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ABSTRACT
Students of introductory programming courses are expected to
develop higher-order thinking skills to inspect, understand and
modify code. However, although novices can correctly write small
programs, they appear to lack a more abstract, comprehensive grasp
of basic constructs, such as conceiving the overall effect of alterna-
tive conditional flows. This work takes a little-explored perspective
on the comprehension of tiny programs by asking students to reason
about reversing conditionals in either an imperative or a functional
context. More specifically, besides deciding if the given constructs
can be reversed, students had to justify their choice by writing a
reversing program or by providing suitable counterexamples.

The students’ answers to four reversibility questions have been
analysed through the lens of the SOLO taxonomy. 45% of students
correctly identified the reversibility for the four code items; further-
more, more than 50% of each cohort were able to provide correct
justifications for at least three of their four answers. Most incorrect
answers were due to failures to consider border cases or to edit
the conditional expressions appropriately to reverse the construct.
Differences in comprehension between functional and imperative
languages are explored indicating the explicit else paths of the
functional examples facilitate comprehension compared with the
implicit else (no update) of its imperative counterpart.
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1 INTRODUCTION
Besides introducing language constructs and examples of related
code implementations, most CS1 courses will focus their learning
activities to cover other practical abilities such as tracing and testing
programs, with little concern over how to approach computations
in a comprehensive way.

Recent work [7] has investigated program comprehension at
introductory levels using think-aloud interviews. This work used
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the abstract concept of reversibility, to force students to reason com-
prehensively about simple statements. If we adopt the “reductionist”
perspective addressed in [13] for the language notation and opera-
tional semantics, mastery of meaningful programming endeavours
builds on the ability to envisage a range of potential computation
flows and their relationships with each other for each basic con-
stituent part. The reversibility tasks considered in our study were
conceived precisely to get insight into such ability, specifically for
the key conditional constructs. Moreover, a peculiar feature of this
type of tasks is that, to a large extent, they allow to disentangle the
understanding of program behaviour from any specific application
domain knowledge.

As an apparently trivial conditional statement got the lowest
performance in [7], we replicated part of that work by testing stu-
dents’ ability to deal with reversibility of two if statements [1],
confirming that half of the subjects did not recognise that a sim-
ple conditional like that shown in Figure 1(i) cannot be reversed.
The present study elaborates further on the results of this prelimi-
nary work by analysing both “if” and “if-else” conditionals in an
imperative context, as well as their corresponding constructs in a
functional context. In imperative programs instructions may change
the state of variables, while in functional programs there is no state
but computations return results that may be reused.

In order to assess higher order skills, students should be new to
the task, thus they were not exposed to the concept of reversibility
in class. After a short description of reversibility in the exam paper,
students were asked to decide if the given conditional statements
or functions can be reversed or not; additionally, they were asked
to justify their decision: if their answer was Yes, by writing the code
that would undo the state or by defining the inverse function; if it
was No, by providing suitable counterexamples.

In particular, we addressed two research questions:

Q1. To what extent can CS1 students envisage the overall effect of
a conditional construct?

Q2. Does the programming paradigm, imperative or functional,
have an impact on the comprehension of conditionals?

The main contribution of this study is twofold. Firstly, it uses a
new perspective to explore program comprehension, both in imper-
ative as well as functional contexts, by engaging students to reflect
comprehensively about potential computation flows. Secondly, it
provides a first insight into novice programmers’ ability to analyse
basic constructs in such a way.

The rest of the paper is organised as follows: after outlining some
background in Section 2, Section 3 describes how the empirical data
was collected and analysed; Section 4 summarises the quantitative
and qualitative results, which are further discussed in Section 5.
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Analyse the following code fragments and determine if they are reversible:
• if your answer is Yes, reversible (i.e. the command is reversible),
write a piece of code to restore the original state of the variables.

• If your answer is No (i.e. it is not always possible to undo the effect),
provide examples for which we cannot recover the original state.

(i) // int x

if ( x > 10 ) {
x = x - 1;

}

(ii) // int x

if ( x > 10 ) {
x = x + 1;

}

(iii) // int x

if ( x < 0 ) {
x = x + 1;

} else {
x = x - 1;

}

(iv) // int x

if ( x % 2 == 0 ) {
x = 2 * x;

}

Figure 1: Task on reversibility: imperative test (Java).

Analyse the following procedures and determine if they are reversible:
• if your answer is Yes, reversible, define the procedure for the inverse
function.

• If your answer is No, provide examples showing that there cannot
be an inverse function.

(i) ; int -> int

(define (p n)
(if (> n 10)

(- n 1)
n ))

(ii) ; int -> int

(define (p n)
(if (> n 10)

(+ n 2)
(+ n 1) ))

(iii) ; int -> int

(define (p n)
(if (< n 0)

(+ n 1)
(- n 1) ))

(iv) ; char -> char

(define (pd c)
(cond ((char<? c #\0) c)

((char<? c #\9) (integer->char (+ (char->integer c) 1)))
((char=? c #\9) #\0)
(else c) )))

Figure 2: Task on reversibility: functional test (Scheme).

2 BACKGROUND
In Piaget’s theory of cognitive development, reversibility is a key
step towardmore advanced thinking [17]. It is connected to progress
from using and manipulating symbols to looking at them at a higher
abstraction level and making better use of logical thinking. More-
over, according to a neo-Piagetian perspective, Piaget’s learning
stages are relevant independently of age when approaching new
knowledge domains [21]. Thus, if this framework can also account,
at least partially, for students’ cognitive processes, reversibility
should be an appropriate tool to analyse the first steps in the devel-
opment of programming abilities.

Tasks asking to reverse a piece of code were first proposed by
Lister [10], as a device to test an “archetypal manifestation of con-
crete thinking” in novice programmers, and later by Teague and
Lister [22] to assess students’ ability to reverse short programs.
More recently, as mentioned above, this idea has been developed in
[7] and [1] by asking the students to reason about short programs
in terms of reversibility.

More in general, reversibility can be seen as a tool to assess
program comprehension. This broader topic has been addressed
from a variety of perspectives, focusing on the role of different types
of abstractions, including data and control flow [16]; on the divide
between code tracing, reading and “chunking” abilities [6, 9, 11, 12];
on students’ ways of classifying code fragments based on perceived

similarities and differences [23]; on mental models of program
behaviour [3, 18]; on the correlations between performance and
types of annotations in the exam papers [15]; on the understanding
of loops and nested loops [4]; on the issues connected with basic
concepts of language notation and operational semantics [13].

That even simple conditional constructs may present a challenge
to some students emerged, in particular, from the analysis of a
huge dataset by Cherenkova et al., who reported that “a significant
number [of students . . . ] exhibit the common errors of failing to
check the border condition or reversing the conditional” [5].

3 METHODOLOGY
In this section we describe the reversibility tasks and the rationale
for using them in our investigation. Then, we outline the data
collection process. Finally, we present the criteria underlying our
analysis and our application of the SOLO taxonomy.

3.1 Tasks
The tasks examined in this paper, unconventional from the students’
standpoint, are shown in Figure 1 (imperative programming) and
in Figure 2 (functional programming).

For the sake of our investigation, we selected a mixed method
that combines the three item formats useful in measuring higher
order thinking skills: selection, explanation, and creation [8]. For
each of the four items, students had first to identify whether a
program is reversible or not (selection); then they were required
either to provide a counterexample (explanation), or to write a
reversing program (creation).

In the exam paper the questions were preceded by a basic intro-
duction on reversibility, not shown here due to space limitations.1
Both tests were presented at the start of the exam paper when stu-
dents were fresh and active. Moreover, for organisational reasons,
each of the function definitions reported in Figure 2 appeared also
in a second version of similar structure and, conceivably, of the
same difficulty — and the order of the corresponding items was
different in the two versions.

The operations in the branches of the conditionals are simple and
individually straightforward to reverse. The key insight to decide
about the reversibility of a given item is that there are different com-
putation flows — one of which may be implicit — whose outcomes
may “overlap,” as shown figure 3 for item (i). In order to identify
similar overlaps students have to think of and carefully analyse
border computations. Then, if the program is reversible, to pro-
vide a correct solution it is necessary to deal with the relationships
between condition and operations in the alternate branches.

An issue identified in the imperative task was that the (correct)
code to reverse (ii) could fall in two distinct categories, depending
on whether the student was aware of the fact the original condition
could be left unadjusted or not. From a SOLO perspective [2], this
makes it difficult to discriminate between relational, multistructural
and unistructural answers. Thus, in the functional task we slightly
modified the operations in (ii) in such a way that the condition
should not be left unchanged when defining the inverse function
(see Figure 3 for a visual illustration of both cases).

1Complete versions will be made available at a public repository.
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Figure 3: Depiction of the (state vs. functional) transforma-
tions for items (i) and (ii) in the two tasks.

3.2 Data collection
We collected the exam answers from two first year undergradu-
ate cohorts at the University of Town X. Each exam paper was
anonymised and digitized prior to analysis.

The first cohort took the imperative test in June 2017 as part
of their CS1 exam. The test included six questions, of which we
have analysed the first 4, and was worth 25% of the paper’s marks.
These 73 students had attended a full year of programming course
(24 weeks: 80 lecturing hours + 60 practical hours) adopting a
functional-first approach with Scheme followed by Java (imperative
programming and basic notions of object-orientation).

The second cohort took the functional test in January 2018; the
test also included six questions, and was worth 40% of that assess-
ment. Note this cohort had only completed the first half year of
functional programming with Scheme. The class was composed
not only by students enrolled in the CS degree, as in the case of the
first cohort, but also by student starting a new degree on emerging
computing technologies. In addition, not all students progressed
towards the final exam by June 2018. Thus, to provide a fair com-
parison between cohorts, the second dataset referred to in the next
sections comprises precisely the 81 CS students who took also part
in the June exam.2

3.3 Analysis
To begin with, we carried out a straightforward analysis to measure
the percentages of students who had chosen correct options. Then,
we conducted a qualitative analysis of the justifications — coun-
terexamples or code — provided for each individual item. For the
latter part, we referred to the framework of the SOLO taxonomy
[2], a widely used instrument to classify the answers to code read-
ing and writing questions, e.g. [12, 20, 24]. Although simple, the
proposed tasks require abilities at the relational level that cannot
be taken for granted in an introductory course.

Each individual answer has been mapped into four SOLO cate-
gories as per criteria listed in Table 1. To consistently apply these
broad criteria, two researchers independently performed a deduc-
tive content analysis [14] to rate all students’ answers to the im-
perative test. The discussions following this preliminary rating
resulted into two subsequent revisions, and the overall inter-rater
agreement of the second refinement was about 88%. Eventually,
further discussion resolved minor rating differences and led to the
final classification that is presented in section 4.2.

2The full functional cohort was composed of 170 students. Tables reporting the main
figures for the whole cohort will be made available at a public repository.

Table 1: SOLO Classification guidelines.

SOLO Level Answer features (reasoning or code)

Prestructural
(1)

Poor answer showing either lack of understanding of the
task or inadequate programming skills.

Unistructural
(2)

Simplistic attempt to reverse part(s) of the code, while
disregarding unequivocal interactions with other parts;
attempts to reverse the code by some sort of cursory
“syntactic manipulation”; flawed attempt to justify that
the code cannot be reversed.

Multistructural
(3)

Answer indicating that the goal of the task is clearly
understood and pursued with a reasonable approach, but
somehow incomplete, e.g. the reasoning may be
ambiguous or the code may be affected by minor flaws.

Relational
(4)

Correct and accurate answer, providing either some
appropriate reversing program or a clear counterexample
showing that the program cannot be reversed.

Table 2: Correct options and explanations for each item.
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(i) No 49.3% 37.0% 3.11 74.1% 64.2% 3.28
(ii) Yes 97.3% 89.0% 3.73 82.7% 46.9% 2.85
(iii) No 80.8% 58.9% 3.15 72.8% 65.4% 3.31
(iv) Yes 94.5% 82.2% 3.66 82.7% 43.2% 2.69

both (i, iii) 47.9% 34.2% — 63.0% 55.6% —
both (ii, iv) 91.8% 79.5% — 69.1% 27.2% —

Based on this training, one researcher rated all functional test
papers and produced very detailed guidelines, including most vari-
ants of justifications, that have then been checked and approved
by a second researcher.3

4 RESULTS
4.1 Selected options
Table 2 shows the rate of correct options for the items presented in
Figure 1 and 2. Although it may be expected that the imperative
cohort would perform slightly better, as they had more instruction
and practice, this turned out to be the case for (ii-iv) but not for (i).
Relative to item (i), indeed, the functional group outperformed the
imperative one, the ratio being about 3:2.

If we look at reversible (ii and iv) versus not reversible code (i and
iii) we can see it is harder to identify non reversible items. There are
two possible reasons: (1) answering Yes may be the default option
for several students, and (2) it is difficult to spot an occasional flow
overlap if not thinking on border values.

4.2 SOLO analysis
We next move to the SOLO analysis. Table 2 reports the percent-
age of relational answers and the SOLO mean resulting from the
3Also this document, with the detailed guidelines as well as the classification of several
samples, will be made available at a public repository.
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rating process based on the criteria outlined in Table 1. As is
customary, SOLO means are determined by averaging over the
weights assigned to each level [19]: 4=relational, 3=multistructural,
2=unistructural, 1=prestructural, and 0=no justification. Addition-
ally, in the rest of this subsection, we will briefly describe and
provide samples for each SOLO level.

Relational answers. Relational justifications, which are correct and
accurate, amount to about two thirds of the answers overall for the
imperative test and about 55% for the functional test. A couple of
examples are shown in Figure 4.a relative to the imperative item (i)
and Figure 4.d for the functional item (ii).

Table 3 shows how consistently students appear to work at the
relational level, in terms of number of relational justifications.

Multistructural answers. Overall, about 17% of the answers for the
imperative test, but only 6% for the functional test, have been rated
at this level. A representative example, relative to the imperative
test, is shown in Figure 4.b. There, the student has tried to adjust
the condition in accordance with the effect of the operation in the
original code, without paying attention that it holds not only for
the doubles of even numbers but also for every second odd number.
In other words, the approach is reasonable, but the task is not
completely mastered. A representative example of a multistructural

attempt to reverse the functional program (iv) is shown in Figure
4.e, where each individual case has been identified and dealt with
appropriately, but the order in which the conditions are evaluated
is incorrect.

We classified at this level also trials to reverse the imperative
code (i) by changing the assignment and reworking the condition
accordingly, while however missing the state overlap.

Unistructural answers. Answers at this SOLO level — overall about
9% for the imperative test and 30% for the functional test — reflect
a naive approach in which each component of the conditional con-
struct is edited independently of the others. In particular, it includes
functional’s answers where the students reversed the operations in
the if branches, but simply copied the original condition, so failing
to coordinate multiple structures in order to achieve the task at
hand. Another recurrent issue for item (ii) of the functional test is
shown in 4.f., where the expression in the third clause is reversed,
but everything else is left unaffected (contrast this to Figure 4.e).

Other unistructural answers result from attempts to reverse
the program by manipulating the conditional almost syntactically,
as in the example in Figure 4.c where both the expression in the
assignment and the condition are carelessly reversed.

Prestructural answers. Overall, less than 6% of the answers of the
imperative cohort, as well as of the full functional cohort, have
been classified as prestructural. In the imperative test, several such
answers exhibit the issue of immediately undoing the change inside
the original code, as exemplified in Figure 5.a for item (iv).

A few programs result from some sort of “mechanical” manipu-
lation of the conditional constructs, as in the example of Figure 5.b,
relative to the functional item (ii), where the expressions in the
two branches are simply swapped. Other prestructural answers
report odd explanations or reveal some lack of understanding of
the reversibility concept.
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Figure 6: SOLO distribution for each item (i–iv) for either
imperative or functional context.

Student’s consistency. A different view of the data about students’
answers is shown in Table 3. There we can see how the number of
correct options and relational justifications are distributed within
the observed groups. The dark-gray colored cells indicate consis-
tent answers in that each correct answer is suitably justified. When
the number of justifications relative to correct options drops signif-
icantly, i.e. 2 out of 3 correct options are not appropriately justified,
we could infer the selection arose from partial understanding of the
code or even from a random guess. It is worth noting that more that
half of students in each cohort could provide at least 3 relational
justifications.

Question difficulty. The SOLO means shown in Table 2 reflect the
question difficulty for each cohort, while figure 6 shows the percent-
ages of answers at each SOLO level for each item. For the imperative
cohort, item(i) shows the lowest rate of relational answers, with
most students working at the multistructural level by reversing the
code, which will work for all values but 10. The items (ii) and (iv)
have the highest SOLO means, with more than 80% of the cohort
classified at the relational level. For the functional cohort, providing
counterexamples when the code is non-reversible appears to be eas-
ier (more than 85% of students that selected “No” did so) compared
to working out the correct functional code in the reversible case.

In short, although the distribution of justifications shown in
Table 3 are not dissimilar for the two groups, the imperative cohort
obtained higher results relative to the items (ii) and (iv), which we
attribute to the fact it was possible to reverse the code without
editing the conditions as explained in section 3.1. We have investi-
gated this hypothesis by performing a finer-grained analysis of the
answers for the students that attempted to reverse item (ii). Table 4
distinguishes the types of treatment of the if condition and reports
the corresponding frequency: while some students reworked the
condition to compensate for the effect of the operation on the vari-
able state or on the returned value, others simply used the given
condition without changes in their reversing program. Table 4 will
be interpreted and discussed in the next section.

5 DISCUSSION
We proceed now by revisiting the results presented in the previous
section in light of the research questions.

Table 3: Number of relational justifications vs. number of
correct options per student for each cohort.

correct relational justifications
options 4 3 2 1 0 total

im
pe
ra
tiv

e 4 30.1% 11.0% 4.1% — — 45.2%
3 16.4% 13.7% 2.7% — 32.9%
2 11.0% 4.1% 5.5% 20.5%
1 — 1.4% 1.4%

total 30.1% 27.4% 28.8% 6.8% 6.8% 100%

fu
nc
tio

na
l 4 22.2% 14.8% 6.2% 1.2% 1.2% 45.7%

3 13.6% 3.7% 7.4% 2.5% 27.2%
2 4.9% 7.4% 8.6% 21%
1 — 6.2% 6.2%

total 22.2% 28.4% 14.8% 16.0% 18.5% 100%

Table 4: Analysis of justifications associated to answers re-
porting a correct option (Yes) for item (ii).

% of answers Imperative Functional

with correct reworked condition 52.1% 57.6%
with unedited condition 39.4% 27.3%

other 8.5% 15.1%
correct code (relational) 91.5% 57.6%

In regards to RQ1, from Table 3 we can see that 45% of students
in each cohort chose the right option in all four cases. However,
when we look at the quality of their justifications, only 30% for
the imperative test, and 22% for the functional test, were able to
provide good counterexamples for non reversible items and correct
program reversal for the reversible ones. It then appears that it is
not so easy to have a comprehensive grasp of the implications of a
simple conditional construct, be it imperative or functional.

Recognising that a program based on a conditional cannot be re-
versed seems to be more challenging than guessing that it can. This
may be explained by the difficulty to identify border computations
that would suggest suitable counterexamples.

It is worth observing that the overall SOLOmeans, across all four
items, are 3.41 and 3.03 for the imperative and functional cohorts
respectively, which compares well to other studies using SOLO to
assess skills of novice programmers; for instance, Sheard et al. [19]
classified students’ reading ability with short code fragments to
swap the values of two variables, and reported a mean score of 2.39.
(Note, moreover, that in our studies both the reversibility concept
and the task were completely unfamiliar to the students.)

In regards to RQ2, the performances of the functional group
vs. the imperative cohort diverge significantly for item (i), both
in terms of chosen options as well as of correct justifications. A
most likely explanation of this phenomenon brings into play the
implicit else branch of the imperative conditional statement. Ap-
parently, students tend to consider only the branch they can see
and so ignore the overlap. Adding an explicit else as in item (iii)
increases the number of correct answers from 49.3% to 80.8% in the



imperative case, although the reasoning behind both statements
follows a similar thought process. As instructors, we have seen
novices writing else redundant code such as x = x, which may be a
cue of their inaccuracy about the final state for the statement in (i).

There is also a strong divergence between the relational answers
of the two groups for the reversible items (ii) and (iv), as shown
in Table 2. The difference may be partly attributed to the shorter
programming experience of the participants in the functional test.
However, we presume that it is mostly due to the increased difficulty
for items (ii, iv) in the functional test, because of the need to rework
the conditions. This explanation is also substantiated by the fine-
grained analysis of item (ii) which is shown in Table 4. Indeed, we
can observe that the percentage of correctly reworked conditions is
similar for both cohorts, in the range 50–60% — as is the the overall
percentage of correctly reworked and unedited conditions. Going
back to figure 3, the right side diagram shows the value 10 is not a
possible final state of x for the imperative task; thus, asking “x > 10”
or “x > 11” would provide the same outcome for the reversing code,
therefore the unedited condition is correct. It is unclear, though,
how many of the approx. 40% of the students who did not modify
the condition of item (ii) in the imperative test did so intentionally.
Moreover, if more students attempt to edit the condition, as needed
in the functional case, we expect a higher rate of incorrectly edited
conditions, which is included in the “other” row of Table 4.

Finally, we have already mentioned in the discussion above that
many novice programmers are not at ease with coordinating oper-
ations and conditions to reverse a program. This is reflected in the
number of answers classified as unistructural for each item, which
ranges from 3% to 18% in the imperative test and from 22% to 46%
in the functional test. Again, performances of the latter cohort are
worse due to the greater difficulty of some subtasks. Students at
that SOLO level can write code that is syntactically correct but does
not achieve the correct result due to poor coordination.

Limitations. As with most exploratory studies, a key limitation is
that the investigation involved two cohorts from one institution
in consecutive years, thus it remains unclear to what extent the
results can be generalised to other student populations. However,
based on the findings in [1], where the performances on items (i)
and (ii) of the imperative test have been compared for two cohorts
from different countries, we can expect that the problems pointed
out here are widespread among novice programmers.

Implications for educators. The repeated experiment has identified
a recurrent weakness that concerns students’ ability to carry out a
comprehensive case analysis and to abstract from a stepwise expla-
nation of program behaviour, failing “to see the forest for the trees”
[11]. This weakness appears under both imperative and functional
programming contexts. The additional semester practice does not
help to reduce this weakness overall. In fact, the borderline overlap
is more likely to be ignored for item (i) of the imperative test due
to the implicit empty else.

It is then likely that we overestimate students’ ability to plan
testing and debugging of small programs, tasks they are usually
expected to accomplish by the end of a CS1 course. This will suggest
that the reversibility tasks considered here could be a helpful addi-
tion to CS1 instruction to explain and explore interactions between
computation flows in conditional statements.

Using them towards the end of CS1 as a short intervention or
revision may also help to improve students’ higher-order thinking
skills. Besides, we could scaffold this activity for weaker students,
for example by giving them a reversible, say imperative, program
construct and asking them to code its reversal, then revise with
them the two steps required: (1) reverse each variable update and
(2) adjust the conditional statement that triggers the update.

Additionally, this set of tasks provides a concrete example of
what thinking in a comprehensive ways means compared with
other revision tasks, such as multiple choice questions that trace a
small program for a single input value and are often approached
cursorily. This comprehensive reasoning can also be modelled with
related tasks such as asking CS1 students to use the border case
analysis to not only decide on reversibility, but also develop and
document testing and debugging plans.

6 CONCLUSIONS
To contribute new insights into program comprehension, we have
investigated the ability of two first year undergraduate cohorts to
analyse and reverse tiny imperative and, respectively, functional
programs based on conditional constructs. Their answers have
been thoroughly analysed under the lens of the SOLO taxonomy.
Overall, considering the task’s novelty, students’ performance was
not below expectations: more than half of the students could provide
relational justifications for at least 3 of the 4 conditional examples.
This translated on a high SOLO mean (both cohorts have a mean
value > 3) compared to related studies, such as [19], that use this
framework to evaluate their coding progress.

This analysis has provided the following insights about novices’
mastery of conditional constructs:

(a) Building a comprehensive view of the implications of simple
conditional constructs is a challenging task for novice program-
mers in either imperative or functional languages. In particular,
students do not seem to be careful enough while dealing with
border computations.

(b) The lack of an explicit else branch — a typical situation in an
imperative context — turns out to affect remarkably students’
analysis of the code behaviour.

(c) A significant fraction of students appear to face problems in
order to master the coordination between conditions and oper-
ations in the reversing code.

This type of reversibility exercises could aid instructors to as-
sess progress of novices who already have mastered the “atomic
concepts” of syntax and semantics addressed in [13]. Asking for jus-
tifications as in this study provides useful insights into their mental
models, which could help to early detect latent misconceptions.

We are currently extending our investigation on reversibility
to cover different tiny programs, namely simple loops (imperative
paradigm) and recursive constructs (functional paradigm), while
also looking for opportunities to include other student cohorts.
Furthermore, future work will aim at designing related tasks in
order to gain more insight into students’ mental models and way
of reasoning while deciding that a program cannot be reversed or
while writing a reversing program.
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