PREPARED FOR SUBMISSION TO JCAP

Non minimally coupled condensate
cosmologies: matching observational
data with phase space

S.Carloni® R. Cianci’ P. Feola®? E. Piedipalumbo®? S.Vignolo®

2Centro Multidisciplinar de Astrofisica - CENTRA, Instituto Superior Tecnico - IST,
Universidade de Lisboa - UL, Avenida Rovisco Pais 1, 1049-001, Lisbon (Portugal)

’DIME Sez. Metodi e Modelli Matematici, Universita di Genova, Via All’Opera Pia 15, 16145 -
Genoa, (Ttaly).

¢Dipartimento di Fisica, Universita degli Studi di Napoli Federico II, Compl. Univ. Monte S. Angelo,
80126 Naples, Italy

4IN.F.N., Sez. di Napoli, Compl. Univ. Monte S. Angelo, Edificio 6, via Cinthia, 80126 - Napoli,
Ttaly.

E-mail: csante.carloni@tecnico.ulisboa.pt, cianci@dime.unige.it, feola@dime.unige.it,
ester@na.infn.it, vignolo@Qdime.unige.it

Abstract. We compare theoretical predictions with observations for a class of cosmological models in
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1 Introduction

In the last years, a large quantity of observational data revealed that the present universe is experi-
encing an accelerated expansion (see for instance [1-4]), which is usually assumed to be driven by an
new form of matter—energy: dark energy. This latter is in general considered as a cosmic fluid with
negative pressure which, according to the most recent estimates, should provide about 70% of the
total amount of the matter-energy in the universe, so representing today the dominant component.

The nature of dark energy is still completely unknown. Some of the theoretical frameworks
proposed to understand this issue include a non zero cosmological constant, the potential energy
of some scalar field, effects connected with non homogeneous distributions of matter and averaging
procedures, and effects due to alternative theories of gravity. Among the latter, the so called scalar-
tensor gravitational theories, arising in other contexts like for example the low energy limit of Kaluza-
Klein gravity or the quantum field theory in curved spacetimes [5, 6], have been widely investigated in
both the scenarios of the early and late universe expansions. The peculiar feature of these theories is
the non minimal coupling (NMC) of gravity with a given scalar field. Recently, it is has been suggested
that such a scalar field is not fundamental but it may be constituted by a fermion condensate.

In cosmology, fermion fields have been studied as possible sources of inflation and dark energy
[7-10]. In most cases, fermions fields are minimally coupled to gravity; only recently, few works have
instead investigated the cosmological effects of non—minimally coupled condensates of semi—classical
fermions [11-15]. Differently from other scalar-tensor models, the fermion condensate are character-
ized by an easier first order evolution equation. This induces a number of peculiar features which
have been described for the first time via phase space analysis in [14] for a non—minimally coupled
fermion condensate characterized by three different potentials. The dynamical system approaches and
methods that have been used in [14] have been known for long time in GR based cosmologies [17], and



more recently in the context of modified gravity (see [18] for a recent review), allowing a relatively
easy semi-quantitative interpretation of complex cosmological models.

In this paper we aim to perform a comparison of the models introduced in [14] with observations
and more specifically with the Union2 Type Ia Supernovae (SNIa) data set, the GRBs Hubble diagram,
a sample of 28 measurements of the Hubble parameter compiled in [23], the gaussian priors on the
distance from the Baryon Acoustic Oscillations (BAQO), and the Hubble constant h (such priors have
been included in order to help break the degeneracies among model parameters). The statistical
analysis on these datasets is based on Monte Carlo Markov Chains (MCMC) simulations which allow
us to compute, simultaneously, the full probability density functions (PDFs) of all the parameters
of interest. We show that a value of these parameters exists which is able to match these data to
the non-minimally coupled condensate theory. Their values are then used in combination with phase
space analysis to deduce global features of the cosmic history suggested by these theories. For this
purpose, we give here a set of dynamical system variables different from the ones employed in [14].
Such new setting is required because the the phase space description in [14] was not compact and the
data analysis suggests that the present universe is on an orbit that would go to the infinite boundary.
The new formulation, instead, is compact and allows us to explore without problems the entire cosmic
history selected by the values the observational parameters.

The paper is organized as follow. In Section II, we briefly review the general properties of the
theory considered in this paper and its key equations in the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric. In section III, we derive the system of cosmological equations in terms of the
redshift z so as to plot the Hubble’s function in terms of the redshift. In section IV, we consider
specific cosmological models associated with three different self-interaction potentials: a power law,
an exponential and an extended power law potential. In section V, we use observational data sets on
SNIa and GRB Hubble diagram, setting Gaussian priors on the distance data from the BAO and the
Hubble constant. In section VI, we perform a statistical analysis of the cosmological parameters, based
on Monte Carlo Markov Chains (MCMC) simulations. In section VII, we compare of our fermionic
models with the Chevallier-Polarski-Linder (CPL) model. In Section VIII, we combine the above data
analysis with the dynamical system approach. Finally, we devote Section IX to conclusions.

Unless other specified, Latin and Greek indices run from 0 to 3; V denotes the Levi-Civita
covariant derivative associated with a metric tensor g;; of signature (+, —, —, —); the Riemann tensor
is defined by

Rd aa]-—wbcd - ab]-—‘acd + Fapdrbcp - Fbphracpa (11)

cab —

where the I' ,,° are the Christoffel symbols associated with the metric g;;; the Ricci tensor is obtained
by contracting the first and the third index via the metric gqp:

Rab = Rgcb' (1.2)

2 The (1 + €(y¢)))R-theory in a FLRW metric

For convenience of the reader, we briefly review the main features of the theory proposed in [14].
Making use of natural units (h = ¢ = kg = 87G = 1) for simplicity, let us consider the action
functional

5= / Vg [(1+ e(d)) R - Lp) ds, (2.1)

in which the Einstein-Hilbert term is non-minimally coupled to the condensate 1)1 associated with
a Dirac field. The latter has a Lagrangian of the usual form
i

Lp = = (YI'Dip — DigpIep) — mapp + V (deh), (2.2)

o |

where a fermionic self-interaction potential V(1)) is present. In eq. (2.1) ¢ indicates a suitable
constant parameter, while in eq. (2.2) we have I'* := e, 7", 7" representing Dirac matrices and el a



tetrad field such that the metric tensor can be expressed as g;; = ei-iejy'nw (M = diag.(1,—-1,—-1,-1));
D; denotes the covariant derivative of the spinor field

Dy = 03 — Qi Dith = 0 + Y, (2.3)

where )
Qi = _Zgij (quj - efﬂpeg‘) RS (24)
are the spin covariant derivative coefficients associated with the Levi—Civita connection quj .

Some remarks are here in order on the nature of the fermion field we are considering. Our
approach is entirely classical, 1 denoting a set of four complex—valued spacetime functions which
transform according to the spinor representation of the Lorentz group. This means that, rather than
an actual fermion field, ¢» can be though to represent macroscopic objects made of fermions (see
e.g. [7]). Indeed, as we are considering cosmic eras in which particles are non-relativistic, a second
quantization fermion field would not really be compatible with our assumptions. On top of this, we
are restricting specifically to the case in which such fermion field is a condensate and it is known that
in this case a classical description of the field is able to capture all the key properties of the quantum
field [7].

As a consequence, our Dirac action and the resulting matter field equations do not necessarily
have to satisfy the same properties as those in quantum field theory. This applies, for example to the
issue of renormalizability. As a matter of fact, if we were to insist considering 1 a quantum field, we
could ask if the presence of the self-interaction potential and even more the non-minimal coupling can
make the Dirac equations non-renormalizable. In this regards, in Section 4 we shell consider
three different potentials (see subsequent Eqgs. (4.1), (4.2), (4.3)). In particular, in the
minimal coupled theory the potentials (4.1) and (4.3) would be renormalizable respec-
tively for a < % and v < %, while potential (4.2) would be always renormalizable. Instead,
the real problem lays, at least in the purely metric theory, in the non—renormalizable terms generated
by the non-minimal coupling. A possible way out of this problem would be to introduce torsion.
Indeed, following the procedure given in [16] and according to Wilson’s analysis of renormalizability,
it is easy to see that in the theory with torsion the presence of non-minimal coupling leads always
to renormalizable actions, provided that the considered potentials have the values of a and -y in the
intervals mentioned above. We will see that the values we will obtain for these parameters belong to
these intervals.

Making use of the notation ¢ := 1), from the the action (2.1) we derive Einstein-like and Dirac
equations respectively of the form

1
(1+ep) (Rij - 2Rgij) =i +€(ViVip = 6i;6"VpVe9) (2.5)
and _

iT" Dy — mabp + V' () — e R = 0, (2.6a)
iDT 4+ map — V' () + e R = 0, (2.6b)

where . 1

7, — _

Xij =y (VT Dy — DT ) — 5Lp 9ij, (2.7)
is the energy—momentum tensor of the Dirac field and V' := ‘%. For later use, inserting eqs. (2.6)

into (2.7), we can express the energy—momentum tensor X;; as

1 1
V() gij + §¢V’(<p) Gij- (2.8)

- - €
Yij = + (LD — DT ) — §<PR9ij ~3

In order to discuss cosmological models arising from the above presented theory, let us consider a
spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric tensor

ds® = dt* — a(t)? (da? + dy* + dz?) . (2.9)



It is seen that the Einstein-like equations (2.5), evaluated in the metric (2.9), reduce to [14]

. 2 .
a m a. 1
i (a)® ¢ a, 1 1
1 2— — =——¢pR—€p—2c—p— =V =V (). 2.10b
(1+<) +()] CoR—cp 2 %o~ LV(g) + 50V(9) (2.10b)
We can replace eq. (2.10b) by the equivalent Raychaudhuri equation
. 3 . 3
(1+ enp)6g = ——epR —3ep — Seggb - T@ — V() + =pV'(p). (2.11)
a 2 a 2 2
Analogously, in the metric (2.9) the Dirac equations (2.6) assume the expression
.34
b+ S5+ imn " = V(@))% + ey = 0, (2.12a)
= 3 ' — — — —
P+ 5%?# — imay? + V' (p)y° — ieRypy° = 0. (2.12b)
From egs. (2.12) we immediately derive the evolution law for the scalar field ¢ = v
¢+3%<,0=0, (2.13)
yielding the final relation
_ %o
=3 (2.14)

Since ¢ — 0 when the scale factor grows, it is expected that the non-minimal coupling contributions
tend to disappear at cosmological late time. For sake of completeness, we can add a perfect fluid to
our cosmological model. To this end, we suppose a barotropic perfect fluid assigned, with equation of
state p = wp (w € [0,1]) and standard conservation law

p+3g (p+p) = 0. (2.15)

In such a circumsatnce, the field equations (2.10) and (2.11) become respectively

a\’ m 1 a
(ke (2) =pt o= V0 - 3 (2.16a)
i [(a)° ¢ 1 1 a
(1+ep) 2; + (a) ] =—p— ich — §V(<p) + §<pV’(4p) —€p— 265@, (2.16b)
and . .

(106" = ~(p+3p) — sepR — 36 32— Do V(g) 4 2pV'(g).  (217)

Inserting the evolution equation (2.13) for the scalar field and the expression of the Ricci scalar in flat
FLRW spacetime R = —6 (% + Z—z) into eqs. (2.16) and (2.17), we get the final system of equations

. 2
a m 1
3(1 — 2¢0) () = p+ Do Lvip) (2.184)
. . 2
a a m 3
6(1 — 26¢)g = —(p+3p) — 18ep (a) i Vip) + 5@‘/’(@), (2.18b)
¢+3g<p =0, (2.18¢)
p+3%(1+w)p=o, (2.18d)

which represent the starting point of our subsequent analysis.



3 Cosmological equations in terms of the redshift

In this section we rewrite the system of equations (2.18) in terms of redshift z. To start with, let us

take the identities @ = ;%% and H = ¢ into account, so that the system (2.18) assumes the form
1
3(1—26p)H” = p+ T = 5V(p), (3.1a)
: 3
6(1 — 2ep)H? 4+ 6(1 — 2e0) H = —(p + 3p) — 18epH?* — %(p —V(p)+ §<pV/(<p), (3.1b)
$+3Hp =0, (3.1c)
pP+3H(14+w)p=0, (3.1d)

From now on we restrict ourselves to a dust filled Universe with w = 0 and thus p = 0. In this case,
the last two equations have exact solutions

0(2) = 5 = o1+ 2)° (3:2)
p(2) = 55 = po(1+2)", (3.3)

thus implying that the fermion condensate evolves as the dark matter energy density composed of
dust fluid. The Egs. (3.1a), and (3.1b ) can be slightly manipulated in order to define the effective
pressure and energy density of the fermion field

@ [(1=260)V" () — 260 (m + 22)] + V() (dep — 1)

%o

2(1 — 2ep)

Pp = —

These two expressions allow us to define an effective equation of state wy,, which drives the behavior
of the model in the dark energy dominated era:

© [(po — 2e90) V' () — 2 (Mo + 2p0)] + oV () (dep — 1)
po(1 — 2ep)[mp — V(p)]

. (3.6)

Wy = —

Now we can interpret the fermion condensate as the source of an effective A term Acss, by defining
Acpr = L2, being F(p) = (1 — 2ep), and the effective gravitational constant as Gy = +. With
these definitions, the Eqgs. (3.1a) and (3.1b) can be rewritten in terms of p, and p, as
3H? = Geffpm-l-Aeff, (3.7)
2H +3H? = —GefprP,

Introducing the standard 2 parameters by
Pm _ Pe

O =3 s = 3p2 -

we get the relation

Qp +Qp,,, =F. (3.9)

eff
Note that in order to write the (3.7) and (3.8) we have defined

1 1
1—2p 1—2epp(l+2)3

Geoff = (3.10)



and therefore we assumed that the denominator 1 — 2epo(1+ 2)3 does not vanish. In order to analyze
the cosmological solutions, we first formulate the Friedmann equation (3.7) in terms of the red-shift
z, making use of the well known relations

agp

I+z=—, (3.11)
d d
=1+ 2)H(2) o (3.12)

where the Hubble function H(z) is here expressed as

H(s) \/mw(Z)—V(@(Z))+2po(z+1)3. (313

6 — 12ep(2)

Let us subsitute pg = 3HZQm, ©(2) = po(1 + 2)3, and pg = Bpo = 3BHZQm, thus obtaning the
expression

() = \/SHg(z F13(8m + 2)Q — V(2) (314

N 6[1 —68HZ(2+ 1)3eQ,] '

In Eq. (3.14) the fermion condensate not only acts as dark energy, through its self-interaction poten-
tial, but it can also play the role of a dark matter term. In the following we will consider models for
which € and ¢y have the same sign. This anzats can appear ill chosen as it allows the presence of di-
vergences in the effective gravitational constant and in the Hubble term (3.10) and (3.14). The phase
space analysis in Section (8) reveals, however, that these singular states are unstable and therefore
never reachable dynamically. In addition, in order to avoid possible problems within the numerical
codes used to process observational data, we set for € and g very small values, as, for instance, in
Fig. (3). It is worth noting that the critical quantity is the product € g; therefore we set € = 107 7:
in this way the evolution of the cosmology will be always far from the singular states.

In this regard it is worth illustrating the role of ¢ on the variation of the effective
gravitational constant. Actually, recent data analysis indicates that the gravitational
constant and its derivatives are slowly varying, i.e. ‘G/G‘ x 107 [19, 22]. Moreover, a
change in G.r; would affect observations on solar system dynamics, Big Bang Nucle-
osynthesis predictions, data concerning the growth rate of structures and the CMB (see
e.g. [19], [20], [21]). Owur analysis offers a way to probe these differences using mea-
sures performed today. In order to give an idea of the differences that our model could
present with respect to the ACDM model, in Figs. (1), (2) we plot the behaviour of
0G = % for two different values of e¢. It turns out that the high-z behaviour of the
the effective gravitational is different, showing that indeed an importa difference exists
between different values of e.

4 Three cosmological models

So far we have made no assumptions about the form of the self-interaction potential V() appearing
in the Egs. (3.1a) and (3.1b). In this section we investigate three different forms of V(¢):

Vip) = Vop© (4.1)
V(p) = Voexp(—Ap) (4.2)
V(p) = Vo(p* + V1) (4.3)

The potential V(p) = Vo is largely used in the dark energy literature and also in the investigation
of fermionic dark energy. Because of Eq. (2.14), for @ — 0 the potential can be, depending on
the sign of the parameter «, negligible or dominant. The converse happens when a — co. The
exponential potentials of the kind (4.2) are very important to describe not only quintessence models
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Figure 1. Time evolution for the relative variation §G for our model, with ¢ = 107° (blue line),
and ¢ = 1077 (red line). As we see, the evolution of G.;; is very different.
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Figure 2. Time evolution for the derivate Geff for our model, with e = 1075 (blue line), and
€ =10"" (red line). As in the previous case, the evolution of G.;; is very different.

of the dark energy, but also various scenarios of the inflationary expansion of the early universe.
Actually, for a flat Friedmann universe filled with a minimally coupled exponential field, we know
the general exact solution of the field equations [24]. Moreover, in the limit ¢ — 0 exponential
potentials become cosmological constant terms, introducing in this way a dynamical realization of the
cosmological constant related to the scalar field. Finally, the potential V = Vi(¢? + V1) is a simple
generalization of the power law potential. It has been chosen because of its relevance in inflationary
scenarios in the presence of a scalar field. For a — 0 this potential coincides with the pure power
law one. However, for a — oo it generates a cosmological term related to the value of the constant
V1. In the following discussion, we will compare theoretical predictions with observational data for
each cosmological model arising from the above three different choices of potential. To accomplish
this aim, we parametrize in a different way our models introducing in their analytical representation
parameters for which we can immagine the proper ranges of variations: for each cosmological model,
indeed, Vj is not a fit parameters, but is expressed in terms of different observables, as shown in Eq.
(4.4).



4.1 The case V(p) = Vop©

In order to analyze the cosmological scenarios arising from this power law model, we start from the
Eq. (3.13) which can be parametrized in a different way by requiring that H(0) = Hp. It turns out
that we can express Vj in terms of Hy and the other parameters:

Vo = o ® [6HS (U + 2e00 — 1) + mypo] | (4.4)

so that the Hubble function H can be expressed as

- G D OHEQ + mpo) — (2 + 1) [6HG (Qm + 2p0€ — 1) + mipo] (4.5)
6 — 12¢0(z + 1)3¢ ' '
If we introduce the dimensionless Hubble parameter FE(z,0) = thj), where 6 indicates the set of

parameters characterizing the cosmological model, then we can construct the luminosity distance and
the modulus of distance according to the following relations:

c = dC

wuen(z,0) = 25+ 5logdr(z,6). (4.7)

4.2 The case V(p) = Vhexp(—Ayp)

Following the same procedure implemented in the previous subsection, also in the case of the ex-
ponential potential we use the condition H(0) = Hy to express Vj in terms of Hy and the other
parameters:

Vo = e [6H3 (U + 2p0€ — 1) + mepo] (4.8)
) (4.9)

so that the Hubble function H assumes the form

3 2 — pApo[l—(2+41)3] 2 _
H(z) = \/(z + 1)3 (6HEQy, + mypg) — eAeo [6HF (2, + 200€ — 1) + mpg] (4.10)

B 6 — 1200(z + 1)3¢

4.3 The case V(p) = Vo(p? + V1)

Owing to the presence of an additional parameter, in this case we include both Hy and the deceleration
parameter gg in the new parametrization and, consequently, we need more constraints. Actually, the
conditions H(0) = Hj allow us to express Vj in terms of the other parameters:

Vo= (Vi +¢8) 77 [6HG (0 + 2600 — 1) + mgpo] - (4.11)

With this substitution the Hubble function H takes the form:

[Hg (ﬁnm + gy — 6) + m%] Vi + (2 + 1)502)" — (2 + 1)3 (6H2Q + mepp)

— z 3
(Vi+@3)" [% —6}

H(z) = (4.12)

It is worth noting that, owing to the presence of an additional parameter, it is also possible
include both Hy and the deceleration parameter qg in the new parametrization so that the conditions

H(0) = Hy and qo = —H, (hmz_m dH(Z)) allow us to express Vp and V; in terms of Hy, go and the

dz
other parameters:
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Figure 3. The behaviour in redshift of the relative variation of the Hubble function H(z) for the power law
potential V(¢) = Vop®, compared with the standard ACDM model. The parameters correspond to the best
fit values, as in Table (2) (¢ = 1077, ¢o = 0.006, o = 0.23, m = 1.56). For this power law model we have the
worst matching with the ACDM.

3 [6H3 (Qn + 2p0€ — 1) +m -
Vo=27" [6H3(9m+2cpoe1)+mcpo]{ 6 (65 poc — 1) + mipo) :

HE [6Q0m + go (8poe — 4) + 20p0¢ — 4] + mipg
@5 {2H3 [67 (U + 2p0€ — 1) — 30, + o (2 — 4po€) — 10gppe + 2] + (27 — )mepo }

Vi =
! HZ [6Q, + qo (8poe — 4) + 20p0€ — 4] + mepy

With these substitutions the Hubble function H takes the form:

1
H =
(2) { 12¢0(z + 1)3%¢ — 6
[6H§ (o + 20 — 1) + mgoo] - {Hg (692, + o (8oe — 4) + 20pge — 4] + mgpo} v
{2H02 [3(2y — 1)Qu + 2[=37 + @oe (67 — 290 — 5) + qo + 1]] + (2y — 1)mypg Flet 1)6} 5
HG [6Q4, + qo (8poe — 4) + 20p0e — 4] + mypg

(24 1) (6HZQ +mipo)] 17

(277977 (6HG Yy, + 12HG poe — 6HG + mypp) % (4.13)

In Fig. (3) we compare the evolution of the Hubble functions the power law model and in the
standard ACDM model. As we shall see, in order to carry out the comparison with the observa-
tional data, it turns out that the above parametrizations are more efficient in exploring the region of
parameters.



5 Observational data sets

In our investigation we use observational data sets on SNIa and GRB Hubble diagram, as well as
some recent measurements of H(z) from the differential age of passively evolving elliptical galaxies
[23]. We set Gaussian priors on the distance data from the BAO and the Hubble constant h. These
priors were included to help break the degeneracies among the parameters of different cosmological
models.

5.1 Supernovae and GRB Hubble diagram

SNIa observations gave the first strong evidence of the present accelerating expansion of the Universe
[25, 26]. Here we consider the recently updated Supernovae Cosmology Project Union 2.1 compilation
[4], which spans the redshift range 0.015 < z < 1.4. We compare the theoretically predicted distance
modulus u(z) with the observed one through a Bayesian approach, based on the definition of the
distance modulus for each of the different models described in the previous section

p(zj) = 5logio(Dr(zj, {6:})) + po s (5.1)

where Dy (z;,{6;}) is the Hubble free luminosity distance, expressed as a series depending on the
cosmological parameters. The parameter py encodes the Hubble constant and the absolute magnitude
M, and has to be marginalized over. In our analysis we use the version of the y? given by

Nenra Nswra (1(25510=0,{0:) } —probs (25))
2 rp) o~ (1255 0 = 0,{0;)} — frovs(25))? 251 Thi 9
ENCUDEIDY 2 - Nowra 1 - (52
j=1 O—Maj ijl o2

22V

Gamma-ray bursts are visible up to very high redshifts thanks to the enormous released amount
of energy, and thus are good candidates for our high-redshift cosmological investigation. Since their
peak luminosity spans a wide range, they are not standard candles; however it is possible to consider
them as distance indicators calibrating some empirical correlations of distance-dependent quantities
and rest-frame observables [27]. These empirical relations allow us to deduce the GRB rest-frame
luminosity or energy from an observer-frame measured quantity, so that the distance modulus can
be obtained with an error that depends essentially on the intrinsic scatter of the adopted correlation.
We perform our analysis using a GRB Hubble diagram data set, built by calibrating the E}; — Ejiso
relation [28, 29], plotted in Fig. 4.

5.2 Baryon acoustic oscillations and H(z) measurements

Baryon acoustic oscillations (BAO) data are standard rulers available to investigate several cosmo-
logical models; they are related to density fluctuations induced by acoustic waves due to primordial
perturbations. Measurements of the Cosmic Microwave Background (CMB) radiation provide the
absolute scale for these peaks, and the observed position of the peaks of the two-point correlation
function of the large scale matter distribution enables to measure distance scales, if it is compared
with these absolute values. In order to use BAOs data, we define [30]

rs(zd)

d, = , 5.3
dy (2) (53)
where zq4 is the drag redshift computed in [31], 75(z) is the sound horizon
(142)~" d
o)== | d , (54
V3 Jo a?H (a)\/1+ (3/4)%/9,
and dy (z) is the volume distance:
wve) = [+ e (5:5)
viz) = A HG :
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H(z)

Z

Figure 4. GRB Hubble diagram used in our analysis.

Here d4(z) is the angular diameter distance. The data used in our analysis are from [32]. The mea-
surements of Hubble parameters are a complementary probe to constrain the cosmological parameters
and investigate dark energy effects [23, 33]. The Hubble parameter, defined as the logarithmic deriva-

tive of the scale factor H(z) = g, depends on the differential age of the Universe as a function of the

redshift and can be measured using the so-called cosmic chronometers. From spectroscopic surveys
we can measure the differential redshift interval dz with high accuracy and the differential evolution
of the age of the Universe dt in the redshift interval dz can be measured too, provided that optimal
probes of the aging of the Universe (that is cosmic chronometers) are identified [34]. The most reliable
cosmic chronometers are old early-type galaxies that evolve passively on a timescale much longer than
their age difference, which have formed the most part of their stars early and have not experienced
further star formation events. Moreover, the Hubble parameter can also be obtained from the BAO
measurements [35]. We used a list of 28 H(z) measurements, compiled in [23] and shown in Table

(1).

6 Statistical analysis

To constrain the cosmological parameters which characterize the models described in Sect. 4, we
performed a preliminary and standard fitting procedure to maximize a likelihood function £(p), in

order to identify appropriate starting points for the statistical analysis. This required the knowledge
of the precision matrix:
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z H(z) oH
(km s~! Mpc ~1) (km s~! Mpc ~1)

0.070 69 19.6
0.100 69 12
0.120 68.6 26.2
0.170 83 8
0.179 75 4
0.199 75 5
0.200 72.9 29.6
0.270 i 14
0.280 88.8 36.6
0.350 76.3 5.6
0.352 83 14
0.400 95 17
0.440 82.6 7.8
0.480 97 62
0.593 104 13
0.600 87.9 6.1
0.680 92 8
0.730 97.3 7.0
0.781 105 12
0.875 125 17
0.880 90 40
0.900 117 23
1.037 154 20
1.300 168 17
1.430 177 18
1.530 140 14
1.750 202 40
2.300 224 8

Table 1. Measurements of the Hubble parameter used in our analysis, as compiled in [23]

L(p) eXp(_X%NIa/GRB/Z) exp (—XBao/2)
(27() NSNIa/GRB |CSN1a/GRB|1/2 (27T)NBAO/2|CBAO|1/2
1 w _ wobs
1 h hobs exp (—x7/2)
8 202 P l_ ] 2N /2| C g |1/2
y 1 . 1 R Robs
<D | —=
27r072z P
where
N
) =Y —x"(p)Cy' (—x"(p)) - (6.2)
ij=1

W = h?Q,,, p indicates the set of the cosmological parameters, N is the number of data, ; is the
i — th measurement; x(p) denote the theoretical predictions for these measurements and depend
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on the cosmological model and its own parameters p; Cj; is the covariance matrix (specifically,
Csni1a/arp/n indicates the SNIa/GRBs/H covariance matrix); (h°% a1,) = (0.742,0.036) [36], and
(webs o, ) = (0.1356,0.0034) [2]. We tested that our results are not biased by the choice of the prior

1 1 (R~ Ras\’
on h. The term ———=exp |—¢ (b) in the likelihood (6.2) takes into account the so
V2mo% 2 OR

called shift parameter R, defined as

R = Hor/Qr /0 H‘Z/) , (6.3)

being z, = 1090.10 [37], [38]. According to the Planck data (Rops,or) = (1.7407,0.0094).

To sample the N dimensional space of parameters corresponding to each of our models, we used
the MCMC method and ran five parallel chains, the convergence of which has been tested using the
reduction factor R*, defined as the square root of the ratio of the variance extra-chain and the variance
intra-chain. A large R* indicates that the extra-chain variance is substantially greater than the intra-
chain variance, so that a longer simulation is needed. We required that the convergence was reached
if R* approached 1 for each parameter: we set the precision of order 0.05. As first step, which allowed
us to select the starting points of the full analysis, we ran our chains to compute the likelihood in Eq.
(6.2) considering only the SNIa data. Therefore we applied the same MCMC approach to evaluate
the likelihood in Eq. (6.2), combining all the data, as described above. We discarded the first 30%
of the point iterations at the beginning of any MCMC run, and thinned the chains that were run
many times. We finally extracted the constraints on the parameters by coadding the thinned chains.
The histograms of the parameters from the merged chains were then used to infer median values and
confidence ranges: the 15.87th and 84.13th quantiles define the 68% confidence interval; the 2.28th
and 97.72th quantiles define the 95% confidence interval; the 0.13th and 99.87th quantiles define the
99% confidence interval. In Table 2, we presented the results of our analysis: we indicated the mean,
the median, the 1o and 20 regions of confidence for the main parameters of the different models.
In Fig. (5) we plot the observational data with the best fit model relative to the power law and
exponential potential.

7 Comparison of our fermionic models with the Chevallier-Polarski-Linder
(CPL) model

In this section we compare the different models presented in the previous sections and check if we can
discriminate against them. We use the Akaike Information Criterion (AIC) [39, 40], and its indicator

2ky(kp + 1)

AIC = —2In Linax + 2k ,
C nl + p+Ntot_kp_1

(7.1)
where Nio; is the total number of data and k, the number of free parameters (of the cosmological
model) . It turns out that the smaller is the value of AIC the better is the fit to the data. To compare
different cosmological models we introduce the model difference A ;¢ = AIC 041 — AIC . The
relative difference corresponds to different cases: 4 < Aayc < 7 indicates a positive evidence against
the model with higher value of AIC,,,4e1, while A 47 > 10 indicates a strong evidence. A ;¢ < 2 18
an indication that the two models are consistent. In our case we have found that the model with the
lower AIC is the exponential potential model V() = Vyexp (—Ayp). It turns out that As;e = 4.3
if we consider the exponential potential and A ;¢ = 1.97 for the the extended power law potential.
We can use he same method to make a comparison of our model with the CPL parametrization for
dark energy, which assumes a dark energy EOS given by

w(z) = wo +wyz(1+2)71, (7.2)

where wy and wy are real numbers that represent the EOS present value and its overall time evolution,
respectively [41, 42]. For high redshift we have the following behavior

lim w(z) = wo + wy . (7.3)

Z—00
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Id  (z) % 68% CL 95% CL

V(e) = Vop*

Q, 021 022 (0.19,024) (0.17, 0.25)
ho 069 070 (0.67, 0.71)  (0.66, 0.72)
a 023 021  (0.19,0.24)  (0.15, 0.30)

m 156 1.60  (1.39,1.7)  (1.31,1.76)

V(p) = Vo exp(—Ayp)

Q, 025 025 (023, 027) (0.21, 0.29)
ho 069 069 (0.69, 0.71)  (0.68, 0.72)
A 067 068 (0.25,1.1)  (0.21, 1.35)

m 033 024  (0.1,078)  (0.06,0.96)

Vi) = Vol¢® +11)7

Q, 021 023 (0.20, 0.24) (0.16, 0.27)
ho 070 0.71 (0.67, 0.73)  (0.65, 0.74)
@ -0.66 -0.63 (-0.65,-0.57) (-0.67, -0.49)
v 051 06  (0.47,091)  (0.45, 1.05)

m 087 08  (0.66,0.95)  (0.52, 1.17)

Table 2. Constraints on the main cosmological parameters which enter in the representation of the models
described in Sect. 4. The likelihood has been marginalized with respect the others. Columns report the mean
(z) and median Z values and the 68% and 95% confidence limits.

If we compare the exponential potential model with the CPL, it turns out that the exponential model
has got the lower AIC, and As;¢c = 5.9. This indicates a weak evidence against the CPL model.
To confirm the results obtained above we rely on future data. Here we investigate the possibility to
constrain our model using simulated data from an Euclid - like survey [43]. The number of SNela which
could be used for cosmology and their redshift distribution is plotted in Fig. 6. To each simulated SN
we estimate the error on the distance modulus as [44]:

0u(2) = 0%y + (/2 )03 (7.4)

Here 240 is the maximum redshift of the sample, oy, an instrinsic scatter and o, depends on the
photometric accuracy. In our case (Zmaz,Osys,om) = (1.4,0.15,0.02). We then assign to each SN
a distance modulus randomly generated from a Gaussian distribution centered on a fiducial model
tria(z) and variance 0,(z). In this analysis we set the exponential potential model as the fiducial
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Figure 5. Comparison between the observational data and the theoretical predictions for the power law
potential (red solid line), and the exponential potential, corresponding to their own best fit values for the
parameters.

Id  (z) % 68% CL 95% CL

Q, 027 027 (0.26,0.27)  (0.25, 0.28)
Hy 701 701  (69.8, 70.5)  (69.5, 70.7)
@ 0.005 0.005 (0.004,0.006) (0.003, 0.007)
m 060 051  (0.39,0.89)  (0.30, 0.99)

A 245 250  (2.04,2.87) (154, 2.97)

Table 3. Results of our statistical analysis, when we consider the simulated Snela HD as cosmological probes.
Columns report the mean (z) and median & values and the 68% and 95% confidence limits.

model. In Fig. 7 we plot the mock dataset. In Table 3 we summarized the results of the simulation,
when we consider the simulated Snela HD as cosmological probes: it turns out that the mock dataset
is able to constraint much better our model.

8 A new dynamical system formulation

We can combine the data analysis above with the dynamical system approach to infer further features
of the cosmic history that corresponds to the observational results we have obtained.
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Figure 6. Simulated data for an Euclid-like mission: we plot the SNela redshift distribution used in our
analysis.

Under the condition € > 0 and ¢¢ > 0, we can consider the dynamical system variables

P me
Q=/=5 Y = >p2’
o . (8.1)
E = = —
3¢D2 ) Q D 9
where v
D’ = 3H2 + —(2“0) (8.2)

This choice sends fixed points for which D = 0 to the asymptotic part of the phase space. Because of
eq. (2.13) this condition reduces to the differential equation

& Vig)

which, given the form of the potential, represents the solution associated to the asymptotic limit of
the phase space. Using variables (8.1), the cosmological equations are equivalent to the dynamical
system

3Q0Q

Qn = “3(EE - 307) [E? (3Q* = 1) V + E*(w + 1) + 3w@? (?* - 1)], (8.4)

B = gt (B =) (6@ )V B2 40 62 - ) -1], (89)
2

Qv =5 s (0@ =) [(B = 1) Vo w +1], (5.6)
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Figure 7. The mock dataset used in our analysis.

together with the decoupled equation
3D2%Q

Dy = [E?(3Q% — 1) V +3Q* (wQ* + 1 8.7

N 2(E2—3Q2)[ (3Q )V +3Q° (w* + 1), (8.7)

and the constraint

E24Y?+0%=1 (8.8)
where we have defined 1
Xy=—X 8.9
N= 5 (8.9)
and ) ,
V—V( EQ)— PV () (8.10)
6eQ V(©) |,=p2/6eq2

The constraint (8.8) implies that the phase space is compact.

In the following, however, we will consider the case w = 0. For this value of the barotropic factor
the cosmological equations (3.1) imply that p = B¢, where 5 = po/po is a constant. This means that
the phase space will loose one dimensions. Therefore, if w = 0, we can choose the variables

[+ 28)p 2cp? H
Y =4/ —7¢— E = = — 8.11

so that the dynamical equations can be written as

C3EQ(E®-1) [(3Q° 1) V+1]

En = 2 (22— 307) , (8.12)
3Q2(3Q2 - 1) [(F?-1)V+1
Q= HELL(E v 813
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with the constraint -
Y?=1-FE~ (8.14)

The above system is still not compact in the variable (). We can obtain a compact two-dimensional
system with the transformation
_ v __Q
E = cos¥, Y =siné, Q= ﬁ’ (8.15)

which leads to the system

_ 3Q? [2@ (Q + 1) — 1] (V_ sin® 6 — 1)
7 8.16
QN 2 (Qf — 1)2 cos? § — 6Q2 ( )

, _3@5in96089{[2Q(Q+1)_1]V+(Q_1)2} (8.17)
N = 2(Q 1) [(Q —1)*cos?0 — 3Q7] | |

with the decoupled equation

_3QD? [E?(3Q% — 1)V +3Q?]

Dy 2 (F2 — 307) , (8.18)
where - )
_ 2
V-v <(Qg2msa> . (8.19)

We will now use the data analysis above to determine the point of the phase space which corresponds
to the current state of the universe. Using this result and the dynamical system above we will
deduce, for each type of potential, information on the entire cosmic history that is associated with
the observations.

8.1 The case V(p) = Vpp©

If one considers the power law potential V() = Vpp®, then

B 3Q? [2@ (Q + 1) - 1] (asin29 — 1)

= 2(Q - 1)2 cos? ) — 6Q2
aN:3@51n9cos€{[2@(@+1)_1]a+(Q_1)2} (8.20)
’ 2(Q-1) [(Q—1)200820—3Q2]
and ) ) )
D= SOD7 R (@7 1) o+ 367 (8.21)

2 (E? - 3Q?) ’
The system (8.20) has invariant submanifolds at Q =0, Q = % (\@ — 1), 0 =kn, 0 =m/2+ kn with

k integer number. It is also singular in

~ cos(20) £ 2v/3cosf + 1

@= cos(20) — 5 Q=1 (8.22)

However, as we have seen, the divergence in Q = 1 is just an artifact of our variable choice.

Setting (Q n = 0,0 = 0) shows the presence of two physical fixed points in [0, 27] and a fixed
line. The stability of these points and their associated solutions are given in Table 4. The line £
is composed of non hyperbolic fixed points and one should calculate the Centre manifold for these
points. However, since the total dimension of the phase space is two, the stability of these points can
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be calculated simply taking the second derivative of the equation for Q at second order at Q = 0. It
turns out that for

a> 1, k7r<€<(2k+1)g (8.23)
a< 1, (2k+1)g<9<kw (8.24)

where k € Z, these points are unstable. Since on the line £ fixed points can lead to unstable static
solutions, we can conclude that these cosmologies admit bounces and turning points only for certain
values of a.

Comparing with the work in [14], we see that there are some differences; in particular, some of
the fixed points do not appear in the compact version of the phase space. This is due to two different
occurrences. The first is that in these points the function D is either zero or divergent and in this case
there is no connection between the different variable systems. In the case of the power law potential
we have

3
D=0= ¢2+V()§g0a+2 =0 (8.25)

which implies via eq. (2.13)
a = ao(t —to)3a. (8.26)

if Vj is negative. This implies that for V) < 0 orbits approaching the asymptotic border will represent
a Universe whose expansion approaches to the evolution above.

The second occurrence is that some of these points correspond to special cases in which two of
the coordinates are one divergent and the other complex divergent. In this case the constraint (8.8)
is still satisfied. However, in the new formulation we have assumed that ¢ is positive, whereas these
points are compatible with a negative . We can say therefore that they have no relevance if g > 0
and that our compact formulation catches the true degrees of freedom of the cosmological model.
Similar reasonings can be made for the other models we will consider here.

The data analysis above indicates the following values of the quantities appearing in the cosmo-
logical equations at present’:

e— 1077, Hy—69.6, po— 3851.11, o — 0.006,

(8.27)
Vo — —40344.1, a—0.12, m — 18

In Fig. 8 we have represented the compact phase space and the position representing the state of the
Universe related to the data analysis of the previous sections. It is evident that the past attractor of
the dynamics is a singular state reached coasting the invariant submanifold @ = 3 (v/3 — 1) and the
Universe approaches the () = 1 boundary after transiting close the fixed point .A;. This behavior can
be observed directly plotting the behavior of the dynamical variables in time (see Fig. 9). Indeed,
plotting the behavior of the deceleration factor g (see Fig. 10) one can conclude that, as expected, the
observational data represent a cosmology which present cosmic acceleration and determine the value
of ¢ on the boundary. This result is consistent with the interpretation we have given of the Q = 1
boundary. In fact the solution (8.26) for the value of « given in (8.27) corresponds to an accelerated
solution. The solution (8.26) was also an attractor in the phase space analysis of [14], but it was not
obvious that the initial conditions (8.27) would lead to it.

n order to correctly evaluate the magnitude of the fitted values in the SI units, it is worth noting, here and in the
cases of the other potentials, that we are using natural units. Moreover, the Hubble constant is usually estimated as

Hgy = 100h ﬁ;’z s~1 , and the conversion factor from Km to Mpc is ¢ ~ 3.2410729. Actually, for h = 0.696 the actual

dark matter density is pg = 2.41 10727 Kg/m3, as expected.
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Table 4. The fixed points and the solutions of the NMC model with dust matter and V' = Vpp®. Here S
stays for saddle, A for attractor and R for repeller.

Point 6, Q) Scale Factor Stability

A [remmd(o )] amm s
Ra>1, kr<0<(k+1)%

2 cos 0, Ra<l, @2k+1)5<60<knm

£ (6.,0) @=al™ Aa>1, (k1) <0<kr
Aa<l, kr<0<(2k+1)3

00 05 10 15 20 25 3.0

Figure 8. Portion of the phase space of equations (8.20). Here the black dot represents the fixed point .4z
and the blue and blue lines the singularity of the dynamical system. The red dot represents the state of the
universe as indicated from the observational analysis of Sections 4, 5 and 6.

8.2 The case V(p) = Vhexp (—Ap)
If one consider the exponential potential V(¢) = Vy exp (—Ag), then

3[1-2Q (Q+1)] [MQ — 1)%cos?(0) sin® 6 + Q7]
2 (Q - 1)2 cos? 6 — 6Q2
3sinf cos b {)\(Q —1)?[1-2Q (Q +1)] cos?(0) + Q* (Q — 1)2}
2Q (Q — 1) [(Q — 1)” cos? 6 — 3Q?]

QN =

)

(8.28)

0 N

b

—90 —



10 _8 ~6 ~4 2 1

Figure 9. Semilogarithmic plot of the evolution of the dynamical system variables along the orbit associated
with the conditions (8.27).

1.0

-1.0%

Figure 10. Plot of the evolution of the variable Q and the deceleration factor g along the orbits of the phase
space for the potential V' (¢) = Vop® associated with the conditions (8.27).

and

3D% [E2 (3Q° 1) (1 - Q)” cos?(0) + 3Q"
Dy= 5 (E2 52 )
2Q (E? - 3Q?)
The system (8.28) has invariant submanifolds at @ = 3 (v3 — 1), 6 = km, 6 = m/2+kr with k integer
number. It is also singular in

(8.29)

~ cos(260) £2v/3cosf+ 1 = -
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The system (8.28) admits fixed points given by

A — B + kw,% (1 - \}g)] (8.31)

where k € Z which are both saddles and associated with the solution
a=ag(t—t)**. (8.32)

The above data analysis indicates the following values of the quantities appearing in the cosmological
equations at present:

e— 1077, Hy— 69.6, po— 4069.09, o — 0.005,

(8.33)
Vo — —21116, X\ — 1.5, m — 0.6

In Fig. 11 we have represented the compact phase space and the position representing the state of
the Universe related to the data analysis of the previous sections. As in the case of the power law
potential, the past attractor of the dynamics is a singular state on the invariant submanifold and
the Universe approaches the @ = 1 boundary after transiting close the fixed point A;. This is also
confirmed by the time evolution of the variables in Fig. 12. The solution associated with the boundary
Q =1 is given by the equation

3
P* + Vog @ exp (—Ap) =0 (8.34)
whose solution can only be given parametrically. However, using the (2.13), we can obtain
_aa 3o
q=—73= 943 (8.35)

which for growing a shows that the solution to this equation corresponds to an accelerating cosmology,
and indeed to an asymptotically de Sitter solution. This is also confirmed by Fig. 10 which plots the
the behavior of the deceleration factor on the orbit selected by the parameters (8.33). Note also that
different initial conditions in this case lead to a final state with a different value of 6.

8.3 The case V(p) = Vo(V1 + p)*
If one consider the exponential potential V(¢) = Vo(V1 + )7, then

3Q%2Q(Q + 1) — 1] {Q*Vi + (Q — 1)* cos* (A)[1 + y(cos(20) — 1)] }

Q= 2[(Q — 1)2cos?(0) — 3Q?] [Q*V1 + (Q — 1)* cos*(6)] ’
A(A : ~4 A 2 4 ~2 A A 2 (8.36)
04 — 3Q(Q — 1) sin(0) co_s(&) {Q i+ (Q 7_1) cos (0) [27(2@ +20-1)+(Q-1) ]}
’ 2 [(Q —1)2cos?(0) — 3Q2] [Q4V1 +(Q — 1)4cos4(9)] ’
and
e _?)Q'D2 {3Q5V1 + (Q — 1)* cos?(0) [3Q% + 27(2Q* + 2Q — 1) cos*(0)] } (8.37)

2(Q — 1) {[(Q — 1)2cos?(F) — 3Q?] [Q*V1 + (Q — 1)*cos(0)] }
As expected the system above has much in common with the case of Sec. 8.1. Therefore we find the
same invariant submanifolds, but additional singularities determined by the equation

(@ — 1)*cos(0)
Q4
The type of fixed points consist of a line and two isolated fixed points and they are the same of the

ones in Sec. 8.1, in agreement with the analysis of [14] (see Table 5). Also the stability of the isolated
fixed points is the same. The points on the line, however, are unstable if

Vi=-— (8.38)

1 1
v<1/2 - <sinf < —— 8.39
? VB (539
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Figure 11. Portion of the phase space of equations (8.28). Here the black dot represents the fixed point .4;
and the blue and blue lines the singularity of the dynamical system. The red dot represents the state of the
universe as indicated from the observational analysis of Sections 4, 5 and 6.

s

L

1 L L L 1 L L L 1 L L L 1 L L L P r’

-10 -8 -6 4 —2

Figure 12. Semilogarithmic plot of the evolution of the dynamical system variables along the orbit associated
with the conditions (8.33).

The above data analysis indicates the following values of the quantities appearing in the cosmo-
logical equations at present:

e— 1077, Hy—69.7, po— 4080.08, o — 0.005,

(8.40)
Vo — —236, ~v— 1.6, m—0.55 V;— 16.5
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Figure 13. Plot of the evolution of the variable Q and the deceleration factor g along the orbits of the phase
space for the potential V (p) = Vpexp (—Ap) associated with the conditions (8.33).

In Fig. 14 we have represented the compact phase space and the position expressing the state of
the Universe related to the data analysis of the previous sections. As in the previous cases, the
past attractor of the dynamics is a singular state reached coasting the invariant submanifold Q =
% (\/§ — 1). The Universe approaches the Q = 1 boundary after transiting close the fixed point A;
as indicated by the evolution of the dynamical variables in time (see Fig. 15). Indeed, plotting
the behavior of the deceleration factor (see Fig. 10) one can conclude that the observational data
represent a cosmology which present cosmic acceleration. However, differently form the power law
case of Sec. 8.1, the cosmology in this case approaches a de Sitter evolution (¢ = —1) rather than an
accelerated power law. As in Sec. 8.2, we cannot give the solution corresponding the time asymptotic
state as the key equation

) 3
P+ VoS (Vi +9)7 =0 (541)

does not have a solution that can be put in a useful analytical form, but, using eq. (2.13), we can
give the form of the decelerating factor

aa 1 3y

= —_— 8.42
a2 abVy + (p% -1 ( )

which approaches —1 for large a. As in the model of Sec. 8.2, and in contrast with the model of
Sec. 8.1, different initial conditions lead to a final state with a different value of 6.

9 Conclusions

In this paper we have analyzed some accelerating cosmological models in which dark energy is modeled
as a non minimally coupled selfinteracting fermion condensate. Assuming standard matter to be
non relativistic, we have investigated three different forms of potential V() that are important in
cosmological models with scalar fields. As a first example, we have considered the power law model
V(p) = Vop®. At early times (a ~ 0 ) the (2.14) implies that the scalar field will have high values and
the potential will be negligible (o« < 0) or dominant (o > 0). This situation is reversed at late time
(a — o0 ). We have obtained a suitable parametrized form of the Hubble function written in terms of
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Table 5. The fixed points and the solutions of the NMC model with matter and V = Vo (V1 + ¢)?. Here S
stays for saddle, A for attractor and R for repeller.

Point [0, Q] Scale Factor Stability

w2

Ag [% + km, 1 (1 — %)} a=ag(t— t0)2/3

- — L i 1
L (6.,0) a = agt 361 R7<1/2 o <sinf < o
A otherwise

0.9

0.8

0.7

Ql

0.6

0.5

LANLI B s B S s B s S B B B S B S B S
1

Figure 14. Portion of the phase space of equations (8.36). Here the black dot represents the fixed point .A;
and the blue and blue lines the singularity of the dynamical system. The red dot represents the state of the
universe as indicated from the observational analysis of Sections 4, 5 and 6.

redshift, which, with an appropriate choice of parameters, is comparable to the ACDM model within
a wide range of redshifts and differs at very high redshift.

The second example we have considered has been the exponential potential V() = Vj exp(—Ap)
which is commonly used for scalar fields. At late time ¢ — 0 the exponential potential becomes
actually a cosmological constant term: indeed, also in this case, the behavior of the function H(z)
mimics, for an appropriate choice of the parameters, the standard ACDM model.

The third example we have studied has been the potential V = V;(p? + V;)? which is a gen-
eralization of the power law potential. This potential combines characteristics of both the previous
potentials as it behaves as a power law and generates an effective cosmological constant at late time,
related to the value of the constant V. After choosing appropriate parameterizations of these models,
we have tested them with some different observational data. To this end, we have used the recently
updated Supernovae Cosmology Project union 2.1, a sample of 193 GRB Hubble diagram, and a list
of 28 H(z) measurements, compiled in [23]. Moreover, we have set Gaussian priors on the distance
data from the BAO [35] and the Hubble costant h, in order to help break the degeneracies among the
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Figure 15. Semilogarithmic plot of the evolution of the dynamical system variables along the orbits of the
phasespace for the potential V' (p) = Vo (Vi + ¢)” associated with the conditions (8.40).
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Figure 16. Plot of the evolution of the variable Q and the deceleration factor ¢ along the orbit associated
with the conditions (8.40).

parameters of the different cosmological models. For our statistical analysis, we have used the Markov
Chain Monte Carlo Method (MCMC), running five parallel chains, and using the Gelman-Rubin test
to check the convergence. The histograms of the parameters from the merged chains have been then
used to infer median values and confidence ranges. In Table 2, we have presented the results of our
analysis for the main parameters concerning the three different models. The analysis we have per-
formed indicates that a non—minimally coupled self-interacting fermion condensate is compatible with
the datasets we have considered.

We have analyzed the three different models using the Akaike Information Criterion (AIC) [39, 40]
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and its indicator (7.1). We have found that the model with the lower AIC is the the exponential
potential one V(p) = Vpexp (—Ap). We also used the same method to perform a comparison of the
exponential potential model with the CPL parametrization for dark energy with an EOS given by
(7.2). Interestingly, it turned out that the exponential model has the lower AIC indicating a weak
evidence against the CPL model. This result should be confirmed using further data which will be
available in the future.

In addition, we have investigated the Euclid experimental possibility to constrain our model.
We used simulated data assuming an Euclid-like survey of SNela [43] (plotted in Fig.6) setting
the exponential potential model as the fiducial model and considering the simulated Snela HD as
cosmological probes. In Table 3 we have summarized the results of the simulation. These results
indicate that the mock dataset is able to constraint much better our model.

Finally, using the values of the parameters deduced by the statistical analysis, we have used
dynamical system techniques to infer the general behavior of the cosmology and in particular the
behavior of the deceleration factor. As expected, it turns out that the three potentials lead to
similar behaviors with differences in the final value of ¢ which is —1 for potentials that generate a
cosmological constant term and is higher than this value in the other cases. The behavior of the
deceleration factor suggests that changes in the expansion rate during the matter dominate era might
have repercussions in the large scale structure. Whether these differences are observables, however,
cannot be deduced from our calculations and will require further work on the behavior of matter and
condensate fluctuations.

We conclude noticing that we have considered here standard matter in the form of dust and than
the complete description of the cosmic history, in particular at earlier times, requires the inclusion of
other forms of matter—energy, like radiation. This analysis is certainly possible with the dynamical
system approach we proposed, but it requires a different treatment of the datasets, other than,
probably additional sources of data. In addition, as we approach even earlier epochs the approximation
of the semiclassical fermion which is the cornerstone of the theory we have considered starts to loose
accuracy. This indicates that our approach to the analysis of this type of cosmology is useful but need
to be extended with care in order to give meaningful results. Future works will consider this more
complicated situation.
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