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Adaptive Maximum Torque per Ampere Control of
Synchronous Reluctance Motors by Radial Basis

Function Networks
Ludovico Ortombina, Fabio Tinazzi, Mauro Zigliotto

Abstract—As neodymium and other rare earth materials be-
come a critical commodity, the exploitation of reluctance torque
in synchronous motors is certainly an interesting option. Alter-
native motor topologies span from internal permanent magnet
motors to pure reluctance machines. Anyway, any anisotropic
structure suffers of some magnetic nonlinearity that call for more
sophisticated models to get an efficient torque control. Neural
network based algorithms are good candidates for modelling the
current-to-flux linkages curves of synchronous reluctance motors,
but so far their use was limited by the inherent complexity
and the computational burden. This paper proposes the use
of a special kind of neural networks, namely, the radial basis
function networks, to get the magnetic model of any synchronous
motor, including saturation and cross-coupling effects. Through
experimental evidence, it will be shown that the structure is light
enough to be implemented, trained and self-updated online on
standard high-end ac drives. The model is used to track online
the maximum torque-per-ampere working point of a synchronous
reluctance motor drive.

Index Terms—Synchronous reluctance motors, Neural net-
work, Maximum torque per Ampere, Online identification, Motor
drives.

I. INTRODUCTION

As every scientific stream, the control of electrical drives is
a system in a dynamic equilibrium among innovative push and
technological constraints, with influencing parameters as cost
and market demand. Permanent magnet (PM) synchronous
motors drives play a key-role in a productive world that
requires energy-awareness, reliability, high-performance and
cheapness all together. Nevertheless, as far as rare-earth ma-
terials become a cost-critical commodity, new constructive
topologies appears. Essentially, several motor manufacturers
propose the gradual migration from isotropic PM motors
to pure synchronous reluctance (SynR) motors. The lack
of surface-mounted magnets and of the related equivalent
airgap makes the new topologies more prone to iron magnetic
saturation and cross-coupling.

Elaborated control techniques aim at exploiting the double
torque generation mechanism (PM-based and reluctance) in
the most efficient way ever, but they need reliable motor
models - especially in case of fractional-slot motors [1]. On
the other hand, such models are highly appreciated to give the
drive additional self-commissioning and diagnostic features.
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The choice of the model is driven by the required degree
of completeness. The model can be either simplified by using
approximation functions [2] (somewhat loosing accuracy) or
tabulate [3] (somewhat loosing resolution). A comprehensive
discussion about the existing conventional techniques can be
found in [4], [5]. At the end, one may come to the conclusion
that the complexity of the interaction in and between the mag-
netic axes is the ideal application for a black-box approach,
which has been proven to accomplish the task in a rather smart
way [6].

Actually, the use of artificial neural networks (ANN) in
electric drives is not new [7]–[9], even as auxiliary mean for
tuning other control techniques, as genetic algorithms [10]. So
long, ANNs were considered too demanding for the standard
hardware of an electric drive, but nowadays the computational
power obtained from the combined use of fast floating point
processors and FPGA (field programmable gate array) allows
to overcome the obstacle.

A good proof of concept is given by [11], in which a
two-degree of freedom PID for the speed control of a PM
synchronous motor has been emulated by a neural speed
controller, trained online on a high-end ac drive. In that case,
the implementation on the laboratory prototype was eased by
the adoption of a resilient back-propagation training algorithm,
well suited for the application to a linear system and anyway
modified on purpose to achieve the astaticism of the controller.

With the same focus on feasibility, the present work is
based on the use of a particular class of artificial neural
networks, namely the radial basis function (RBF) networks
[12]. They use Gaussian curves as activating functions instead
of conventional sigmoids and have some local properties which
greatly enhance the online update capability, as it will be
shown later in the paper. A black-box approach as that offered
by RBF networks has proven to be effective and accurate even
in case of the highly nonlinear and cross-coupled magnetic
model of SynR motors, as detailed in [6]. The limit of that
implementation was the complex training algorithm, that made
it unsuitable for online implementation. Actually, the magnetic
model was accurate, but it had to be necessarily computed
offline. This paper proposes a different training algorithm, so
that it is possible to exploit the steady state working conditions
during the normal drive operations to update (online) the mag-
netic model of any synchronous reluctance motor, to account
for the influence of exogenous and endogenous variables as
temperature and ageing, respectively. The RBF training takes
just a small portion of time in the lifespan of the SynR motor.
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It can be carried out during the very first hours of the entire
lifetime span. In this scenario, the RBF network training is a
rather cheap price to pay in terms of time.

The result is the on-board availability of a comprehensive
and continuously updated model of the relations between
currents and flux linkages. Own to the explicit continuous
mathematical formulation, the model is well suited for the
implementation of advanced energy-savings techniques, as
maximum torque-per-ampere (MTPA) or model-based predic-
tive control (MPC), without resorting to any disrupting signal
injection. As an effective experimental example, the paper
shows the application to the online MTPA point tracking, for
the sake of an energy efficient torque control of a SynR motor.

There are several MTPA techniques available in literature,
but they can be categorised in two classes, namely the online
and offline techniques. The former often requires the adoption
of disrupting and continuous signal injection [13], [14] or the
use of searching algorithms [15]. The latter are based on offline
measurements whose results are stored into look-up tables
[16], [17] or implemented for MTPA operation with the aid
of polynomial functions [18]. The proposed MTPA technique
belongs to the online category for what concern the searching
of the MTPA point. However, the classical drawback of these
techniques, i.e. the chattering due to the signal injection, is
tackled with the aid of the RBF network.

The technique proposed in this paper shares the underlying
idea of [6] about the adoption of the AC drive-oriented
RBF network for estimating the magnetic flux linkages of a
synchronous motor. However, two important innovations are
the motivation of this paper. The first one is the study and
implementation of a new and lean learning algorithm that
enables the online training of the RBF network without any
offline operation. The second innovation is the use of the
RBF network-based flux linkages to the achievement of the
real MTPA condition at any time. In particular, the online
implementation of the RBF network yields a true adaptive
MTPA-based current control. In the paper, the theoretical
background is presented in Sect. II, with a deepening about the
local property is given in Sect. II-B. The design of the adaptive
RBF network, with the hints for a practical implementation
are found in Sect. III and the related paragraphs. The adaptive
MTPA tracking algorithm is described in Sect. IV. The prac-
tical implementation and validation are reported in Sect. V,
with extensive comments and conclusions.

II. BASICS OF THE RBF-BASED SYNR MOTOR MODEL

Adopting the space vector notation, the torque (τ ) and
voltage balance equations for a SynR motor in the dq reference
frame fixed to the rotor are the following:

udq = Rs idq +
dλdq(idq)

dt
+ jωme λdq(idq)

τ =
3

2
p (λd(idq)iq − λq(idq)id)

(1)

where Rs is the stator resistance, ωme is the electric rotor
angular speed, p are the pole pairs and udq = ud + juq , idq =
id + jiq , λdq = λd + jλq are the stator voltage, current and
flux linkages, respectively. Conventionally, the d-axis is fixed
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λ̂dq
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X

jωme

+

+

+

wdq εdq -

udq

ûdqRBF network (ANN)
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∑
w1

wK

w2

Online
training
(13)

Fig. 1. Motor model based on a RBF network.

along the minimum reluctance path of the rotor and, just this
once, all the (nonlinear) dependences on the stator currents
are made explicit.

The proposed online identification procedure takes advan-
tage of the steady state working periods during the normal
operations of the drive. Therefore, for the scope of the present
discussion, the (steady state) voltage estimate is simply

ûdq = Rs idq + jωme λ̂dq (2)

without the derivative terms, but with the cross-coupling terms
still present. In the following, the main concepts about RBF
networks will be briefly recalled, while an in-depth analysis
can be found in [6] and [12]. As shown in Fig.1, the flux
linkages are estimated by a particular ANN whose weights
can be expressed in compact form as a vector of complex
numbers:

wdq =
[
wd

1 + jwq
1, w

d
2 + jwq

2, . . . , w
d
K + jwq

K

]T
. (3)

The weights are updated according to a training algorithm that
aims at minimising the error εdq between the measured and
the estimated motor voltage vector:

εdq = εd + jεq = udq − ûdq = udq −Rsidq − jωmeλ̂dq (4)

The algorithm requires the a-priori knowledge of a precise
and updated value of the stator resistance Rs, which can be
obtained by modern algorithms as for example those described
in [19] and [20]. The training algorithm description is reported
in Sect. III.

A. RBF first and second layers

As regards the neural network, a two layer structure, as that
depicted in Fig. 1, is suitable for the flux linkages estimation.
The first layer was designed to deal with any non-linear input-
output behaviour. It is composed of K Gaussian functions (so
called neurons) whose centres were regularly spaced in the
(id-iq) plane. For any given input current vector idq the output
of the first layer can be expressed in a compact form as a
vector of K real numbers

a = [a1, a2, . . . , aK ]
T
. (5)

In (5) each Gaussian function is activated (i.e. it produces
an output) according to the following expression:

ak = e−(‖idq−gk‖b)2 (k = 1 . . .K) (6)
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Fig. 2. Local property of the RBF network: components of (5) for idq = 0.

where ‖idq − gk‖ is the Euclidean distance between the k-th
Gaussian centre gk = gdk + jgqk and the sampled input current
vector, and b is a positive gain whose details are given in
Sect. III-B.

The second layer calculates two weighted linear combina-
tions (one for each of the two flux linkage components) of the
hidden layer outputs ak:

λ̂dq = λ̂d + jλ̂q =

K∑
k=1

ak(wd
k + jwq

k) = aTwdq (7)

Substituting (7) in (4) returns the explicit links between the
voltage errors and the RBF weights, i.e. the input and the
output of the learning algorithm of Fig. 1:

εdq = udq −Rsidq − jωme aTwdq (8)

B. Local property of the RBF network

One of the main reasons for using the RBF networks in
online algorithms is the local property, which makes ak close
to zero whenever the input is far enough from the centre gk

of the related Gaussian function. As mentioned, this is very
useful during the online training, which is performed in a
certain steady state condition and not over the entire input
range. Thanks to the local property, the update action remains
limited to the surroundings of the steady state point, without
(badly) influencing the other input regions. It has been found
that this simplify the network training, reducing the number of
computations. Of course, a complete update needs several local
trainings on different steady state points As an example, Fig. 2
reports the ak values, i.e. the output of the RBF hidden layer,
calculated with the input (id, iq) = (0, 0). It is worth noting
that only the Gaussian functions close to the input return a
non-zero output.

III. THE RBF TRAINING AND DESIGN HINTS

The two main features of any neural network are the
structure (layers and neurons) and the learning algorithm,
i.e. the way a neural network is trained to perform its task.
Actually, the learning algorithm is the key-factor, especially in
case of an application that requires an online adaptation, as in
the present work. Bearing in mind the reduced computational
resources in industrial drives, the training should be selected

as computationally light as possible. Although the Levenberg-
Marquardt (LM) is the fastest algorithm in the minimisation
of nonlinear quadratic problems, and thus can be considered
as a standard choice, it brings along heavy computations and
it was discarded from the very beginning. Of course, the
algorithm heaviness is far less important in case of offline
implementations, as it was in [6]. It is important to distinguish
between a conventional ANN and the special drive-oriented
RBF network proposed in this paper. The former undergoes
the conventional training algorithms (for example the back-
propagation) that minimise the error iteratively. Conversely,
the RBF network allows a direct (non-iterative) computation
of the weights update as it will be shown below.

For the design of a computationally efficient learning algo-
rithm it is worthwhile to present a few important considera-
tions:
• As inferable from (6), any current vector measurement idq

produces a vector a of real numbers. Once substituted in
(8), together with the related voltage and speed measure-
ments, it yields an error function whose components εd
and εq are linear combinations of the RBF weights wdq.

• At steady state (i.e., for a constant set of voltage, current
and speed vectors), the optimal RBF weights w̃dq are
those that bring to zero the error vector (8):

udq −Rsidq − jωme aT w̃dq = 0 (9)

The system is clearly underdetermined, since there are K
unknown variables (the weights) and just one equation.

• Given the local property of the proposed network
(Sect. II-B), the weight set should be updated aiming at
improving the flux linkage estimation in the neighbour-
hood of the considered input only. In other words, it is
meaningless to modify the weight linked to a Gaussian
far from the present steady state point, since it is not
activated (Fig. 2).

The new learning algorithm proposed in this paper aims at
changing the existing weight vector wdq into w̃dq, so to satisfy
the condition (9). One can write:

w̃dq = wdq + ∆wdq (10)

where ∆wdq is the unknown vector to be found. In order
to take advantage of the local property of the network and
thus reducing the computational efforts, the weight vector
is modified using a mask, as shown in Fig. 3. Each dot
correspond to a centre gk of a Gaussian function in the (id,
iq) plane. The only weights to be updated will be those related
to the Gaussians whose centres falls within the circle centred
in the measured idq. This can be obtained by making each
weight increment ∆wdq

k proportional to the relative activation
coefficient ak, that is, by imposing

∆wdq = Wdq a = (W d + jW q) a (11)

The two unknown real constants W d and W q can be deter-
mined by substituting (10) and (11) in (9) and by solving the
equation for Wdq:

Wdq =
εdq

jωme‖a‖2
=

εdq

jωme
∑K

k=1 a
2
k

(12)
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TABLE I
APPROXIMATION COEFFICIENTS

c5 1.06 · 10−3 c2 459.3 · 10−3

c4 17.64 · 10−3 c1 985.9 · 10−3

c3 122.1 · 10−3 c0 999.2 · 10−3

Replacing (12) and (11) in (10) finalises the proposed training
rule for the RBF network:

w̃dq = wdq +
εdq a

jωme
∑K

k=1 a
2
k

(13)

Every time the ac drive enters in a steady state condition,
the voltage error (4) is averaged on a suitable number of
measurements, to reduce the possible errors due to spikes and
noise, and then the weights of the second layer are updated
according to (13).

A. Approximation of the Gaussian functions

The online implementation of (13) requires the computation
of the exponential functions contained in (5) and the task
may exceed the computational power of the drive. Therefore,
an appropriate numeric approximation was considered in the
present work.

First of all, it is worth noting that the exponents of ak in
(6) ideally ranges from 0 (when an input exactly matches a
Gaussian centre) to minus infinity, when the actual current
measurement is infinitely far from the Gaussian centre. Ac-
cordingly, the exponentials ak range from 1 to 0. In practice,
it is reasonable to fix a lower limit ξ:

ξ ≤ ak ≤ 1 → ln(ξ) ≤ −(‖idq − gk‖b)2 ≤ 0 (14)

so that only the exponentials whose exponent is in the range
indicated by (14) will be considered for approximation, while
the others will be forced to zero. In this work, it was found
that a good value was ξ = 0.01. The generic exponential
function was approximated by a 5-th order polynomial, whose
coefficients where computed offline by imposing the least
mean square error in the range specified by (14):

ex = c5x
5+c4x

4+c3x
3+c2x

2+c1x+c0 (−4.06 ≤ x ≤ 0)
(15)

The values of the coefficients are reported in TABLE I.
The choice of the order of the polynomial was a trade-
off between the required computational power and the mean
square approximation error.

B. Design hints for the RBF hidden layer

The shape of the Gaussian functions that describe each
neuron of the hidden layer, and at large the local property of
the RBF network, depends on the parameter b in (6). It also
influences the number K of Gaussian functions, as described
in [6]. For the sake of input space completeness, the tighter the
Gaussian functions, the higher the number of hidden neurons.
The choice of b can be made so that a Gaussian function gives
a negligible contribution (ak in (6)) for current vectors whose
Euclidean distance from the Gaussian centre is greater than a

id

iq

IN

idq

Training region

2IN

r

gk

Fig. 3. Example of mask (dotted-dashed line) in the training region (dashed).

design variable r (Fig.3). In the present work, it was fixed to
half of the rated current (r = IN/2). According to (14), this
rule of thumb is expressed by

b =

√
− ln(ξ)

r
=

2
√
− ln(ξ)

IN
(16)

In literature, the number K of hidden neurons is linked to b
and to the side IN of the squared training region (Fig.3) by
the empirical relation [6], [12]:

√
K = 4

√
2INb → K = −128 ln(ξ) (17)

where the right-hand equation is obtained using (16).
In general, the value returned by (17) is a real number. It

is necessary to approximate it to the nearest perfect square,
so that the centre of the Gaussian functions will be disposed
evenly and symmetrically over the training region, which is a
square with side equal to 2IN. In this paper, as ξ = 0.01, the
number of Gaussian functions was K = 576. Once K is set,
the coordinates gk of the Gaussian centres in the dq current
plane can be easily derived (Fig. 3).

As a final comment, it is worth noting that all the first
layer parameters, i.e. the number of Gaussian functions and
their shapes, are chosen during the design phase, while the
RBF weights that constitute the heart of the second layer are
obtained by online training and adjustment.

IV. THE MTPA TRACKING ALGORITHM

Substituting (6) in (7) makes clear that the flux linkages
estimates are continuous and derivable functions of the stator
currents. This is peculiar to the proposed algorithm and quite
useful in case of control algorithms that make use of flux
linkages derivatives, as in the case of MTPA tracking schemes
as that presented hereafter.

For a given reference current vector i∗dq = I∗ejϑ
∗

of fixed
amplitude I∗ and variable phase ϑ∗, the maximum torque-per-
ampere condition is obtained by imposing a null derivative of
the torque (1) with respect to ϑ∗:

∂τ

∂ϑ∗
=

3

2
p
∂(λ̂di

∗
q − λ̂qi∗d)

∂ϑ∗
!
= 0 (18)
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TABLE II
SYNR MOTOR NAMEPLATE DATA

Nominal current (IN ) 4 A
Nominal speed (ωm,N ) 1500 rpm
Nominal Torque (TN ) 8 N m
Pole pairs (p) 2
Stator resistance (Rs) 4.76 Ω
d-axis inductance (Ld) 380 mH
q-axis inductance (Lq) 85 mH
DC link voltage 540 V
PWM switching frequency 10 kHz

Substituting i∗d = I∗ cos(ϑ∗) and i∗q = I∗ sin(ϑ∗) and by
means of the explicit expression of the flux linkages estimation
(7), the condition (18) becomes

3

2
pI∗

(
λ̂d cos(ϑ∗) + λ̂q sin(ϑ∗)+

+

K∑
k=1

(
wd

k sin(ϑ∗)− wq
k cos(ϑ∗)

)∂ak
∂ϑ∗

)
!
= 0

(19)

Actually, the ak terms, defined by (6), depend on the stator
current. Using the polar notation, the derivative of ak respect
to the current phase angle is

∂ak
∂ϑ∗

= 2akb
2I∗(gdk sin(ϑ∗)− gqk cos(ϑ∗)) (20)

where gdk + jgqk is centre of the k-th Gaussian function in the
(id-iq) plane, as already mentioned above.

Anyway, the straightforward computation of ϑ∗ might be
burdensome. The left-hand term of (19) is greater than zero
for current phase angles below the correct one, and vice-
versa. Actually, it can been found that the mismatch computed
by (19) is proportional to the required current phase angle
modification. This is exploited by making the current phase
modification proportional to the result of (19). In turn, when
the result of (19) is big, the MTPA loci is far. Thus, the angle
ϑ∗ can be modified proportionally to the result of (19). It
is worth noting that the online MTPA condition is obtained
without any disturbing signal injection, as a key-feature of the
proposed method.

V. EXPERIMENTAL RESULTS

The experiments were performed on a SynR motor proto-
type, whose parameters are shown in TABLE II. The motor
was fed by a two-level three-phase IGBT voltage inverter,
connected to a variable voltage DC bus and controlled by a fast
control prototyping system featuring a dSpace DS1104 con-
troller board, programmed in C-language. The motor phase-
to-phase voltages (two out of three) were measured with a
custom digital measurement system, based on fast PWM signal
oversampling, post-processed by a dedicate FPGA chip.

A. Validation of the RBF-based flux linkages model

This test evaluates the capability of the proposed RBF
network to model the flux linkages of the SynR motor un-
der test. The algorithm requires the measurements of motor
voltages and currents, as well as the availability of a precise

VLMMUT

Fig. 4. The SynR motor (left) coupled to a PMSM-based virtual load (right).

value of the stator resistance. The experiment is performed
offline, that is, with the SynR motor mounted on a laboratory
test bench instead of on a real application. It should be
understood that this part is only functional to the validation of
the RBF network, while it can be omitted in case of direct
implementation on an industrial application. The hardware
setup is shown in Fig. 4. The SynR motor was current-
controlled in the synchronous d, q reference frame, and rigidly
coupled to a speed-controlled load motor. A torque transducer
provides an accurate measurement of the transmitted torque.

The RBF weights training procedure starts by the acqui-
sition of voltages, currents and speed measurements at each
steady state condition, followed by the training algorithm (13).
Since the training procedure is carried out during steady state
condition, the updating of the RBF weights is suspended
during transients. However, the torque and current control
use the MTPA curve ”as it is”, i.e. as trained up to the
moment in which the transient starts. The two procedure
(MTPA adaptation and torque control) do not interfere each
other. The current references to the SynR motor drive were
generated in correspondence to the crossings of a gridded
region in the (id, iq) plane, as in [6], to cover the whole
training region (Fig. 3). The grid resolution was fixed to
IN/10. The training was performed by the rule (13), with
the simplifying assumptions discussed in Sect. III-A.

The validation of the magnetic model was performed by
comparison with the benchmark (offline) method [3]. Let the
normalised errors be defined by a compact vector notation as

εdqN =
λ̂dq − λdqR

max(λdqR)
· 100 (21)

where λ̂dq are the RBF network estimates and λdqR are the
values obtained by the reference method proposed in [3]. The
errors are referred to the maximum value of each flux linkage
in the considered working region. The plots of both flux
linkages, in case of either null or maximum cross-coupling are
reported in Fig. 5, along with the estimation errors, computed
according to (21).

The error magnitude remains almost within ±3.5% for
both flux linkages, if one excludes the case λ̂q(0, iq) in the
low-current range, where it rises up to 7% due to a certain
weakness in the RBF network around zero currents. It has been
found that this issue can be solved by increasing the number
of neurons in the region, in trade-off with the computational
burden.
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Fig. 5. 2D magnetic maps and relative errors, using [3] as benchmark.

It is also worth mentioning that the benchmark method is of
discrete type, i.e. it produces a finite set of values, arranged in
a couple of matrix look-up tables (LUTs). On the contrary,
the proposed method returns the two-variables continuous
functions indicated by (7). Therefore, a fair comparison is
performed only in correspondence to a finite set of points.
Elsewhere, even the benchmark method could introduce errors
due to the linear interpolation among points.

It is important to note that the proposed training algorithm
is extremely lighter than the one based on the LM algorithm
in [6], enabling the implementation on a standard ac drive
hardware. It can be found that the time complexity (big O
notation) of the LM algorithm is O(K2N), whereas the one
proposed in this paper is O(K), as inferable from (13). Of
course, it is worth reminding that the proposed algorithm needs
more iterations to train the RBF network with respect to the
LM based algorithm.

The online training feature will be exploited to obtain an
efficient MTPA control strategy starting from a blank RBF
network. The results are reported in Sect. V-C. In order
to accelerate the construction of the fluxes maps, it could
also be possible to take advantage of the symmetries and
anti-symmetries proper of those functions. The SynR motors
magnetic fluxes are anti-symmetric functions of the currents.
Therefore, the third quadrant of the dq current plane is actually
the same of the first quadrant, but with opposite sign. The
properties of the fluxes and currents relationships help in
speeding-up the RBF network training, but they do not alter
the concept of the proposed method.

B. Online RBF training with suboptimal MTPA control

The previous sections have demonstrated the ability of RBF
networks to cope with the complexity of the SynR motor
nonlinear magnetic model. The training of the network is per-
formed online, exploiting every single steady state condition
during the normal drive operations.
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Fig. 6. RBF-based 3D magnetic maps, obtained by online training from blank
conditions and sub-optimal MTPA strategy (id = iq).

To get an accurate flux linkages estimate, the stator resis-
tance needs to be a known parameter. In the present work, an
online tracking algorithm similar to that proposed by [20] was
implemented. Essentially, it is based on a DC current injection
over the α-axis and allows the tracking of the resistance with
high accuracy.

A first experiment was performed still out of the normal
operations, in this case to explore the capability of the network
to evolve from a completely blank situation. Six successive
load torque steps (from 0 to the nominal torque TN ) where
imposed to the SynR motor by a virtual active load (Fig. 4),
while the SynR motor was speed-controlled at a constant speed
of 350 rpm. A simple sub-optimal (id = iq) current control
strategy was selected, and the flux linkages estimation was
activated at each step. In this way it was possible to investigate
the local character of the RBF network. Fig. 6 shows the
maps of λdq(id, iq) after the six-step procedure. The local
property of the network implies that all (and only) the weights
close to the idq points are actually updated. As shown in
Fig. 6, the estimated flux linkages are not null closely around
the id = iq line. However, the correctness of the estimation
rapidly decrease as one deviates from the id = iq line, due to
incompleteness of the training for those points. In particular,
the flux linkages estimation has not meaning below zero.

The effectiveness of the magnetic model obtained online
was verified by comparing the estimated flux linkages of Fig. 6
with those obtained by the benchmark offline method [3] under
the same operating conditions, i.e. along the line 0 ≤ id =
iq ≤ IN . The results are reported in Fig. 7.



7

0 1 2 3 4
0

0.5

1

λd

λqλ
d
,λ

q
(V

s)
Method [3]
RBF NN

0 1 2 3 4

0

2

I (A)

ε N
(%

)

εdN
εqN

Fig. 7. Measured and estimated flux linkages along the 45◦ MTPA trajectory
in the id-iq plane and the normalized errors.

Steady
state?

Data
acquisition

(idq , udq , ωme)

Training of
RBF

(eq. (13))YN

Speed
control

ω∗

ωm

εω

λ̂dq

τ∗
I∗KI

MTPA
(19) &
(20)

P

R

Current
control

SVM
inverter

SynR

Motor

abc

dq

i∗dq

iabc

uabc
udq

ϑ∗

I∗

u∗
dq

idq ϑme
d

dt

Fig. 8. Adaptive MTPA control of SynR motor by RBF network.

The errors still remain within a narrow band of 2%, except
at very low currents (id = iq ≤ 0.1IN ), where more neurons
should be necessary. On the other hand, at such low values of
current the SynR motor does not suffer of any saturation, so
that a simple id = iq current control is adequate.

C. Online adaptive MTPA control

The last test carried out on the experimental setup was
related to the identification of the real MTPA condition and its
online tracking, based on the algorithm explained in Sect. IV.
Thanks to the light training algorithm (13), the RBF network
of Fig. 1 is continuously updated, so that an accurate and
comprehensive magnetic model of the SynR motor is always
available and it can be used to update the MTPA curve.

The procedure can be explained with the aid of Fig. 8. An
outer speed control loop is usually present and it is supposed
to produce the torque reference τ∗. The torque reference is
made proportional to the current reference amplitude I∗, by
a constant KI = TN/IN obtained from TABLE II. The
phase voltages and currents uabc, iabc are sampled at each
control cycle and transformed into the synchronous reference
frame by a Park transformation (dq/abc). Their values are
used to update the RBF-based flux linkages estimations λ̂dq .
It is worth to remark that the RBF network weights were
initialised supposing known and constant inductances Ld, Lq
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MTPA curve
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P

id (A)

i q
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Fig. 9. Single MTPA point detection and output of (19) after the RBF training.
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Fig. 10. 3D flux linkages maps after the convergence of the adaptive MTPA
tracking procedure on five different working points (see text).

(TABLE II), so that the 3D plots λ̂d, λ̂q as function of currents
were two simple inclined planes. The MTPA algorithm repre-
sented by (19) and (20) is then evaluated on the actual current
request and the estimated flux linkages. The algorithm updates
the phase ϑ∗ of the reference current vector, according to (19),
first approaching and then maintaining the SynR motor drive in
a dynamically updated MTPA condition. As an example, Fig. 9
reports the situation after the training in a single working point
P. Should a transient occur, the MTPA curve would be the
modified one. As testified by the output of (19), also reported
in Fig. 9, the transient would be performed out of the MTPA
condition except in the neighbourhood of point P. Over time,
the RBF network will get completely trained and the MTPA
trajectory detected by (19) will coincide with the true one. A
polar-to-rectangular (P/R) transformation block returns the i∗dq
reference vector to the current control loop, which drives the
inverter-fed SynR motor.
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torque-meter.

The first experiment about adaptive MTPA was performed
by applying five different load torque levels to the SynR motor
drive. For each load torque level, i.e. at steady state, the
adaptive MTPA algorithm ((19) and (20)) makes the current
reference to leave the default id = iq condition, by slightly
modifying the phase ϑ∗ of the current vector itself. In parallel,
a new set of RBF network weights are obtained by training
the RBF network using the acquired voltages and currents.
The new complete magnetic maps are reported in Fig.10.

The five MTPA points reached by the adaptive algorithm
are denoted by diamond-shaped marks in Fig. 11, which also
reports as a solid line the real MTPA curve, obtained with
offline measurements and the aid of a torque meter (which is
not an option in the real application, of course). The dashed
line refers to the initial default id = iq condition. The accuracy
is rather good, if one considers that it is obtained without any
signal injection (and the related chattering problems). In this
sense too, the proposed technique is innovative.

The MTPA condition (19) trusts on a correct flux linkages
map. It takes time to the AC drive to get a well-trained RBF
network in a sufficiently wide portion of the working plane. A
second experiment was designed to evaluate the time needed
to find a true MTPA point including the training of the RBF
network. Anyway, in the real application it is worth noting that
these two procedures (the RBF network training and the MTPA
tracking) are independent, so that the former does not influence
the dynamic of the latter. Thus, during torque transients the
training is stopped and the MTPA condition is evaluated on
the flux linkages map available at that moment.

The drive was started by imposing, with a virtual load,
four different initial working points (P1,...,4 of Fig. 12a).
Then, the adaptive MTPA algorithm described in the previous
experiment was started. The real MTPA points were reached
with the dynamic reported in Fig. 12b. The true MTPA curve
in Fig. 12a was obtained with the aid of a torque-meter. The
algorithm takes the current vector amplitude to its minimum,
as shown in Fig. 12b. The convergence time can be reduced by
processing the output of (19) with an additional regulator. This
was not implemented because out of the scope of this work.
Anyway, it is worth noting that the convergence is requested
only once per point. After a while, the RBF network will get
trained over the whole MPTA curve.
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Fig. 12. Adaptive MTPA transient behaviour.

VI. CONCLUSION

An accurate maximum torque per ampere control allows the
minimisation of the copper losses, with the related benefits in
terms of ac drive efficiency. This is particularly true for SynR
motors, whose marked magnetic nonlinearity makes the usual
id = iq strategy quite imprecise. In this paper, a novel very
light training algorithm made possible both the implementation
and the online training of an RBF neural network. It has
been found that the local property of the network makes
it suitable for a precise flux linkages estimation and online
tracking, starting from the measurement of motor currents
and voltages. The availability of the magnetic model yielded
the implementation of an adaptive MTPA control, without
any signal injection. The experiments on a real SynR motor
drive have clearly demonstrated the feasibility of the proposed
control. To increase the reference value, mathematical insights
and design hints have been included in the paper. They
should help the implementation despite the complexity of the
subject. A similar approach could be used for electric drives
that require flux-weakening operations, by properly turning
the MTPA condition (19) into a maximum torque-per-voltage
condition.
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