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We study dressed inflation with a cuscuton and find a novel exact power-law solution. It is well known
that the conventional power-law inflation is inconsistent with the Planck data. In contrast to this standard
lore, we find that power-law inflation with a cuscuton can be reconciled with the Planck data. Moreover, we
argue that the cuscuton generally ameliorates inflation models so that predictions are consistent with
observations.
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I. INTRODUCTION

An inflationary scenario provides a mechanism for
generating temperature fluctuations of cosmic microwave
background (CMB) radiations and the large scale structure
of the universe. It is always true that an exact solution
is useful for obtaining a profound understanding of a
physical mechanism. In the case of inflationary scenarios,
power-law inflation is known as an exact solution [1].
Observationally, however, recent precision data have ruled
out the power-law inflation [2]. The reason is as follows.
The key relations of the power-law inflation are given by

ns − 1 ¼ −2ϵ; r ¼ 16ϵ; ð1Þ

where ns, r, and ϵ are the scalar spectral index, the tensor-
to-scalar ratio, and a slow-roll parameter, respectively.
Since the CMB data tells us ns ∼ 0.96, we obtain the
tensor-to-scalar ratio

r ¼ 8ð1 − nsÞ ∼ 0.3: ð2Þ

Apparently, this contradicts the Planck constraint r ≤ 0.1
[2]. Thus, the power-law inflation is a failed inflation
model.
The question we raise in this paper is if we can

ameliorate a failed inflation model so that the predictions
are consistent with observational data. To settle this issue,
we utilize an exact solution, namely, power-law inflation.
We focus on the minimal models of inflation which include
2 degrees of freedom for gravity and 1 for inflaton. This
type of model can be conventionally described by Einstein
gravity with an inflaton field. Intriguingly, the minimal

theory can be extended nontrivially if we include a non-
dynamical scalar field called cuscuton [3]. The gravity with
cuscutons, which we call cuscuton gravity in this paper, is
the infrared modification of gravity. In fact, the application
of cuscuton gravity to the late time accelerating universe is
discussed in [4]. The systematic analysis of perturbations
has been also performed [5]. It turns out that cuscuton
gravity is related to the low energy limit of Lorentz
violating gravity [6,7]. The subtle point of cuscuton gravity
is also analyzed from the perspective of the Hamiltonian
analysis [8]. It is shown that the cuscuton has to be
homogeneous to be nondynamical. Moreover, it is shown
that cuscuton gravity can be extended to the more general
theories [9]. The cuscuton gravity is relevant not only to the
late time cosmology but also to the early universe. Indeed,
the cuscuton allows us to make the bounce universe
consistent [10].
In this paper, we will consider inflation in the context of

cuscuton gravity. We find a new exact power-law solution
which can be regarded as dressed power-law inflation with
a cuscuton. Although the conventional power-law inflation
is ruled out by the Planck data [2], we show that the power-
law inflation can be reconciled with the CMB data in the
presence of the cuscuton. To show this, we study equations
for curvature perturbations and tensor perturbations. Since
the kinetic term is nontrivial in cuscuton gravity, we need to
care about the gradient instability. In contrast to the usual
gradient instability [11,12], the gradient instability in
cuscuton gravity could exist in the infrared regime even
when it exists. We explicitly show there is no instability in
the dressed power-law inflation. Moreover, we calculate the
scalar spectral index and the tensor-to-scalar ratio and find
that the dressed power-law inflation can be reconciled with
observations. This provides a positive answer to the issue
we raised.
The paper is organized as follows: In Sec. II, we

introduce cuscuton gravity and present exact solutions
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for power-law inflation with a cuscuton. In Sec. III, we
calculate the spectral index and the tensor-to-scalar ratio.
We show power-law inflation with a cuscuton is consistent
with the CMB data. The final section is devoted to the
conclusion.

II. POWER LAW INFLATION
IN CUSCUTON GRAVITY

We consider a dressed inflationary universe driven by an
inflaton field χðxÞ with a cuscuton field ϕðxÞ [3]. The
action for cuscuton gravity is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R� μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂μϕ∂μϕ

q
− VðϕÞ

−
1

2
∂μχ∂μχ −UðχÞ

�
; ð3Þ

where g is the determinant of the metric gμν, Mpl is the
reduced Planck mass, R is the Ricci scalar and μ is a
constant. Here, VðϕÞ and UðχÞ are potentials for the
cuscuton and the inflaton, respectively. For the background
spacetime, we take the flat Friedmann-Robertson-Walker
metric as

ds2 ¼ −dt2 þ aðtÞ2dxidxi; ð4Þ

where aðtÞ is the scale factor. From the action (3) and the
metric (4), assuming the homogeneity of the cuscuton and
the inflaton, one can derive the Hamiltonian constraint,

H2 ¼ 1

3M2
pl

�
V þ U þ 1

2
_χ2
�
; ð5Þ

the Einstein equation,

_H ¼ −
1

2M2
pl

½�μ2j _ϕj þ _χ2�; ð6Þ

and the field equations,

�signð _ϕÞ3μ2H þ V;ϕ ¼ 0; ð7Þ

χ̈ þ 3H _χ þU;χ ¼ 0: ð8Þ

HereH ≡ _a=a is the Hubble parameter. Equation (7) shows
that the cuscuton is nondynamical because a second
derivative term is absent.
In the conventional Einstein gravity, we know there

exists power-law solutions for the exponential potential

UðχÞ ¼ U0e
u χ
Mpl : ð9Þ

In the present case, to have scaling solutions, we need to
take the quadratic potential for the cuscuton:

VðϕÞ ¼ 1

2
m2ϕðtÞ2: ð10Þ

Let us seek for an exact solution of Eqs. (5)–(8) by taking
the following ansatz:

HðtÞ ¼ p
t
;

χðtÞ
Mpl

¼ s lnMplt; ϕðtÞ ¼ q
t
: ð11Þ

Note that there is a freedom of a constant shift of χ which
can be absorbed into U0. For the quadratic potential for the
cuscuton, one can take the branch _ϕ > 0 without loss of
generality. Then, from Eq. (7), we see that the plus sign of
the first term must be chosen to realize an expanding
universe.
Substituting the ansatz (11) into Eqs. (5)–(8), we can find

sets of exact inflationary solutions. First, we notice that the
following solutions,

m ¼ 0; μ ¼ 0; u ¼ −
2

s
;

U0

M4
pl

¼ 3

4
s4 −

1

2
s2; p ¼ 1

2
s2; ð12Þ

correspond to the original power-law inflation [1] in the
absence of the cuscuton. It is easy to see that sufficient
inflation occurs if p ≫ 1. However, as we have already
mentioned, the solution (12) is not consistent with the
observations of CMB [2]. In cuscuton gravity, we found a
new set of solutions:

u ¼ −
2

s
; p ¼ s2

�
2 −

3μ4

M2
plm

2

�
−1
;

q ¼ −
3μ2s2

m2

�
2 −

3μ4

M2
plm

2

�
−1
; ð13Þ

where 2 − 3μ4

M2
plm

2 > 0 should be satisfied to keep p positive.

We also have a relation

U0

M4
pl

¼ s2

2

�
3s2

2 − 3μ4

M2
plm

2

− 1

�
: ð14Þ

This solution represents a new power-law inflationary
solution modified by the cuscuton when p ≫ 1. Indeed,
the slow-roll parameter,

ϵ ¼ −
_H
H2

¼ 1

p
; ð15Þ

is small when p is large. We mention that the other slow-
roll parameter,
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η ¼ _ϵ

Hϵ
; ð16Þ

vanishes for the power-law solution.
In the next section, we calculate the scalar spectral index

and the tensor-to-scalar ratio and show that the dressed
power-law inflation with a cuscuton can be reconciled with
observations.

III. PRIMORDIAL FLUCTUATIONS IN
CUSCUTON GRAVITY

In this section, we evaluate the power spectrum of
curvature perturbations and gravitational waves in the
background (13). It turns out that the tensor-to-scalar ratio
can be tuned freely by virtue of the cuscuton, without
changing the tilt of the scalar power spectrum. Moreover,
we check that there is no ghost and gradient instabilities.
To investigate the evolution and the stability of the

fluctuations, we need the quadratic action for perturbations.
We take a uniform field gauge δχ ¼ 0 to eliminate the
perturbation of the inflaton field.1 It should be mentioned
that the cuscuton field ϕ is not dynamical and thus the

perturbation of the cuscuton δϕ can be removed from the
second order action eventually.
In the uniform field gauge, the metric perturbations are

represented by

ds2 ¼ aðτÞ2½−ð1þ 2ΦðxÞÞdτ2 þ 2∂iBðxÞdτdxi
þ ð1þ 2ζðxÞÞðδij þ hijðxÞÞdxidxj�; ð17Þ

where τ is the conformal time, Φ and ζ represent the
Newton potential and the curvature perturbations, respec-
tively. A transverse traceless tensor hij describes gravita-
tional waves. Note that we do not need to consider vector
perturbations. SinceΦ, B and δϕ are nondynamical, we can
eliminate them from the action. Thus, as is shown in [5], we
can obtain the second order action for the Fourier coef-
ficient of the curvature perturbations as

Z
dτd3k

z2

2
½ζ02k − c2sk2ζ2k�; ð18Þ

where we defined functions

z2 ¼ 2a2α

�
k2 þ 3αH2

k2 þ αð3 − σÞH2

�
; ð19Þ

c2s ¼
k4 þ ðαð6 − σÞ þ 2σð3 − ϵÞÞH2k2 þ ð3α2ð3 − σÞ þ 4ασð3 − σÞÞH4

k4 þ αð6 − σÞH2k2 þ 3α2ð3 − σÞH4
; ð20Þ

and the comoving Hubble parameter H ¼ a0
a. We note that

the slow-roll parameter in terms of the inflaton

α ¼ χ02

2M2
plH

2
ð21Þ

is different from that in terms of the Hubble parameter
defined by Eq. (15). The difference is described by a new
parameter

σ ¼ ϵ − α: ð22Þ

In the case of the present new power-law solution, we can
express them as

α ¼ 1

2s2

�
2 −

3μ4

M2
plm

2

�
2

;

σ ¼ 3μ4

2M2
plm

2s2

�
2 −

3μ4

M2
plm

2

�
: ð23Þ

We see that σ → 0 in the limit μ → 0 and then α ¼ ϵ, which
is nothing but the case of conventional single field inflation.
Therefore σ represents the contribution of the cuscuton
field to inflation and/or deviation from the conventional
single field inflation.
Furthermore, from Eq. (6), α and σ must be order of the

slow-roll parameters to realize inflation. Note that only the
plus sign in Eq. (6) describes an expanding universe.
Hence, the weak energy condition is always satisfied,
which implies the stability of the system. In fact, since
α > 0 and σ > 0 hold, both of z2 and c2s are always
positive, so that there is no ghost and gradient instabilities.
Near the horizon crossing, Eq. (18) reduces to that of

conventional single field inflation, i.e., z ≃ 2a2α and
cs ≃ 1. We then have the power spectrum of the curvature
perturbations as

Pζ ¼
H2

8π2M2
plα

���
aH¼k

; ð24Þ

where the right-hand side is evaluated at the crossing
time aH ¼ k. One can obtain the tilt of the power
spectrum as

1We confirmed that the result in the uniform field gauge is the
same as that in the unitary gauge, i.e., δϕ ¼ 0, where cuscuton
gravity is well defined [8].
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ns − 1 ¼ d lnPζ

d ln k
≃ −2ϵ: ð25Þ

The tilt is determined by the slow-roll parameter in terms of
the Hubble parameter.
On the other hand, the tensor perturbations are not mixed

with the scalar perturbations at the linear order, so that
gravitational waves are not affected by the cuscuton.
Therefore, the power spectrum of gravitational waves is
the same as that of conventional single field inflation,

Ph ¼
2H2

π2M2
pl

����
aH¼k

: ð26Þ

Then the tensor-to-scalar ratio is given by

r ¼ Ph

Pζ
¼ 16α: ð27Þ

Here, it should be stressed that the slow-roll parameter in
terms of the inflaton α appears instead of ϵ.
Let us express observables for dressed inflation using the

exact background solution (13). Given the power-law
solution, one can calculate ns and r as

ns − 1 ¼ −
2

s2

�
2 −

3μ4

M2
plm

2

�
; r ¼ 8

s2

�
2 −

3μ4

M2
plm

2

�
2

:

ð28Þ

Note that only the red tilt is allowed since the inside of the
parentheses is positive. The relations in (28) give rise to

r ¼ 2s2ðns − 1Þ2: ð29Þ

Thus, it turns out that the tensor-to-scalar ratio r can be
tuned to a small value with the tilt ns fixed. Therefore, the
dressed power-law inflation in cuscuton gravity is consis-
tent with the Planck data in contrast to the original power-
law inflation [13]. In fact, when we use observed value

ns ∼ 0.96, we have r ¼ 3 × 10−3s2. The current constraint
r ≤ 0.1 gives rise to an inequality s2 ≤ 30.
Finally, although we focused on the dressed power-law

inflation as an illustration, we believe the result would be
general in any dressed inflationary scenario. This is
because the parameter σ > 0 allows us to control ns and
r independently.

IV. CONCLUSION

We studied an inflationary universe in the context of
cuscuton gravity. We found a new exact power-law infla-
tionary solution which is dressed power-law inflation with
a cuscuton. Furthermore, we investigated primordial fluc-
tuations. It turned out that there is no ghost and gradient
instabilities in dressed inflation. We calculated the scalar
and the tensor power spectrum and showed that the tensor-
to-scalar ratio can be tuned freely regardless of the tilt in
virtue of the cuscuton. It implies that the dressed power-law
inflation can be always reconciled with observations.
As an extension of the present analysis, we can consider

anisotropic power-law inflation [14–17], constant-roll
inflation [18], and the mixed one [19]. Although we have
studied only the dressed power-law inflation in this paper,
we expect the qualitative result holds for general inflation
models. It would be interesting to study general dressed
inflation models in detail. It is also intriguing to investigate
higher order correlations such as the non-Gaussianity. We
leave these issues for future work.
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