t

σDDu dWu

Computing the conditional expectation to both members, the stochastic in-
tegral cancels out, and the final result is

E [Ds | Ft] = Dt +

∫ s

t

k(θD − E [Du | Ft]) du

By differentiating with respect to s, this yields the differential equation

y′(s) = k(θD − y(s))

which, with the initial condition y(t) = Dt, has as unique solution

E [Ds | Ft] = y(s) = θD + e−k(s−t)(Dt − θD) (A.2)

A.2.2 Solving Φ(Dt, Pt, t)

We can now use equation (A.2) to solve (3.3), the equation for Φ.
Let us begin by solving the first expected value block:

E

[∫ T

t

BDs e−r(s−t) ds

∣∣∣∣∣Ft
]

= B

∫ T

t

e−r(s−t) E [Ds|Ft ] ds =

= B

∫ T

t

e−r(s−t)(θD + e−k(s−t)(Dt − θD)) ds =

= B

[
1− e−(T−t)(r+k)

r + k
(Dt − θD) +

θD
r

(
1− e−r(T−t)

)]
. (A.3)
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As for the second expected value block, we need to impose a restriction on
the parameters, in order for the the discounted EUA price to be a martingale.
Being P a geometric Lévy process, this is equivalent to EQ[e−rtPt] = P0.
From Equation (3.8), we know that

EQ[Pt] = P0E
Q[eXt ] = P0e

µt

(
1− θP

α
− 1

2

σ2
P

α

)−αt
thus (e−rtPt)t is a martingale if and only if

µ = r + α log

(
1−

θ + 1
2
σ2

α

)
, (A.4)

and the second expected value block becomes

EQ
[∫ T

t

XPs e−r(s−t) ds

∣∣∣∣Ft] = X

∫ T

t

e rt e−rtPt ds = X Pt (T − t) . (A.5)

The solution to the third expected value block is trivial:

EQ
[∫ T

t

Op e−r(s−t) ds

∣∣∣∣Ft] =
Op

r

(
1− e−r(T−t)

)
. (A.6)

Putting together equations (A.3), (A.5) and (A.6), we have the solution for
(3.3), given in (3.4).
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abandonment of EU coal-fired stations. The Energy Journal, 32 (3): 175–
207, 2011.

Barreto, L., and Kypreos, S. (2004). Emissions trading and technology de-
ployment in an energy-systems “bottom-up” model with technology learn-
ing. European Journal of Operational Research, 158(1): 243–261.

Biondi, T. and Moretto, M. (2015). Solar Grid Parity dynamics in Italy: a
real option approach. Energy, 80: 293–302, 2015.

26



Borghesi, S. and Montini, M. (2016). The best (and worst) of GHG emission
trading systems: comparing the EU ETS with its followers. Frontiers in
Energy Research, 4.

Brauneis, A., Mestel, R. and Palan, S. (2013). Inducing low-carbon invest-
ment in the electric power industry through a price floor for emissions
trading. Energy Policy, 53: 190–204, 2013.

Brennan, M. J. and Schwartz, E. S. (1980). Analyzing convertible bonds. The
Journal of Financial and Quantitative Analysis, 15(4): 907–929.

Cantarutti, N. and Guerra, J. (2018). Multinomial method for op-
tion pricing under Variance Gamma. Preprint. Available at
https://arxiv.org/pdf/1701.00112.pdf

Chevallier, J. (2012). Time-varying correlations in oil, gas and CO2 prices:
an application using BEKK, CCC and DCC-MGARCH models. Applied
Economics, 44 (32): 4257–4274, 2012.

Cont, R., and Tankov, P. (2004). Financial Modelling with Jump Processes.
Chapman & Hall / CRC Financial Mathematics Series.

Compernolle, T., Welkenhuysen, K., Huisman, K., Piessens, K. and Kort, P.
(2017). Off-shore enhanced oil recovery in the North Sea: The impact of
price uncertainty on the investment decisions. Energy Policy, 101: 123–137.

Edoli, E., Fiorenzani, S. and Vargiolu, T. (2016). Optimization Methods for
Gas and Power Markets: Theory and Cases. Applied Quantitative Finance
series, Palgrave MacMillan.

Finlay, R. (2009). The Variance-Gamma (VG) model with Long Range De-
pendence. School of Mathematics and Statistics, University of Sydney,
2009.

Franco, C. J., Castaneda, M. and Dyner, I. (2015). Simulating the new
British Electricity-Market Reform. European Journal of Operational Re-
search, 245(1): 273–285.

Fraunhofer ISE (2015). Current and Future Cost of Photovoltaics. Long-term
Scenarios for Market Development, System Prices and LCOE of Utility-
Scale PV Systems. Study on behalf of Agora Energiewende. Fraunhofer ISE,
2015.

27
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Grüll, G. and Taschini, L. (2011). Cap-and-trade properties under different
hybrid scheme designs. Journal of Environmental Economics and Manage-
ment, 61(1): 107–118, 2011.

IEA (2008). Energy Efficieny Indicators for Public Electricity Production
from Fossil Fuels. OECD IEA, Paris, 2008.

IEA (2014a). Technology Roadmap: Solar Photovoltaic Energy. OECD IEA,
Paris, 2014.

IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Invento-
ries. IPCC, 2006.

Kunsch, P. L., Springael, J., and Brans, J. P. (2004). The zero-emission cer-
tificates: A novel CO2-pollution reduction instrument applied to the elec-
tricity market. European Journal of Operational Research, 153(2): 386–
399.

Laurikka, H. and Koljonen, T. (2006). Emissions trading and investment
decisions in the power sector — a case study in Finland. Energy Policy,
34(9): 1063–1074, 2006.

Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by
simulation: a simple least-squares approach. Review of Financial Studies,
14(1): 113–147, 2001.

Lukas, E. and Welling, A. (2014). Timing and eco(nomic) efficiency of
climate-friendly investments in supply chains. European Journal of Op-
erational Research, 233(2): 448–457.

Lutz, B. (2010). Pricing of Derivatives on Mean-Reverting Assets. Lecture
Notes in Economics and Mathematical Systems, 630, Springer-Verlag
Berlin Heidelberg 2010.

Madan, D. B., Carr, P. P., and Chang, E. C. (1998). The Variance Gamma
process and option pricing. European Finance Review, 2: 79–105, 1998.

28



Narassimhan, E., Gallagher, K. S., Koester, S., and Rivera, J. A. (2018).
Carbon pricing in practice: a review of existing emissions trading systems.
Climate Policy, 18(8): 967–991.

Pascucci, A. (2011). PDE and Martingale Methods in Option Pricing.
Springer-Verlag, Bocconi & Springer series, 2011.

Szolgayova, J., Fuss, S. and Obersteiner, M. (2008). Assessing the effects of
CO2 price caps on electricity investments - A real options analysis. Energy
Policy, 36: 3974–3981, 2008.

Weber, T. A. and Neuhoff, K. (2010). Carbon markets and technological in-
novation. Journal of Environmental Economics and Management, 60(2):
115–132, 2010.

Weng, Y., Zhang, D., and Lu, L., and Zhang, X. (2018). A general equilib-
rium analysis of floor prices for China’s national carbon emissions trading
system. Climate Policy, 18(1): 60–70.

Wood, P. J. and Jotzo, F. (2011). Price floors for emissions trading. Energy
Policy, 39(3): 1746–1753, 2011.

World Bank; Ecofys; Vivid Economics (2017). State and Trends of Carbon
Pricing 2017. Washington, DC: World Bank.

Yang, M., Blyth, W., Bradley, R., Bunn, D., Clarke, C. and Wilson, T.
(2008). Evaluating the power investment options with uncertainty in cli-
mate policy. Energy Economics, 30: 1933–1950, 2008.

29


