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Abstract

White matter hyperintensities (WMH) or white matter lesions exhibit high variability

in their characteristics both at population- and subject-level, making their detection a

challenging task. Population-level factors such as age, vascular risk factors and neurode-

generative diseases affect lesion load and spatial distribution. At the individual level,

WMH vary in contrast, amount and distribution in different white matter regions.

In this work, we aimed to improve BIANCA, the FSL tool for WMH segmentation,

in order to better deal with these sources of variability. We worked on two stages of

BIANCA by improving the lesion probability map estimation (classification stage) and

making the lesion probability map thresholding stage automated and adaptive to local

lesion probabilities. Firstly, in order to take into account the effect of population-level

factors, we included population-level lesion probabilities, modelled with respect to a

parametric factor (e.g. age), in the classification stage. Secondly, we tested BIANCA

performance when using four alternative classifiers commonly used in the literature with

respect to K-nearest neighbour algorithm (currently used for lesion probability map

estimation in BIANCA). Finally, we propose LOCally Adaptive Threshold Estimation
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(LOCATE), a supervised method for determining optimal local thresholds to apply to

the estimated lesion probability map, as an alternative option to global thresholding

(i.e. applying the same threshold to the entire lesion probability map). For these

experiments we used data from a neurodegenerative cohort, a vascular cohort and the

cohorts available publicly as a part of a segmentation challenge.

We observed that including population-level parametric lesion probabilities with re-

spect to age and using alternative machine learning techniques provided negligible im-

provement. However, LOCATE provided a substantial improvement in the lesion seg-

mentation performance, when compared to the global thresholding. It allowed to detect

more deep lesions and provided better segmentation of periventricular lesion boundaries,

despite the differences in the lesion spatial distribution and load across datasets. We

further validated LOCATE on a cohort of CADASIL (Cerebral autosomal dominant ar-

teriopathy with subcortical infarcts and leukoencephalopathy) patients, a genetic form

of cerebral small vessel disease, and healthy controls, showing that LOCATE adapts well

to wide variations in lesion load and spatial distribution.

Keywords: White matter hyperintensities, structural MRI, lesion probability map,

Thresholding, Machine learning, lesion segmentation

1. Introduction

White matter hyperintensities of presumed vascular origin (WMH, also known as white

matter lesions Wardlaw et al., 2013) are common radiological abnormalities often as-

sociated with cognitive impairment and one of the main signs of cerebral small vessel

disease (SVD) (Pantoni, 2010). However, despite their assumed clinical importance

based on their spatial location (Duchesnay et al., 2018; De Guio et al., 2018; Kim et al.,

2008), accurate automated detection of WMH is very challenging due to the high vari-

ability of their characteristics both between- and within- subjects. For example, at the
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population-level, the amount and distribution of white matter lesions have been associ-

ated with various factors such as cognition, vascular risk factors and neurodegenerative

diseases (Li et al., 2013; Debette and Markus, 2010). WMH also occur more commonly

at older age (Simoni et al., 2012; Vannorsdall et al., 2009). At the subject-level, gener-

ally WMH exhibit spatial heterogeneity and do not appear with the same contrast in all

regions of the brain on structural MRI images (Hernández et al., 2017). For example,

typically, periventricular WMH are brighter on T2-weighted, FLAIR or proton density

images and bigger compared to deep ones (Kim et al., 2008), and hence can be detected

more easily.

The variability in lesion characteristics can affect the performance of supervised le-

sion segmentation methods at different stages. The estimation of the probability for

each voxel to be a lesion (lesion probability map) is affected by population-level factors

(such as age, cognition, vascular risk factors and pathological conditions) (Rostrup et al.,

2012; Zamboni et al., 2017) and lesion load (Dyrby et al., 2008; Anbeek et al., 2004).

Once a lesion probability map is generated, the choice of the threshold used to obtain

binary maps is affected by lesion load and the variation in local intensities. In fact,

heterogeneity in signal intensity affects lesion probability values determined by segmen-

tation algorithms (De Boer et al., 2009; Anbeek et al., 2004; Dyrby et al., 2008), since

brighter lesions (e.g. periventricular WMH) are typically assigned higher probabilities

than those with lower contrast (e.g. deep WMH). This makes it difficult to determine

the optimal threshold for obtaining the final binary lesion maps. In fact, applying a

global threshold (i.e. the same threshold to all the voxels of the lesion probability map)

typically results either in the exclusion of deep lesions or overestimation of periventric-

ular lesions. This often results in a trade-off between sensitivity and specificity of lesion

detection (Anbeek et al., 2004). An alternative proposed by Ling et al., 2018 consists

of determining thresholds based on Fazekas score or by visual inspection of individual

subjects. However, these thresholds would also be global and determining them would

require manual intervention.

In this work, our objective is to improve our recently developed WMH segmenta-

tion method, Brain Intensity AbNormality Classification Algorithm (BIANCA, Griffanti
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et al., 2016) to overcome population- and subject-level variability in the lesion charac-

teristics. We aim to achieve this by systematically exploring ways of improving various

stages of the lesion probability map estimation, and also by developing a method for

thresholding that takes into account spatial variability of lesion probability map.

Regarding the estimation of lesion probability map, we tested the inclusion of population-

level lesion probabilities with respect to a parametric factor (in our case age) and ex-

plored the performance of alternative machine learning methods.

One way to include population-level probabilities is to obtain the distribution of le-

sions within a population with respect to a parametric factor and use it in BIANCA as

either a spatial prior or an additional feature in the WMH segmentation. In this work,

we modelled the spatial distribution of lesions within a population with respect to age

to obtain a population-level parametric lesion probability map (PPLPM) as described

in our previous study (Sundaresan et al., 2019) and explored whether the informa-

tion provided by the PPLPM could improve the results or, conversely, introduce a bias

towards the expected distribution (refer to Section Use of population-level parametric

lesion probability map(PPLPM) and corresponding results).

Regarding the alternative machine learning techniques, we explored four other super-

vised classifiers used in the existing literature and compared their segmentation results

with those obtained from the existing K-nearest neighbour (KNN) classification algo-

rithm in BIANCA (refer to Section Comparison of alternative classifiers within BIANCA

and results). Neural networks (Dyrby et al., 2008), support vector machines and ad-

aboost classifier (Wen and Sachdev, 2004) have been already used for WMH segmenta-

tion, while random forests have been used for the segmentation of various structures and

pathological signs that have similar characteristics as WMH on structural MR images

(Geremia et al., 2011; Mitra et al., 2014; Yamamoto et al., 2010).

Aiming to improve the thresholding stage, we propose LOCATE (LOCally Adap-

tive Thresholds Estimation), a supervised method to determine optimal local thresholds

for binarising the subject-level lesion probability map to take into account the spatial

heterogeneity in lesion probabilities. LOCATE is guided by local probability values

3



and exploits different lesion characteristics to determine local thresholds. In this work

we present LOCATE with specific applicability to BIANCA, however, in principle LO-

CATE can be applied to the lesion probability map obtained by any method, provided

the availability of a training data with manual lesion masks. We evaluated LOCATE

on various clinical datasets: a neurodegenerative cohort and a vascular cohort, and a

publicly available WMH segmentation challenge dataset, to observe the performance of

LOCATE on data acquired under different protocols, and later applied it on two ad-

ditional datasets to further explore the potential of LOCATE to provide relevant local

thresholds for different lesion loads, distribution and patterns (refer to Section LOCally

Adaptive Threshold Estimation (LOCATE) and corresponding results).

Figure 1 shows the block diagram describing the strategies explored for improving

BIANCA performance.

Figure 1: Block diagram showing the three strategies explored for improving BIANCA performance.
The red highlighted blocks indicate the steps we focused on in this work.

2. Materials and methods

2.1. Datasets

In this work we used five datasets to study the effect of variations in lesion characteris-

tics on the WMH segmentation. The datasets are diverse in terms of population, and

therefore WMH load and characteristics.
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2.1.1. Dataset 1: Neurodegenerative cohort (NDGEN)

This is a subset of the same dataset we used in our previous work (Griffanti et al., 2016)

to optimise BIANCA (21 subjects with manual lesion segmentation available - lesion

load range: 1878 - 89259 mm3, median: 20772 mm3). Briefly, the dataset includes MRI

data from 9 subjects with probable Alzheimer’s Disease, 5 with amnestic mild cognitive

impairment and 7 cognitively healthy control subjects recruited from the OPTIMA

study and from the Memory Assessment Clinic at the John Radcliffe Hospital in Oxford

(Zamboni et al., 2013) (age range 63 - 86 years, mean age 77.1 ± 5.8 years, median age

77 years, F:M = 10:11, brain volume range: 1189282 - 1614799 mm3, median: 1424669

mm3). MRI images were acquired at the University of Oxford OCMR centre on a 3 T

Siemens Trio scanner using a T2-weighted, fluid-attenuated inversion recovery (FLAIR)

research sequence (TR/TE = 9000/89 ms, flip angle 150o, FOV 220 mm, matrix size

256 × 256 × 35, voxel size 1.1 × 0.9 × 3 mm) and a high-resolution T1-weighted images

(3D MP-RAGE) were also acquired (TR/TE = 2040/4.7 ms, flip angle 8o, FOV 192

mm, matrix size 174 × 192 × 192, voxel size 1 mm isotropic) (see Griffanti et al., 2016

for more details).

2.1.2. Dataset 2: Vascular cohort - Oxford Vascular Study (OXVASC)

The dataset consists of 18 consecutive eligible participants in the OXVASC study (Roth-

well et al., 2004), who had recently experienced a minor non-disabling stroke or transient

ischemic attack (age range 50 - 91 years, mean age 73.27 ± 12.32 years, median age 75.5

years, F:M = 7:11, brain volume range: 1290926 - 1918604 mm3, median: 1568233 mm3).

Scanning was performed at the Oxford Acute Vascular Imaging Centre (AVIC) on a 3 T

Siemens Verio scanner using a T2-weighted, FLAIR sequence (TR/TE = 9000/88 ms,

flip angle 150o, FOV 192 mm, matrix size 174 × 52 × 192, voxel size 1 × 3 × 1 mm) and

a high resolution T1-weighted sequence (3D MP-RAGE sequence, TR/TE = 2000/1.94

ms, flip angle 8o, FOV 256 mm, matrix size 208 × 256 × 256, voxel size 1mm isotropic),

and diffusion-weighted imaging (TR/TE= 8000/86 ms, GRAPPA factor 2, flip angle

16o, FOV 192 mm, voxel-size 2 × 2 × 2 mm, 32 directions, b-value 1500 s/mm2) and

diffusion-weighted imaging (TR/TE = 8000/86 ms, GRAPPA factor 2, flip angle 16o,
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FOV 192 mm, voxel size 2 × 2 × 2 mm, 32 directions, b value 1500 s/mm2) . Manual

lesion segmentation was available for all 18 images (lesion load range: 3530 - 83391 mm3,

median: 16906 mm3).

2.1.3. Dataset 3: Cerebral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy (CADASIL) cohort

The dataset consists of 15 patients with CADASIL (age range 33 - 70 years, mean age

53.73 ± 11.31 years, median age 55.5 years, with female to male ratio, F:M = 11:4,

brain volume range: 1226777 - 1603417 mm3, median: 1396526 mm3) (Le Heron et al.,

2018). CADASIL is a genetic form of small vessel disease caused by mutations within the

NOTCH-3 gene. It is the most common heritable cause of stroke and vascular dementia

in adults and it is characterised by extensive damage to white matter brain regions

(Chabriat et al., 2009). These patients are younger than those with sporadic SVD,

without confounding factors of co-existent neurodegenerative pathology (Attems and

Jellinger, 2014). They therefore provide a model of pure SVD in which to investigate

WMH (Charlton et al., 2006). Scanning was performed using the same scanner and

acquisition parameters as the OXVASC dataset. Manual segmentation was not available

for this dataset.

2.1.4. Dataset 4: Healthy controls (HC)

This dataset consists of 19 healthy controls, age-matched with the CADASIL subjects

(described in Dataset 3) with age range 29 - 70 years, mean age 54.58 ± 11.25 years,

median age 57 years, F:M = 6:13, brain volume range: 1313929 - 1679837 mm3, me-

dian: 1446443 mm3. Scanning was performed using the same scanner and acquisition

parameters as datasets 2 and 3. Manual segmentation was not available for this dataset.

2.1.5. Dataset 5: MICCAI WMH segmentation challenge Dataset (MWSC)

The dataset consists of 60 subjects from three different sources (20 subjects each) pro-

vided as training sets for the challenge (http://wmh.isi.uu.nl/): UMC Utrecht - 3

T Philips Achieva, NUHS Singapore - 3 T Siemens TrioTim, VU Amsterdam - 3 T
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GE Signa HDxt. Manual segmentations are available for all three datasets, with an

additional exclusion label provided for other pathology. In the challenge, these masks

with exclusion labels were ignored during performance evaluation. However, we included

these masks as parts of non-lesion tissue, during the calculation of the performance met-

rics, for a more stringent evaluation in the presence of pathologies. The WMH volume

ranges (excluding other pathologies) are 845 - 74991 mm3 (median: 26240 mm3) for

UMC Utrecht, 786 - 61332 mm3 (median: 17795 mm3) for NUHS Singapore and 1522 -

43528 mm3 (median: 6015 mm3) for VU Amsterdam, and the brain volumes are 1257820

- 1844920 mm3 (median 1473389 mm3) for UMC Utrecht, 1147248 - 1532268 mm3 (me-

dian: 1351325 mm3) for NUHS Singapore and 1219614 - 1787321 mm3 (median: 1441201

mm3) for VU Amsterdam. For more details regarding MRI acquisition parameters and

the image dimension details, refer http://wmh.isi.uu.nl/. Also, in the challenge the

performance metrics were calculated on independent unseen test datasets. Since we

did not participate in the challenge, we used publicly available training datasets for

evaluation, using leave-one-out cross validation. Therefore, our results are not directly

comparable with those published after the outcome of the challenge, as they are not

relative to the unseen test data used in the challenge.

2.2. Image preprocessing

We skull stripped the images (used for intensity features) using FSL BET (Smith, 2002),

followed by bias field correction using FSL FAST (Zhang et al., 2001). Diffusion-weighted

images in datasets 2, 3, 4 were pre-processed as described in Zamboni et al., 2019 to

extract mean diffusivity (MD) map, used as additional intensity feature. We registered

the image modalities to the base modality (in our case, FLAIR for all datasets) using

linear rigid-body registration with FSL FLIRT (Jenkinson and Smith, 2001). We also

calculated the transformation between the subject’s native space and the MNI space,

required by BIANCA for determining spatial features. For all the experiments presented

in this work we used linear registration, calculated with FSL FLIRT, for estimating MNI

coordinates as spatial features. However, we also tested the effect of using non-linear reg-

istration, obtaining negligible change in BIANCA performance (refer to supplementary
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material for more details).

2.3. BIANCA features and training options

Currently, default options in BIANCA are: spatial weighting (sw) = 1, no patch, location

of training points = any location for non-WMH training points, number of training points

= Fixed + equal with 2000 training points. For more details regarding the BIANCA

options, refer Griffanti et al., 2016.

For NDGEN, we used FLAIR + T1 as features. Other than the default options, we

used the following non-default options: location of training points = no border, number

of training points = Fixed + unbalanced with 2000 lesion points and 10,000 non-lesion

points. For OXVASC we used FLAIR + T1 + MD as features. The non-default options

used were: sw = 2, 3D patch with patch size of 3. For CADASIL and HC, we used the

same features and BIANCA options used for OXVASC except spatial weighting. We

excluded spatial features by setting sw = 0 for these two datasets. For MWSC dataset,

we trained BIANCA separately on the three datasets (UMC Utrecht, NUHS Singapore

and VU Amsterdam), using the same features and BIANCA options used for NDGEN.

2.4. Use of population-level parametric lesion probability map

(PPLPM)

Population-level parametric lesion probability maps (PPLPMs) describe the pattern of

lesion distribution with respect to a specific parametric factor. Therefore, they could

provide useful additional information to improve lesion segmentation. For our experi-

ments in this work, we considered age as our parametric factor of interest, since a clear

relationship has been established between age and WMH distribution (Simoni et al.,

2012; Vannorsdall et al., 2009).

We modelled the PPLPM with respect to age within a population consisting of

474 subjects, as described in our previous work (Sundaresan et al., 2019). Briefly, our

Bayesian spline model takes binary lesion maps of individual subjects of the population

as inputs and generates a 4D parametric lesion probability map, with age (grouped at
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Figure 2: Parametric lesion probability maps at two example points in the parametric dimension,
corresponding to two age groups (all the images are shown at z = 45 in MNI space, (a); in the younger
age group (29 - 31 years, b) the lesion probability is very low throughout the brain, while in the older
age group (59 - 61 years, c) the lesion probability is higher, especially in the periventricular regions.

intervals of 3 years) along the 4th dimension. The resulting parametric lesion probability

map indicates the probability of lesion occurrence at a specific age group at each voxel.

Figure 2 shows the PPLPM at two example age groups, corresponding to 29-31 years

and 59-61 years.

We used the PPLPM in BIANCA in two ways: either as an additional feature to

the KNN classifier, or post-multiplying the PPLPM with the subject’s lesion probability

map that is obtained using BIANCA with existing features.

For the first experiment, we implemented the PPLPM in BIANCA as follows: (1) we

included the PPLPM (a 4D volume in the MNI space with the 4th dimension representing

different age groups) as an additional input, (2) we included age as an extra input in

BIANCA and used it to select the appropriate 3D map from the PPLPM corresponding

to the specific age group and (3) we transformed the 3D map from the MNI space to

the subject’s native space non-linearly using FSL FNIRT (Andersson et al., 2007) before

extracting its probability values as features to be used by the KNN classifier. For the

second experiment, we multiplied the age-specific 3D map from PPLPM, transformed

to the subject’s native space, with lesion probability map obtained from BIANCA (with

the existing options and no additional features). We also tested the effect of the average

3D map across all age groups instead of the age-specific one.
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We performed both experiments on the NDGEN dataset (keeping all the other op-

tions constant, as optimised in Griffanti et al., 2016 and specified in section BIANCA

features and training options), and evaluated the performance with respect to the man-

ual masks as described in section Performance evaluation metrics.

2.5. Comparison of alternative classifiers within BIANCA

Currently, BIANCA is based on the KNN algorithm. In this work we assessed the

performance of four other classifiers: random forest (RF), neural networks (NN), support

vector machine (SVM) and adaboost (AB). First we optimised the parameters for each

classifier based on the area under the curve values from ROC curves, and then compared

their results with KNN. Table - 1 provides the list of available parameters (from the

python scikit-learn package) and the parameters that were considered for tuning in the

optimisation step.

Figure 3: Examples of subjects with different WMH lesion loads used for parameter tuning of the
classifiers: (a) low, (b) medium, (c) high and (d) very high lesion load. The manually segmented lesion
volumes for low, medium, high and very high lesion loads are 5409 mm3, 21005 mm3, 50585 mm3 and
89259 mm3 respectively.

For initial parameter tuning, we selected four subjects from the NDGEN dataset

with four different lesion loads: low, medium, high and very high (ranging from 5409

- 89259 mm3, see figure 3). After optimisation, we applied the four classifiers on the

remaining 17 subjects from the NDGEN dataset (keeping all the other options constant,

as specified in section BIANCA features and training options) and evaluated the perfor-

mance with respect to the manual masks as specified in section Performance evaluation

metrics. In order to test the consistency of the results across various cohorts, we tested
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Classifier
Available main parameters and
default values

Values of parameters
considered for tuning

Random
forest (RF)

No. of trees - 10
Criteria for splitting - MSE
Maximum depth of trees - Till the
leaves are pure
Minimum no. of samples required for
a split - 2
Minimum samples at each leaf node - 1
Maximum number of features for each
tree - No. of features
Minimum impurity measure at each
split - 1 × 10−7

Boostraping done - True
Out-of-bag error score - False

No. of trees - 20, 30, 40, 50,
100, 1000 (results for larger
no. of trees shown in the
supplementary material)
Minimum samples at each
leaf node - 200, 400, 500,
600, 800, 1000
Minimum impurity
measure at each split -
1×10−7, 1×10−6, 1×10−5,
1× 10−4, 1× 10−3, 1× 10−2

Maximum depth of trees -
25, 50, 100

Neural
network
(NN)

No. of neurons in a hidden layer - 100
Activation function - RELU
Output activation function - Logistic
sigmoid
Solver - ADAM
(β1 = 0.9, β2 = 0.999, ε = 1 × 10−8 )
No dropout
L2 regularization, Alpha - 1 × 10−4

Change in learning rate - Constant
Initial learning rate - 1 × 10−3

Maximum no. of iterations - 200
Tolerance - 1 × 10−4

Momentum - 0.9
Fraction of samples for validation - 0.1

No. of neurons in a hidden
layer - 100, 120, 150
Solver - LBFGS, ADAM
Initial learning rate -
1 × 10−4, 1 × 10−3

Maximum no. of iterations
- 1000, 1500, 1800
Tolerance - 1 × 10−4,
1 × 10−3, 1 × 10−2

Support
vector
machine
(SVM)

Type of kernel - Radial basis function
(RBF)
γ - 1/(no.of features)
Tolerance - 1 × 10−3

C-value - 1.0
Epsilon - 0.1
Maximum no. of iterations - Until
convergence

γ - 0.001, 0.01, 0.1, 1.0, 10
C-value - 0.1, 1.0, 10
Maximum no. of iterations
- 1000, 2000, 3000, 5000,
6000

Adaboost
classifier
(AB)

Base estimator - Decision Tree
Regressor
No. of trees in base estimator - 1
No. of estimators - 50
Learning rate - 1.0
Loss function - Linear

No. of trees in base
estimator - 2
No. of estimators - 30, 40,
50
Learning rate - 0.5, 0.75, 1
Loss function - linear,
exponential, square

Table 1: Parameters considered for tuning different classifiers
11



the performance of the best performing alternative classifiers in the three cohorts from

MWSC dataset (refer to the supplementary material for more details).

2.6. LOCally Adaptive Threshold Estimation (LOCATE)

In order to overcome the impact of spatial heterogeneity of lesion probabilities due to

changes in lesion contrast, load and distribution on the final thresholded WMH map, we

propose a method that determines spatially adaptive thresholds at different regions of

the lesion probability map. LOCATE (LOCally Adaptive Threshold Estimation) takes

as input the subject-level lesion probability map obtained from a lesion segmentation

algorithm (in our case, BIANCA run with the options specified in section BIANCA

features and training options) and estimates local thresholds in three steps by dividing

the lesion probability map into sub-regions (using Voronoi tessellation), extracting lo-

cal characteristics (features) within those sub-regions and estimating the optimal local

threshold values based on the extracted features using a supervised learning method.

2.6.1. Voronoi tessellation and feature extraction

Firstly, we detected local maxima points Mi, where i = 1...N on the lesion probability

map to identify the plausible lesion locations (indicated by red dots in figure 4b). In

order to avoid spurious local maxima points due to isolated voxels, we applied a small

amount of spatial smoothing to the lesion probability map with a Gaussian filter, prior

to local maxima detection. The FWHM size of the Gaussian kernel was empirically

chosen to be 1.2 voxels (with standard deviation, σ = 0.5 voxels).

We then tessellated the lesion probability map based on local maxima Mi into N

Voronoi polygons Vi, (figure 4c) around the maxima Mi. In order to ensure that our

Voronoi polygons are within the region of interest (in our case, the brain white matter),

we constrained the Voronoi polygons within a white matter mask obtained from a dilated

and inverted CSF tissue segmentation, combined with other deep grey exclusion masks,

as described in Griffanti et al., 2016.

Within each Voronoi polygon Vi, we applied different levels of thresholds (Th) from
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Figure 4: LOCally Adaptive Threshold Estimation (LOCATE). (a) FLAIR image; (b) detection of
local maxima (Mi, red dots) on the smoothed lesion probability map (blue-yellow); (c) Voronoi spaces
Vi around local maxima points (indicated by random colours); (d) threshold map showing the local
threshold values obtained from the regression model; (e) histogram of thresholds Th opt; (f) final
binary lesion map obtained by applying the thresholds (d) on the lesion probability map (b); (g) binary
lesion map obtained by applying a global threshold of 0.9.

0 to 0.9 with incremental steps of 0.05, and extracted the following features at each Th:

1. Mean greyscale intensity of the image used to identify the lesions (in our case,

FLAIR) within the thresholded region.

2. Distance between the ventricles and the center of gravity of the thresholded re-

gion. Lateral ventricles were segmented from T1 images as described in Griffanti

et al., 2017 and the distance from the ventricle mask was calculated using the FSL

command distancemap).

3. Volume of the thresholded region.

For tessellating the lesion map into sub-regions, we also experimented with simple

linear iterative clustering (SLIC) and observed that LOCATE is robust to the method

used for tessellation (refer to supplementary material for experiment details and results).

Due to lack of a simple relationship between the features and the thresholds (figure 5),

we determined the optimal local threshold for each Vi using a random forest (Breiman,

13



Figure 5: Features extracted from each Voronoi polygon plotted against the threshold values for 21
subjects from the NDGEN dataset: (a) volume of individual lesion region, (b) mean greyscale intensity
and (c) distance of the centre of gravity from the ventricles mask. A simple straightforward relationship
was not found between the features and the thresholds, indicating the need for a machine learning based
method.

2001) regression model with 1000 trees and min leaf size of 5.

Training phase: For each Vi, among the set of thresholds Th we determined the

highest value Thmax at which we obtained the best similarity index with respect to the

manually segmented binary lesion mask. We then trained the random forest regression

model with the above features against Thmax.

Testing phase: We applied the trained regression model to get the optimal threshold

Th opt for each Vi in the test images. Figure 4d shows an instance of Th opt map.

Note that the periventricular region shows higher threshold values compared to the

deep region, indicating the variation in lesion probabilities. Moreover, the histogram of

thresholds Th opt (figure 4e) obtained for an individual image shows a wider range of

local threshold values depending on the local lesion characteristics and spatial distribu-

tion. As a final step, we thresholded the lesion probability map within each Vi using the

corresponding Th opt to get the final binary lesion map (figure 4f).

2.6.2. LOCATE evaluation and validation

We initially evaluated LOCATE using leave-one-out testing independently on the ND-

GEN, OXVASC and MWSC datasets on the outputs from BIANCA obtained using

features and options specified in the section BIANCA features and training options. LO-

CATE performance was tested against the manual segmentation and against the results
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obtained using the optimal global threshold using the metrics described in section Per-

formance evaluation metrics. In order to evaluate LOCATE performance in lesions with

different characteristics, we additionally calculated the performance metrics in periven-

tricular and deep lesions separately. We also performed ANOVA on the performance

metrics to observe the main and interaction effects on the measures. We adopted the 10

mm distance rule: clusters within 10 mm distance from the ventricles were considered

as periventricular lesions, otherwise as deep lesions (DeCarli et al., 2005). While there

are other criteria available for identifying deep and periventricular lesions, the 10 mm

distance rule is more suitable for automatic implementation, it is commonly used and

agrees with the human rater, even in most of the confluent lesion cases (Griffanti et al.,

2017).

We used CADASIL and HC datasets to further validate the robustness of LOCATE

with respect to lesion load and the flexibility of LOCATE with respect to the training

dataset. In fact, they represent two very different scenarios from the datasets tested so

far. The subjects in the CADASIL dataset have a very different lesion pattern and, on

average, a higher lesion load than the other datasets, while HC have negligible lesion

loads. Moreover, since manual segmentation was not available for these datasets, we

used the OXVASC dataset for training (both for obtaining the lesion probability map

with KNN using the same features/options, and for LOCATE) since the images were

acquired using the same MRI protocol. The output obtained with LOCATE on these

datasets was qualitatively evaluated and quantitatively compared with the lesion mask

obtained by applying the optimal global threshold (0.9), determined with leave-one-out

on the training dataset. In addition, on the CADASIL subjects, we compared LOCATE

output with the mask obtained by applying a lower global threshold (0.2). This threshold

was empirically chosen (based on visual inspection of the lesion probability map) by an

expert neurologist [CLH] as the optimal global threshold for this specific dataset. Using

this comparative analysis, we explored the possibility of using LOCATE on different

cohorts and various lesion loads, having a very different optimal global threshold from

the pre-established value of 0.9. Also, by using CADASIL and HC datasets, we aimed

to observe the effect of the difference in the lesion characteristics between patient group
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(CADASIL) and controls (HC) on thresholds obtained from LOCATE.

2.7. Performance evaluation metrics

We evaluated the lesion segmentation results using the following overlap measures and

detection rates:

• Dice Similarity Index (SI): calculated as 2 × (true positive lesion voxels) / (true

lesion voxels + positive voxels). True lesion voxels refer to the lesion voxels in the

manual segmentation and positive lesion voxels are the voxels labelled as lesions

by the classifier. We used SI to generate SI plots at different thresholds and to

perform paired t-tests between existing BIANCA and all the options used in the

experiments described in the above sections.

• True positive rate (TPR): number of true positive lesion voxels divided by the

number of true lesion voxels

• False positive rate (FPR): number of false positive lesion voxels (voxels incorrectly

labelled as lesion) divided by the number of non-lesion voxels. We used TPR

and FPR in order to plot ROC curves for evaluating the segmentation of existing

BIANCA and all the options used in the experiments.

• Cluster-level true positive rates in deep and periventricular white matter: number

of true positive lesions divided by total number of true lesions, calculated sepa-

rately for deep and periventricular lesions. We used this metric to evaluate the

robustness of LOCATE and to perform paired t-test between the global threshold

and LOCATE results.
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3. Results

3.1. Use of population-level parametric lesion probability map

(PPLPM)

Figure 6 shows the ROC curves and SI plots at different thresholds for our experiments

using the PPLPM with respect to age on the NDGEN dataset. Using PPLPM as an

additional feature does not improve the performance of BIANCA, although the use of the

age-specific 3D map (figure 6a) still gives better results than the use of an average map

across all age groups (figure 6b). When the PPLPM is post-multiplied with the subject’s

lesion probability map (figure 6c), the TPR and SI values are very low, especially at

higher thresholds.

The optimal threshold for the existing version of BIANCA for this dataset was found

to be 0.9 (Griffanti et al., 2016). After adding the age-specific 3D map as a new feature,

we still found 0.9 to be the optimal threshold for both age-specific and average cases,

while for the post-multiplication case the optimal threshold was 0.1. The paired t-

test showed significantly higher SI values for existing BIANCA (at the threshold of

0.9) compared to all cases using the parametric map (p = 0.02 for age-specific map as

feature, threshold 0.9; p = 0.002 for average map as feature, threshold 0.9; p<0.001 for

the post-multiplication, threshold 0.1).

3.2. Comparison of alternative classifiers within BIANCA

Table 2 lists the best performing set of parameters that were obtained for each classifier

on the four subjects selected from the NDGEN dataset in the optimisation phase, when

we tested using the area under the curve values for all possible combinations of the

parameter values listed in table 1.

Figure 7 shows the ROC curves and SI plots for the four classifiers (RF, NN, SVM,

AB) using the best and the default set of parameters, with respect to KNN, on the

remaining 17 subjects from the NDGEN dataset. From the ROC curves and SI indices,

overall KNN performs better than other classifiers, even for their best set of parameters
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Figure 6: ROC (left) and SI (right) curves in the case of use of PPLPM when (a) the age-specific 3D
map is added as an additional feature (light blue), (b) the average 3D map is added as an additional
feature (yellow), and (c) when age-specific 3D map is post-multiplied with BIANCA lesion probability
map (grey). The curves corresponding to the existing BIANCA results (Griffanti et al., 2016) are shown
in red for comparison in all the three cases.

and using the optimal threshold for each classifier. Paired t-test results showed that SI

values from KNN (mean SI = 0.77 ± 0.10 at a threshold of 0.9) are significantly higher
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Figure 7: ROC curves (left) and SI curves (right) for alternative classifiers: (a) random forest (RF), (b)
neural network (NN), (c) support vector machine (SVM) and (d) adaboost classifier (AB). Results are
shown for each classifier’s best (blue solid line) and default parameters (blue dashed lines) along with
the results for KNN classifier, currently used in BIANCA (red solid line).19



than those of RF (p = 0.02, mean SI for RF = 0.76 ± 0.10 at a threshold of 0.9), SVM

(p < 0.001, mean SI for SVM = 0.75 ± 0.10 at a threshold of 0.3) and AB (p < 0.001,

mean SI for AB = 0.65 ± 0.12 at a threshold of 0.7), while SI values using NN are not

significantly different from KNN (p = 0.32, mean SI for NN = 0.75 ± 0.09 at a threshold

of 0.8). Similar results were obtained on the MWSC datasets: on NUHS Singapore and

UMC Utrecht cohorts KNN performed significantly better than NN and AB, and similar

to RF. On VU Amsterdam cohort, SI values obtained using the KNN classifier were not

significantly different from those obtained with all alternative classifiers. For more details

on these results and relative plots, refer to the supplementary material.

3.3. LOCally Adaptive Threshold Estimation (LOCATE)

Figures 8 and 9 illustrate examples of BIANCA results with LOCATE outputs compared

to outputs with global threshold and the manual segmentation in various datasets. LO-

CATE detected more deep lesions (Fig. 8c, d and Fig. 9b, and frontal region of d) and

segmented periventricular lesions better (Fig. 8a, b, d and Fig. 9a) with respect to the

manual segmentation. The additional lesions detected by LOCATE with respect to

Classifier Best performing set of parameters

Random forest (RF)

No. of trees - 50
Min. samples at each leaf node - 400
Min. impurity measure at each split - 1 × 10−3

Max. depth of trees - 25

Neural network (NN)

No. of neurons in a hidden layer - 100
Solver - LBFGS, Initial learning rate - 1 × 10−3

Max. no. of iterations - 1800
Tolerance - 1 × 10−3

Support vector machine
(SVM)

γ - 1.0
C-value - 1.0
Max. no. of iterations - 5000

Adaboost classifier (AB)

No. of trees in base estimator - 2
No. of estimators - 30
Learning rate - 1.0
Loss function - exponential

Table 2: Best performing set of parameters for different classifiers

20



manual segmentation in 8b, c, d did not represent false positives as they were labelled

as lesions by the manual segmentation in adjacent slices. In MWSC datasets LOCATE

segments the lesions in the temporal regions with better accuracy (Fig. 9c) compared to

global threshold, which misses a few well-defined lesions in that region.

Figure 10 shows the ROC curves and SI plots for BIANCA at various global thresh-

olds and using LOCATE for NDGEN, OXVASC and MWSC datasets. The SI values

obtained with LOCATE were not significantly different according to the paired t-test

to those obtained with global thresholding values of 0.9 for NDGEN (LOCATE SI =

0.77 ± 0.10; global threshold SI = 0.77 ± 0.08, p = 0.94), OXVASC (LOCATE SI =

0.75 ± 0.14; global threshold SI = 0.74 ± 0.11, p = 0.94) and MWSC (UMC Utrecht:

LOCATE SI = 0.64 ± 0.23, global threshold SI = 0.63 ± 0.22, p = 0.29, NUHS Sin-

gapore: LOCATE SI = 0.73 ± 0.13, global threshold SI = 0.74 ± 0.14, p = 0.93, VU

Amsterdam LOCATE SI = 0.70 ± 0.09, global threshold SI = 0.70 ± 0.09, p = 0.46)

datasets. However, in terms of detection rates, LOCATE gave an increase in voxel-wise

TPR (0.03 for the NDGEN and 0.10 for the OXVASC) with a negligible increase in FPR

(0.001 for the NDGEN and 0.002 for the OXVASC) compared to the global threshold

of 0.9. In case of the MWSC, the voxel-wise TPR showed negligible difference between

LOCATE and global thresholding results, despite a small increase in FPR. It is worth

noting that for MWSC datasets, we obtained the above results on the publicly available

training datasets (using leave-one-out cross validation), while in the challenge the eval-

uation was done on the held out test dataset and hence the performance of our method

could change depending on the dataset characteristics.

Figure 11 shows the cluster-wise TPR plots for NDGEN, OXVASC and 3 cohorts of

MWSC respectively. We performed 2-way repeated measures ANOVA considering region

(deep and periventricular) and method (LOCATE and Global thresholding at 0.9) as

independent factors and cluster-wise TPR as the dependent measure. We determined

the main effect of region and method, along with the effect of their interaction, on

cluster-wise TPR values. Table 3 reports the descriptive statistics and ANOVA results

for comparison of cluster-wise TPR values. We observed a significant main effect of

method for all datasets, with cluster-wise TPR always higher for LOCATE than global
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Figure 8: Example results of LOCATE for (a) low, (b) medium, (c) high and (d) very high lesion load
(a,d from the OXVASC; b,c from the NDGEN datasets). Manual segmentation (green) is shown along
with outputs of global thresholding at 0.9 (light blue) and LOCATE (yellow). LOCATE provides better
segmentation in deep (c, d) and periventricular white matter lesions (a, b, d) when compared to global
thresholding.
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Figure 9: Example results of BIANCA with locate (yellow) and global thresholding (blue), compared
to the manual segmentation (green). The corresponding threshold maps are shown in red-yellow (note
the heterogeneity of lesion probabilities shown in the brain white matter).

thresholding. The main effect of region was significant only for MWSC cohorts: cluster-

wise TPR was not significantly different between periventricular and deep regions in

NDGEN and OXVASC, while it was significantly higher in periventricular than deep

regions for MWSC cohorts. In these cohorts we also observed a significant interaction

effect: the increase in cluster-wise TPR using LOCATE with respect to global threshold

was higher in the deep regions compared to periventricular regions. For the similar

comparative analysis and ANOVA results on other measures such as TPR, FPR and SI
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Figure 10: Comparison of ROC curves, SI plots for LOCATE and global thresholding. ROC curves (a),
SI indices (b) for NDGEN, OXVASC and MWSC (VU Amsterdam, NUHS Singapore, UMC Utrecht)
datasets.
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Figure 11: Comparison of cluster-wise true positive rates in periventricular and deep region for LOCATE
and global thresholding. Cluster-wise true positive rates in periventricular (a) and deep (b) regions
shown for NDGEN, OXVASC and MWSC (VU Amsterdam, NUHS Singapore, UMC Utrecht) datasets.
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NDGEN OXVASC
VU

Amsterdam
NUHS

Singapore
UMC

Utrecht

D
es

cr
ip

ti
v
e

st
a
ti

st
ic

s

Deep
region

LOCATE 0.85 ± 0.08 0.67 ± 0.16 0.71 ± 0.09 0.69 ± 0.13 0.64 ± 0.22

Global 0.9 0.80 ± 0.09 0.56 ± 0.16 0.67 ± 0.10 0.64 ± 0.14 0.58 ± 0.23

Peri-
venticular
region

LOCATE 0.86 ± 0.09 0.66 ± 0.16 0.86 ± 0.08 0.87 ± 0.09 0.72 ± 0.21

Global 0.9 0.83 ± 0.11 0.52 ± 0.18 0.85 ± 0.08 0.85 ± 0.09 0.70 ± 0.23

A
N

O
V

A

Main effect of region
(deep/PV regions)

F(1,19)=0.22
p=0.64
η2p=0.011

F(1,16)=0.44
p=0.51
η2p=0.027

F(1,19)=48.7
p<0.001
η2p=0.719

F(1,19)=31.5
p<0.001
η2p=0.623

F(1,19)=9.3
p=0.007
η2p=0.327

Main effect of method
(LOCATE/Global 0.9)

F(1,19)=38.3
p<0.001
η2p=0.668

F(1,16)=83.5
p<0.001
η2p=0.839

F(1,19)=31.9
p<0.001
η2p=0.627

F(1,19)=50.1
p<0.001
η2p=0.725

F(1,19)=34.6
p<0.001
η2p=0.646

Interaction
(region * method)

F(1,19)=0.22
p=0.65
η2p=0.011

F(1,16)=0.69
p=0.42
η2p=0.041

F(1,19)=17.7
p<0.001
η2p=0.482

F(1,19)=16.3
p=0.001
η2p=0.462

F(1,19)=10.8
p=0.004
η2p=0.362

Table 3: Descriptive statistics and ANOVA results for comparison of cluster-wise TPR values for
global threshold of 0.9 and LOCATE in periventricular and deep regions for MWSC datasets.

values for the above datasets, refer to the supplementary material.

Figure 12 illustrates the results of lesion segmentation by applying LOCATE on

the CADASIL dataset. Since CADASIL patients have different lesion characteristics

compared to those in the OXVASC dataset (different lesion location and very high

lesion loads), applying the global threshold of 0.9 that was determined in the training

phase on the OXVASC dataset yields poorly segmented binary lesion maps (figure 12b).

The global threshold visually determined as optimal (by an expert neurologist CLH)

was 0.2 (figure 12c), however this leads to increased false positives in some cases, as

shown in the third case of figure 12c. LOCATE provides a much better segmentation

and detects the lesions in the temporal lobe, typical of the pathology (figure 12d). A

similar comparison of LOCATE results with those of global thresholding at 0.9 on the

HC dataset is shown in figure 13.

When the binary lesion maps obtained using the optimal global threshold value of

0.2 is used as the reference segmentation, the paired t-test results show that the SI

values obtained for CADASIL with LOCATE (SI = 0.79 ± 0.01) are significantly higher

than those obtained using a global threshold at 0.9 (SI = 0.57 ± 0.10, p<0.001). For

26



Figure 12: Example results of LOCATE on the CADASIL data. (a) FLAIR image, (b) global thresh-
olding at 0.9 (light blue), (c) global thresholding at 0.2 (dark blue), (d) LOCATE results (yellow) and
(e) threshold maps obtained from LOCATE (red-yellow). Note that the threshold maps shows the
heterogeneity in the lesions probabilities in various regions of the white matter.

CADASIL, using LOCATE increases the voxel-wise TPR by 0.48 for a constant FPR of

0.00.

The Bland-Altman plots in figure 14 show the agreement in lesion volumes for global

threshold (a) and LOCATE (b) with respect to the reference segmentation for the above
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Figure 13: Example results of LOCATE on the HC data. (a) FLAIR image, (b) global thresholding at
0.9 (light blue), (c) LOCATE results (yellow) and (d) threshold maps obtained from LOCATE (red-
yellow). Note that the threshold maps shows the heterogeneity in the lesions probabilities in various
regions of white matter.

datasets. From the figure, it can be seen that there is not much scope for improvement

in NDGEN and VU Amsterdam, however LOCATE shows improvement for OXVASC,
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NUHS Singapore and UMC Utrecht both in terms of slope and limits of agreement.
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To summarise the effect of LOCATE on different datasets, figure 15 shows boxplots

of local threshold values determined by LOCATE for the five datasets (also individually

for the three MWSC datasets), along with the optimal global threshold values for each

dataset. The median threshold values of NDGEN, MWSC and HC datasets are higher

than other two datasets, especially the CADASIL dataset. LOCATE assigned higher

thresholds for datasets with lower lesion load (HC and NDGEN, which contains 30% of

healthy subjects) and lower thresholds for datasets with higher lesion load (OXVASC

and especially CADASIL). This is also observable from the thresholded maps shown

in figure 12e and figure 13d. Interestingly, the medians of LOCATE thresholds for

the OXVASC and CADASIL datasets are also quite different from their corresponding

optimal global thresholds and the ranges of thresholds obtained from LOCATE are wider

(excluding the outliers), when compared to the other datasets. This could be due to the

different sequence characteristics (e.g. lower resolution) and pathological characteristics

(high amount of small vessel disease) of both these datasets with respect to the others.

Figure 15: Boxplots of local thresholds obtained from the random forest regression model in LOCATE.
The optimal global thresholds determined manually are shown in red circles. The mean values of local
thresholds obtained from LOCATE are shown in black circles.

In line with the results of the paired t-test, the largest improvement in SI corresponds

to the largest difference between the LOCATE threshold and the global threshold. In

the case of the HC dataset, the median of local thresholds obtained from LOCATE is

very close to the optimal threshold of 0.9, thus showing only a slight improvement in the
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lesion segmentation. This is also evident from figure 13, where LOCATE results appear

very similar to the results of global thresholding at 0.9 (figure 13b and 13c).

4. Discussion

In this work, we studied the effect of single-subject and population-level heterogene-

ity in amount, location and characteristics of WMH on the performance of BIANCA,

with the aim of improving both the classification and the thresholding steps. At the

classification step, we analysed the effect on the subject-level lesion probability maps of

using population-level lesion probability map (PPLPM, with age as factor of interest)

and of using alternative classifiers, which have been previously used for this task in the

literature. For thresholding the lesion probability map, as an alternative to selecting a

global threshold, we proposed LOCATE, a method to determine local thresholds that

are sensitive to spatial differences in the lesion probabilities, giving more accurate binary

lesion masks.

We observed the effect of using the PPLPM and found that post-multiplying the age-

specific 3D map with the lesion probability map performs worse than adding the PPLPM

as an additional feature. This is because PPLPM indicates the likelihood of finding a

lesion at a given location in a population, informed primarily by the anatomy of disease

signs. On the other hand, the subject-level probability map reflects the probability of

identifying a lesion versus the normal tissue and is primarily determined by the intensity

contrasts and noise in the image. For instance, in our previous work (Sundaresan et al.,

2019) we showed that in PPLPM the lesion probabilities typically increase more in the

periventricular WM than in the deep WM in the elder population (which is in line with

the existing literature Simoni et al., 2012; Van Den Heuvel et al., 2004; Sabayan et al.,

2015). Therefore, post-multiplying the PPLPM with the subject-level lesion probability

map can bias the subject-level lesion probabilities more towards the periventricular le-

sions, irrespective of the local spatial characteristics in the images from the individual

subject. However, when we provide the PPLPM as an additional feature, the classifier

assigns sensible lesion probability values taking into account the PPLPM as well as the
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image intensity contrasts for the different modalities and the spatial coordinates. Par-

ticularly, we observed that adding age-specific map as an additional feature gives better

results than the average map, since the former models the lesion probabilities for the

subject’s age group specifically and hence is more accurate. Overall we observed that, at

present, using the PPLPM does not improve significantly the performance of BIANCA

(also evident from the p-values of our t-test results). Hence, our current recommenda-

tion is that PPLPM (with age as parameter of interest) is not necessary for improving

BIANCA segmentation.

However, the way this option will be implemented in a future release of BIANCA

is quite flexible and will allow the user to use any 4D PPLPM with respect to any

other factor of interest, which could improve the segmentation in their specific dataset.

Also, it is worth noting that before using this option, the user needs to ensure if the

demographics of the test dataset are comparable to those of the population used to

model the PPLPM.

The results on the comparison between KNN and other classifiers showed that KNN

provided better segmentation. For the same set of features (excluding the PPLPM),

we observed that SVM and AB classifiers provided significantly lower SI than KNN,

especially at higher thresholds. On the other hand, SI values for RF and NN followed

a similar trend to KNN with relatively similar SI values (figure 7). In the NDGEN

dataset, SI values for RF were still significantly lower than KNN, while NN gave SI

values that were not significantly different from KNN. In the MWSC dataset, SI values

obtained using KNN did not differ significantly from those of RF in all cohorts and from

those of NN in the VU Amsterdam cohort (refer to the supplementary material for the

details). Moreover, for a given FPR, KNN has a higher TPR compared to any other

classifier, indicating that KNN detects more true lesions than other classifiers. However,

since NN and RF have the potential to perform as well as KNN, they will be included

as alternative classifiers in a future release of BIANCA. At this point, it is worth noting

that irrespective of the classifier used, there is a certain degree of uncertainty associated

with the manual segmentation - they are an approximation to the real ground truth,

meaning that very fine discrimination may reflect errors in the manual segmentation
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rather than errors in the automated classification results.

Regarding the improvements at the thresholding step with LOCATE, the initial

leave-one-subject-out results of LOCATE on NDGEN, OXVASC and MWSC datasets

showed improvement in BIANCA segmentation for all datasets. LOCATE detected

more true positive lesions, especially in the deep white matter, and provided better

delineation of the lesions with respect to the manual segmentation as indicated by the

improved SI values and the visual results shown in figures 8 and 9. Since BIANCA is

currently not optimized for segmentation of (juxta)cortical, cerebellar and subcortical

lesions, we could not further evaluate LOCATE performance in these areas, since they

are not included in BIANCA output.

LOCATE provided results comparable with global threshold, irrespective of changes

in the acquisition protocols and image characteristics in MWSC dataset. Top ranking

methods for MICCAI WMH segmentation challenge are based on Deep Stack Networks

and Ensemble Learning (Li et al., 2018), Multi-dimensional Gated Recurrent Units (An-

dermatt et al., 2016) and a modified location sensitive deep convolutional neural network

(Berseth). The methods were ranked based on the set of performance metrics described

in http://wmh.isi.uu.nl/, including SI values (Dice) and cluster-wise true positive

rate (Sensitivity of individual lesions). We achieved an average SI value of 0.70 for both

LOCATE and global thresholding, while the top ranking methods achieved SI values of

0.80, 0.78 and 0.77. Also, we achieved cluster-wise true positive rate of 0.75 with LO-

CATE and 0.71 with global thresholding, while the top ranking methods achieved 0.87,

0.83 and 0.73. Therefore, LOCATE gives a better cluster-wise TPR when compared

to global threshold and the third ranking method in the challenge. However, a direct

comparison would not be possible since the results of the top ranking methods were

determined on the independent test datasets, while our results were obtained on leave-

one-out validation on the MWSC training datasets that are publicly available. Also, we

retained the regions corresponding to other pathologies for a more stringent evaluation,

while these regions were ignored during evaluation in the MICCAI challenge.

Our validation of LOCATE on CADASIL and HC datasets proves that LOCATE

is robust with respect to variations in lesion load and location without the need to
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retrain both BIANCA and LOCATE. In fact, LOCATE can be trained on any data

having the same modalities, acquired with the same sequence to the test dataset. For

instance, we used the OXVASC dataset to train LOCATE for testing it on the CADASIL

dataset since both datasets were acquired with the same sequences. The pattern of

lesions for CADASIL subjects differs from that of vascular subjects in the OXVASC

dataset, as CADASIL subjects, in addition to the normal distribution of WMH seen in

SVD, will typically have lesions within the external capsule and anterior temporal lobes

(Chabriat et al., 2009). Due to this variability in lesion characteristics and pattern,

training BIANCA on the OXVASC dataset yields very low lesion probabilities in the

temporal regions. Reflecting these lower lesion probabilities, the thresholds map from

LOCATE (figure 12) shows much lower threshold values, especially in the temporal

regions in the CADASIL images. Therefore LOCATE yields much better segmentation

performance (SI = 0.79) compared to a global threshold of 0.9 (SI = 0.57), when the

lesion probability map thresholded at 0.2 was considered as the reference segmentation.

Moreover, LOCATE results on CADASIL showed a substantial increase of 0.48 in TPR

without an increase in FPR, due to the detection of more lesions in the temporal region.

This indicates that LOCATE takes into account different lesion patterns and hence

can be used in different pathologies. Also, compared with the approaches proposed by

Ling et al., 2018, LOCATE overcomes the need for manually determining thresholds for

individual subjects on the CADASIL dataset, while still providing similar SI values and

comparable limits of agreement with the gold standard on Bland-Altman plot (figure 14

versus Ling et al., 2018, figure 7, col. 3).

The threshold maps obtained from LOCATE for the HC dataset show higher thresh-

olds when compared with the CADASIL dataset. This is due to the fact that HC

have mostly periventricular lesions (that are common in healthy ageing) that are usu-

ally assigned higher probabilities. Hence by using higher threshold values, LOCATE

gives results that appear visually similar to the global thresholding at 0.9, detecting

mostly periventricular lesions. While the threshold maps from LOCATE (figure 12 and

13) provide information regarding the spatial heterogeneity of lesion probabilities, box-

plots of thresholds shown in figure 15 show the overall characteristics of the datasets.
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The improvement in segmentation performance is more prominent in the OXVASC and

CADASIL datasets when compared to the NDGEN, MWSC and HC datasets. This is

reflected in their corresponding optimal global thresholds being very different from the

median of their LOCATE thresholds. LOCATE results on the five datasets, especially

the HC dataset (which has negligible lesion load compared with the CADASIL subjects)

show that LOCATE is more adaptive to the variation in the global lesion load in addi-

tion to the spatial heterogeneity in lesion probabilities, compared to global thresholding

(shown in figure 12 and 13).

Regarding the number of subjects needed for training, we used a minimal training

set of 18 subjects from OXVASC to get good performance on both OXVASC (on 17

subjects, with leave-one-out) and CADASIL. Hence we would recommend using 15 - 20

subjects for training LOCATE. However, it is worth noting that the number of training

subjects needed to achieve good results can vary across datasets (for more details on

the optimal number of training subjects, refer to Griffanti et al., 2016). For this reason,

we advise checking the segmentation accuracy on each dataset, comparing the output

with the manual masks whenever available and, if needed, increasing the number of

subjects included in the training or consider re-training on the specific dataset. So far,

evaluation of LOCATE has been performed on relatively small datasets (containing 15

20 subjects) which limits the power of our results. Also, the experiments done so far

show that LOCATE is generalizable when trained with dataset-specific images or when

using a training dataset generated with images acquired with the same scanner and

sequences. We are currently working towards improving robustness across scanners and

sequences. In its current Matlab implementation, LOCATE running time to determine a

binary lesion map from an individual lesion probability map is approximately 15 minutes

per subject, when run on an iMac with a 2.9 GHz Intel Core i5processor.

LOCATE will be included as an additional option for generating binary lesion maps,

as an alternative to the faster, but less accurate, global thresholding, in a future re-

lease of BIANCA. The MATLAB implementation of LOCATE is currently available to

use (see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide under post-

processing section for more details).
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A potential future development of LOCATE could be to use the estimated thresholds

to normalise the lesion probabilities locally in order to obtain a more uniform lesion

probability map that is robust to the diffuse nature of the lesions in different areas of

the brain. Another interesting future direction for BIANCA could be to investigate the

amount and distribution of lesions in various cerebral lobes, similar to our analysis of

lesions in periventricular and deep regions. Also, various deep learning networks have

been shown to perform better than the conventional machine learning based classifiers

for similar problems. Hence in future work, we will explore various convolutional neural

network models for more accurate segmentation of WMH.
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