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The medial septum (MS) complex modulates hippocampal function and related
behaviors. Septohippocampal projections promote and control different forms of
hippocampal synchronization. Specifically, GABAergic and cholinergic projections
targeting the hippocampal formation from the MS provide bursting discharges to
promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the
MS is targeted by ascending projections from the hypothalamus and brainstem. One
of these projections arises from the nucleus incertus in the pontine tegmentum,
which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3). Both
stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides
promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family
peptide receptor 3 (RXFP3), is the cognate receptor for Rln3 and identification of
the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal
system can provide further insights into the role of Rln3 transmission in the promotion
of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ
hybridization to characterize the septal neurons expressing Rxfp3 mRNA in the rat.
Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA
transporter (vGAT ) mRNA- and parvalbumin (PV ) mRNA-positive GABA neurons in MS,
whereas ChAT mRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately
75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV
mRNA-positive), while the remaining 25% expressed Rxfp3 mRNA only, consistent with
a potential glutamatergic phenotype. Similar proportions were observed in the posterior
septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to
a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.

Keywords: arousal, ChAT, emotion, GABA, hippocampus, nucleus incertus, relaxin-3, theta rhythm

Abbreviations: ChAT, choline acetyl transferase; HDB, horizontal diagonal band; LS, lateral septum; LSD, lateral septum
dorsal; LSI, lateral septum intermediate; LSV, lateral septum ventral; LV, lateral ventricle; MS, medial septum; NI,
nucleus incertus; nNOS, neuronal nitric oxide synthase; PV, parvalbumin; Rln3, relaxin-3; Rxfp3, relaxin-family peptide
receptor 3; SFi, septofimbrial nucleus; SFO, subfornical organ; TS, triangular septum; VDB, vertical diagonal band; vGAT
(slc32a1), vesicular GABA transporter.
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INTRODUCTION

Intrinsic neural circuits within, and projections from, the
MS subserve various roles of this important brain area in
different functions ranging from arousal, attention and spatial
working memory (Givens and Olton, 1990; Sweeney et al.,
1992; Osborne, 1994). Much research on the MS has centered
on characterizing its projections to the hippocampus [see
(Zaborszky et al., 2012, 2014) for review], in addition to
descending projections from the MS to the hypothalamus,
raphe nuclei and the NI (Borhegyi and Freund, 1998; Leranth
et al., 1999; Sánchez-Pérez et al., 2015). Modulation of septal
function has been traditionally viewed to derive strongly from
ascending projections from the posterior hypothalamus and
brainstem, including the raphe nuclei, which have been described
as modulators of hippocampal theta rhythm via activation of
the septohippocampal projection system (Vertes and Kocsis,
1997; Vertes, 2005). In addition, descending projections from
the somatostatin-positive GABA projection neurons of the
hippocampus provide a descending feedback regulation of
the MS (Toth et al., 1993; Gulyas et al., 2003; Yuan et al.,
2017).

However, the less well-studied projection from the NI in
the pontine tegmentum also strongly modulates the MS (Goto
et al., 2001; Olucha-Bordonau et al., 2003, 2012). Specifically,
NI projections to the MS are associated with modulation of
hippocampal theta rhythm. Electrical stimulation of the NI
increased theta rhythm band power of the CA1 hippocampal field
potential and NI lesions attenuated the increased hippocampal
theta rhythm power induced by stimulation of the nucleus
reticularis pontis oralis (RPO) in urethane-anesthetized rats
(Nuñez et al., 2006).

A major population of GABA neurons in the NI co-express
the neuropeptide, Rln3 (Ma et al., 2007) and NI projections
and Rln3-positive fibers are in close contact with cholinergic
and GABAergic neurons in the MS (Olucha-Bordonau et al.,
2012). Moreover, infusion of a Rln3 analog into the MS
increased hippocampal theta rhythm, whereas infusion of a Rln3
receptor antagonist impaired the theta rhythm produced by
novel environment exploration or RPO stimulation (Ma et al.,
2009). Different approaches in recent years have confirmed
and extended these observations regarding the role of the NI
and its associated peptide Rln3 in subcortical modulation of
hippocampal theta rhythm, with an observed synchrony between
the firing of NI neurons and different phases of hippocampal
theta rhythm (Ma et al., 2013; Martínez-Bellver et al., 2015,
2017).

The cognate receptor for Rln3 is the Gi/o-protein-coupled
receptor, RXFP3. In in vitro studies in Chinese hamster
ovary cells transfected with RXFP3, bath application of Rln3
results in inhibition of cAMP synthesis and increased ERK
phosphorylation (Liu et al., 2003; van der Westhuizen et al.,
2005, 2007; Bathgate et al., 2013). In agreement with a potential
inhibitory effect of neuronal RXFP3 activation, Rln3 and a
selective RXFP3 agonist, RXFP3-A2 (Shabanpoor et al., 2012),
hyperpolarized RXFP3-expressing magnocellular neurons in the
rat paraventricular and supraoptic hypothalamic nuclei (Kania

et al., 2017). Furthermore, following intracerebroventricular (icv)
infusion of RXFP3-A2, we observed increased phospho-ERK
levels in the MS and disruption of spatial working memory in a
spatial alternation test (Albert-Gascó et al., 2017), although the
precise relationship between these effects is not known.

The MS is composed of a heterogeneous population of
neurons and each neuronal type participates in a different
way in septo-hippocampal interactions (Sotty et al., 2003). For
example, slow firing cholinergic neurons facilitate hippocampal
activity (Sotty et al., 2003), while PV GABAergic projection
neurons inhibit hippocampal interneurons (Toth et al., 1997).
Somatostatin positive neurons are concentrated in the HDB
(Köhler and Eriksson, 1984), but to our knowledge, no functional
role has been assigned to these neurons. Different types
of calcium-binding protein-expressing neurons and neurons
expressing choline acetyltransferase (ChAT) are targeted by NI
axons/terminals in the rat (Olucha-Bordonau et al., 2012), but
it is not clear which of these neurons express RXFP3. Thus,
we explored the distribution of Rxfp3 mRNA expression in
different neuronal types of the rat septal area using multiplex
in situ hybridization and specific probes for Rxfp3, ChAT, vGAT
(slc32a1), PV, and somatostatin (SOM) transcripts.

MATERIALS AND METHODS

Animals
Experiments were conducted with approval from The Florey
Institute of Neuroscience and Mental Health Animal Ethics
Committee, in compliance with guidelines of the National Health
and Medical Research Council of Australia. Adult male Sprague-
Dawley rats weighing 300–320 g were maintained on a 12–12 h
light-dark cycle with lights on at 0700 h. Rats were provided free
access to food and water.

Multiplex in Situ Hybridization (ISH)
The distribution of septal Rxfp3 mRNA-positive neurons and
their GABAergic or cholinergic phenotype was assessed using
RNAscope multiplex in situ hybridization. RNAscope R© is a
commercial method provided by Advanced Cell Diagnostics
(ACD, Newark, CA, United States), which involves the
incubation of post-fixed, fresh-frozen brain sections with up
to three custom probes. Standard probes contain 20 ZZ pairs
(25 base pairs/Z) which cover a total of ∼1000 base pairs
of the target mRNA. In silico verification of the probes
is performed and validated to select oligonucleotides with
compatible melting temperature for optimal hybridization under
RNAscope assay conditions and minimal cross-hybridization to
off-target sequences. There is a verification procedure conducted
following each major step during the probe design to guarantee
accuracy, according to previously described rules (Wang et al.,
2012).

Two naïve rats were deeply anesthetized with pentobarbitone
(100 mg/kg, i.p.), decapitated, and brains were quickly extracted
and rapidly frozen on dry ice. The fresh-frozen brains were
embedded in OCT embedding gel (Tissue-Tek R© OCT, Optimum
Cutting Temperature, Sakura Finetek USA, Inc., Torrance, CA,
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TABLE 1 | Semi-quantification of the number of neurons expressing Rxfp3, vGAT, and ChAT mRNA alone and in combination throughout the different regions of the rat
septal area.

Bregma Area Rxfp3 vGAT PV SOM ChAT Rxfp3/vGAT Rxfp3/PV/vGAT Rxfp3/ChAT Rxfp3/−

1.08 mm MS 77 ± 28 240 – – 91 44 – 0 5

– 116 0 – – 39 – 66

VDB 67 ± 14 148 – – 41 45 – 3 5

– 106 0 – – 37 – 35

HDB 62 – 16 78 – – 1 – 53

0.6 mm MS 107 ± 13 500 ± 100 – – 75 82 7 0 14

179 – – 99 – – 12

VDB 54 ± 12 89 – – 9 31 – 0 34

237 87 – – 23 4 – 15

HDB 37 ± 6 162 – – 26 21 – 0 10

234 43 – – 24 7 – 12

0.48 mm MS 172 ± 16 1500 ± 30 126 ± 10 – – 109 ± 8 27 ± 8 – 22 ± 15

VDB 50 306 ± 20 83 ± 15 – – 24 14 – 12

HDB 41.5 ± 13 188 ± 16 23 ± 5 – – 23 ± 10 7 ± 2 – 12 ± 5

0.24 mm LSI 11 37 – – 2 9 – 0 2

SFi 20 97 – – 2 19 – 0 1

MS 8 86 – – 4 8 – 0 0

−0.24 mm LSD 14 61 – – 0 12 – 0 2

SFi 100 314 – – 0 75 – 0 25

TS 245 800 – – 3 193 – 0 52

LSV 223 307 – – 4 142 – 1 80

SFO 30 4 – 6 2 – 0 28

– Mean ± SEM are indicated on cases where more than one subject was analyzed. – indicates not determined probe combinations and split rows indicate each of
different trials.

United States) and stored at −80◦C. Before cryo-sectioning,
brains were warmed to −20◦C for 2 h and then mounted on
a cryostat (Cryocut CM 1800, Leica Microsystems, North Ryde,
NSW, Australia) using OCT embedding gel. Coronal sections
(16 µm) were cut and thaw-mounted on Superfrost-Plus Slides
(Fisher Scientific, Hampton, NH, United States, Cat#12-550-15).

Sections were fixed in 4% paraformaldehyde (PFA) for
16 min at 4◦C, rinsed in PBS, and dehydrated in increasing
ethanol concentrations (50, 70, and 100%). Once dehydrated
the sections were stored in 100% ethanol overnight at −20◦C.
The next day, slides were air-dried and a hydrophobic barrier
was drawn around the sections (ImmEdge hydrophobic PAP
pen, Vector Laboratories, Burlingame, CA, United States; Cat
#310018). Sections were incubated with protease pretreatment-
4 (ACD, Cat #322340) for 16 min. After a PBS rinse, sections
were incubated for 2 h at 40◦C with three different probe
combinations targeting (i) Rxfp3 (ACD, #316181), ChAT (ACD,
#430111), and vGAT (Slc32a1; ACD, #424541) mRNA; (ii) Rxfp3,
PV (pvalb, ACD, #407828) and SOM (Sst, ACD, #412181-
C3) mRNA; (iii) Rxfp3, PV, and vGAT mRNA. Sections were
processed in two different trials. Following incubation, sections
were rinsed with wash buffer (ACD, Cat#310091) and signals
were amplified with ACD amplifier reagents according to
manufacturer’s protocol. After 2 × rinses with wash buffer,
sections were stained with DAPI (ACD, #320851), covered
with fluorescent mounting medium (Fluoromount-G, Southern
Biotech, Birmingham, AL, United States, Cat# 17985-10),
coverslipped, and stored at−20◦C.

Imaging and Quantification of
Co-expression of Transcripts
Fluorescence images were taken with an LSM 780 Zeiss
Axio Imager 2 confocal laser scanning microscope (Carl
Zeiss AG, Jena, Germany). The system is equipped with
a stitching stage, and Zen software (Carl Zeiss AG) was
used to stitch tiled images taken with a 20 × objective.
Quantification of cellular colocalization of transcripts (one
section/bregma level, rat and probe combination) was conducted
manually using Fiji (Schindelin et al., 2012) [Note: Results
consistent with those observed in the sections assessed, were
also observed in adjacent brain areas, and in other rat
brains, for all probes]. The total number of positive neurons
for each region was counted separately, relative to DAPI-
stained nuclei, to avoid bias. The percentage co-expression of
transcripts was related to the total number of Rxfp3 mRNA-
positive neurons in each of the septal areas. Higher-power,
(inset) images to illustrate co-localization were taken using a
40× objective.

RESULTS

In these experiments, we assessed the rostrocaudal distribution
of Rxfp3 mRNA-positive neurons in the MS/diagonal band,
LS, triangular septal nucleus, and SFi, and determined whether
these Rxfp3 mRNA-positive neurons co-expressed ChAT or
vGAT mRNA or PV and/or vGAT mRNA (or SOM and/or
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FIGURE 1 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), and ChAT mRNA relative to DAPI-stained nuclei, and Rxfp3, SOM, and PV mRNA in the rat
MS at bregma +1.08 mm (A,C); and a schematic map illustrating the different neuronal phenotypes based on mRNA co-expression, and their distribution (B,D).
Thick dotted lines indicate the midline and the medial and lateral septal border and thin dotted lines, the layers within MS. Higher magnification images illustrating
co-localization of Rxfp3 (E), ChAT (F), and vGAT (G) mRNA and merged signals (H). High-magnification images illustrating the co-localization of Rxfp3 (I), PV (J),
and SOM (K) mRNA and merged signals (L). Arrowheads indicate neurons double-labeled for Rxfp3 and vGAT mRNA (E,F) and Rxfp3 and PV mRNA (I,J). No
colocalization of Rxfp3 and ChAT mRNA was observed (open arrowheads). Insets (lower right) are high magnification images of the boxed area in (E–L), illustrating a
neuron double-labeled for Rxfp3 and vGAT mRNA or Rxfp3 and PV mRNA consistent with a GABAergic phenotype. Calibration bar in (A) 250 µm, (C) 250 µm,
(E–H) 50 µm, and (I–L) 20 µm.

vGAT mRNA). All these neurotransmitter-related transcripts
and their related proteins or peptides have been described
as clear markers of the onion-like structure of the septum.
According to Wei et al. (2012), the onion-like MS can be
described as a five-layer structure with layers determined by
their highest density marker (MS-1-MS-3, LSv, and LSi). Layers
are distributed from the midline to the LSi with MS-1 on the
midline, rich in PV neurons; followed by MS-2, rich in ChAT
neurons; followed by MS-3, rich in nNOS; followed by CR
(LSV), and CB (LSi). The following results illustrate a high level
of co-localization of Rxfp3 and vGAT mRNA in neurons in
most septal regions. In contrast, in caudal septal regions and
diagonal band, no co-localization of Rxfp3 with vGAT mRNA

occurred, suggesting an alternative non-GABAergic phenotype
(Table 1).

Rxfp3 mRNA-Positive Neurons in MS
Co-express vGAT, But Not ChAT mRNA
At the most rostral level of the MS (bregma ∼1.08 mm),
Rxfp3 mRNA-expressing neurons were mainly located between
the MS-1 and MS-3 layers (Figures 1A–D). The majority of
Rxfp3 mRNA-positive neurons in these layers co-expressed
vGAT mRNA (∼90%; 44/49) of expressing neurons) while
only ∼10% (5/49 neurons) of Rxfp3 mRNA-positive neurons
lacked vGAT and ChAT mRNA (Figures 1E–H, 2). Given
the distribution of these neurons and the co-localization of
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FIGURE 2 | Percentage co-localization of Rxfp3, vGAT, PV, and SOM mRNA throughout the septal complex. Rostral to caudal levels of MS (A,C), VDB (B,D), and
HDB (E) at +1.08 mm from bregma; MS (F), VDB (G) and HDB (H) at +0.6 mm from bregma; MS (I), VDB (J) and HDB (K) at +0.48 mm from bregma; LSi (L), SFi
(M) and MS (N) at +0.24 mm from bregma; and LSD (O), TS (P), SFi (Q), LSV (R) and SFO (S) at –0.24 mm from bregma.

Rxfp3 mRNA with vGAT and not ChAT mRNA, this labeling
is consistent with expression of RXFP3 by GABA neurons
(Ma et al., 2009, 2017; Olucha-Bordonau et al., 2012). With
a different combination of probes for Rxfp3/PV/SOM mRNA,
∼37% of Rxfp3 mRNA-expressing-neurons in the MS (39/105
neurons), expressed PV mRNA, and were distributed within MS-
1, while 63% (66/105) of Rxfp3 mRNA-positive neurons that did
not co-express PV mRNA (Figures 1I–L), were located within
MS-2 and 3 (Figure 1D).

In the mid-anterior dorsal part of the MS (bregma∼0.6 mm),
Rxfp3 mRNA-expressing neurons were present mainly in the

MS-1 layer, characterized as containing PV neurons, and in
more lateral layers containing lower PV neuron densities (Kiss
et al., 1990; Wei et al., 2012). The highest number of Rxfp3
mRNA-expressing neurons was located between MS-2 and MS-
3. In the ventral part of this mid-MS level, Rxfp3 mRNA-
positive neurons were limited to the MS-2 (Figures 3A–D).
At this level, the majority of Rxfp3 mRNA-expressing neurons
co-expressed vGAT mRNA (∼87% (82/94) of labeled neurons),
while only ∼13% (13/94 neurons) of labeled cells expressed
Rxfp3 mRNA in the absence of vGAT and ChAT mRNA
(Figures 3E–H). In sections labeled with the Rxfp3/PV/vGAT
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FIGURE 3 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), ChAT, and PV mRNA relative to DAPI-stained nuclei in the rat MS at bregma +0.60 mm
(A,C), and a schematic map illustrating the different neuronal phenotypes based on mRNA co-expression, and their distribution (B,D). Thick dotted lines indicate the
midline and the medial and lateral septal border and thin dotted lines, the layers within MS. High-magnification images illustrating colocalization of Rxfp3 (E), ChAT
(F), and vGAT (G) mRNA, and merged signals (H). High-magnification images illustrating co-localization of Rxfp3 (I), PV (J), and vGAT (K) mRNA and merged
signals (L). Arrowheads indicate neurons double-labeled for Rxfp3 and vGAT mRNA (E–H) and Rxfp3, vGAT and PV mRNA (I–L). No colocalization of Rxfp3 and
ChAT mRNA was observed (open arrowheads). Calibration bar in (A) 250 µm, (C) 250 µm, (E–H) 50 µm, and (I–L).

probe combination, some Rxfp3 mRNA-expressing-neurons co-
expressed PV mRNA (∼6%; 7/111 neurons), but most co-
expressed vGAT mRNA, distributed within MS-2 (82% (91/111)
of labeled neurons). Only 12% (14/111 neurons) of Rxfp3
mRNA-expressing neurons did not co-express either transcript
(Figures 2, 3I–L).

In the mid-posterior part of the septal area (bregma
∼0.48 mm), the Rxfp3/PV/SOM probe combination revealed
that Rxfp3 mRNA-expressing neurons were distributed across
MS-1 to MS-3. Rxfp3 mRNA-positive neurons that co-expressed
PV mRNA (17%; 27/157 neurons) were mostly located near
the midline (Figures 4A–D). In the MS-2 and MS-3 layers,
69% (109/157 neurons) of Rxfp3 mRNA-positive neurons co-
expressed vGAT mRNA and 14% (22/172 neurons) did not
co-express either transcript (Figures 2,‘4E–L).

In the posterior septum (bregma ∼0.24 mm), Rxfp3 mRNA-
positive neurons were present in the MS and were more
dense in the SFi and the LSI (Figures 5A,B). In the MS,
Rxfp3 mRNA-positive neurons co-expressed vGAT mRNA in
∼100% of cases (8/8 neurons), but did not express ChAT

mRNA (Figures 2, 5C–F). In the SFi ∼95% (19/20 neurons) of
Rxfp3 mRNA-positive neurons co-expressed vGAT mRNA, and
∼5% (1/20 neurons) of Rxfp3 mRNA-positive neurons lacked
vGAT and ChAT mRNAs (Figures 2, 5G–J). Finally, in the
LSI ∼92% (24/26 neurons) of detected neurons co-expressed
Rxfp3 and vGAT mRNAs whereas only ∼8% (2/26 neurons) of
Rxfp3 mRNA-positive neurons lacked vGAT and ChAT mRNA
(Figures 2, 5K–N).

Diagonal Band Neurons Co-express
Rxfp3 and vGAT (slc32a1) mRNA
In the anterior (VDB; bregma ∼1.08 mm), Rxfp3 mRNA-
positive neurons were evenly distributed laterally at a similar
distance from the midline (Figures 6A–D′). Rxfp3 mRNA-
positive neurons were present in the vicinity of ChAT mRNA-
expressing neurons, but Rxfp3 and ChAT mRNA were sparsely
co-expressed in ∼6% (3/53 neurons) of total Rxfp3 mRNA-
positive cells, while ∼85% (45/53 neurons) co-expressed Rxfp3
and vGAT mRNA, and Rxfp3 transcripts were present in the
absence of the other markers in only ∼9% (5/53 neurons) of
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FIGURE 4 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), ChAT, and PV mRNA relative to DAPI-stained nuclei in the rat MS at bregma +0.48 mm
(A,C), and a schematic map illustrating the different neuronal phenotypes based on mRNA co-expression, and their distribution (B,D). Thick dotted lines indicate the
midline and the medial and lateral septal border and thin dotted lines the layers within MS. High-magnification images illustrating colocalization of Rxfp3 (E,I), PV
(F,J), and vGAT (G,K) mRNA and merged signals (H,L). Arrowheads indicate neurons double-labeled for Rxfp3 and vGAT mRNA (E–H) and Rxfp3, vGAT, and PV
mRNA (I–L). No colocalization of Rxfp3 and PV mRNA was indicated with open arrowheads. Calibration bar in (A) 200, (C) 500, and (E–L) 50 µm.

identified neurons (Figures 2, 6E–H). In sections incubated
in a different combination of probes, Rxfp3 mRNA-expressing
neurons in the VDB co-localized with PV mRNA (44%; 35/80
neurons) and did not co-localize with any marker in 46%
(37/80) of neurons (Figures 2, 6I–L) In contrast, in the HDB,
some Rxfp3 mRNA-expressing neurons co-expressed SOM (13%;
8/62) and PV (2% 1/62) mRNA, but most did not co-express
either of these transcripts (85%; 53/62 neurons) (Figures 2,
7A,B,E–H).

At more posterior levels (bregma ∼0.6 mm), Rxfp3 mRNA-
positive neurons were present in the VDB and the HDB
(Figures 6C,C′, 7C,D). In the VDB, Rxfp3 mRNA-expressing
neurons were present in two clusters. From the total amount
of Rxfp3 mRNA positive neurons ∼48% (31/65) of them
co-expressed vGAT mRNA. A second cluster/population of
Rxfp3 mRNA-positive neurons, ∼52%; 34/65 neurons, did not
co-express vGAT or ChAT mRNA. In sections labeled for

Rxfp3/PV/vGAT mRNA some Rxfp3 mRNA-expressing neurons
expressed PV mRNA (7%; 4/56), while 49% (27/56) expressed
vGAT mRNA and 44% (25/56) did not express either of the other
transcripts (Figures 2, 6M–P).

The number of Rxfp3 mRNA-positive neurons in the HDB was
lower than in the VDB (Figures 7C,D). In contrast to the VDB,
in the HDB the majority (∼68%; 21/31 neurons) of Rxfp3 mRNA-
positive neurons expressed vGAT mRNA, while the remaining
were vGAT mRNA and ChAT mRNA negative (∼32%; 10/31
neurons) (Figures 2, 7I–L). Rxfp3 mRNA colocalized with vGAT
mRNA (56%; 23/41 neurons), and with PV/vGAT mRNA (17%;
7/41 neurons) and was also expressed in the absence of either
transcript (27%; 11/41) (Figures 2, 8A,B,E–H).

In the mid-posterior part of the septal area (bregma
∼0.48 mm) sections labeled with Rxfp3/PV/vGAT probes
displayed Rxfp3 mRNA expressing neurons in the VDB
(Figures 6D,D′) that co-expressed PV/vGAT mRNA (28%;
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FIGURE 5 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), and ChAT mRNA, relative to DAPI-stained nuclei in the rat MS, SFi, and LSI at bregma
+0.24 mm (A) and a schematic map illustrating different neuronal phenotypes based on mRNA co-expression, and their distribution (B). Dotted lines indicate the
midline and the medial and lateral septal and septofimbrial borders. High-magnification images illustrate co-localization of Rxfp3 (C,G,K), ChAT (D,H,L), vGAT
(E,I,M) mRNA and merged signals (F,J,N) in the MS, SFi, and LSI, respectively. No co-localization of Rxfp3 and ChAT mRNA was observed (open arrowheads).
Calibration bar in (A) 125 µm and (C–N) 50 µm.

14/50 neurons), and vGAT mRNA (48%; 24/50 neurons)
(Figures 2, 6Q–T), but some Rxfp3 mRNA-positive neurons did
not express either transcript (24%; 12/50 neurons). Likewise,
analysis of the HDB, revealed that the majority of Rxfp3

mRNA-positive neurons expressed vGAT mRNA (54%; 23/42
neurons) and a small proportion expressed PV/vGAT mRNA
(17%; 7/42 neurons) or neither of the other transcripts (29%;
12/42 neurons) (Figures 2, 8I–L).
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FIGURE 6 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), ChAT, and PV mRNAs relative to DAPI-stained nuclei in the vertical limb of the diagonal band
at bregma +1.08 (A,B), +0.6 (C), and 0.48 mm (D) and schematic map illustrating different colocalization neuronal phenotypes and their distribution (A′–D′). Dotted
lines indicate the midline and the VDB border. Higher magnification images illustrate colocalization of Rxfp3 (E), ChAT (F), vGAT mRNA (G), and merged signals (H).
High-magnification images illustrate co-localization of Rxfp3 (I,M,Q), PV (J,N,R), SOM (K) vGAT (O,S) mRNA and merged signals (L,P,T) at different bregma levels.
Arrowheads indicate neurons double-labeled for Rxfp3 and vGAT (E–H) or Rxfp3, vGAT, and PV (I–T) mRNA and open arrowheads indicate ChAT or PV
mRNA-positive neurons that do not express Rxfp3 mRNA. Calibration bar in (A) 100 µm, (B–D) 125 µm, (E–H) 50 µm, and (I–T) 20 µm.

Triangular Septal Area, and Septofimbrial
and Dorsolateral Septal Area Contain
Heterogeneous Populations of Rxfp3
mRNA-Positive Neurons
In the most caudal region of the septum analyzed (bregma
−0.24 mm), the distribution and phenotype of Rxfp3 mRNA-
positive neurons varied within the different nuclei. In the
LSD, Rxfp3 mRNA-positive neurons were widely and evenly
distributed (Figures 9A,B) and were mainly vGAT mRNA-
positive (∼86%; 12/14 neurons), with a small number of neurons
located near the SFi that were vGAT mRNA negative (∼14%; 2/14
neurons; Figures 2, 9K–N).

Rxfp3 mRNA-positive neurons in the SFi were mainly
distributed in the most dorsal part of the nucleus near the
corpus callosum (cc). In the ventral SFi, Rxfp3 mRNA-positive
neurons were lower in number (Figures 9A,B). Throughout the
dorsal and ventral SFi, the majority of Rxfp3 mRNA-positive
neurons co-expressed vGAT mRNA (∼75%; 75/100 neurons;
Figures 2, 9L–O).

The triangular septal area (TS) contained three Rxfp3 mRNA-
positive neuron populations based on their differential phenotype
and distribution. Dispersed Rxfp3 mRNA-positive neurons were
present in the most dorsal portion near the midline, while
in the most ventral TS, a large, densely packed population
of Rxfp3 mRNA-positive neurons were distributed alongside

the border with the SFO (Figures 9A,B). The ventral TS area
was rich in vGAT mRNA-expressing neurons, while the dorsal
TS was not. Rxfp3 mRNA-positive neurons in the dorsal TS
were generally vGAT mRNA-negative, while in the ventral TS,
Rxfp3 mRNA-positive neurons were generally vGAT mRNA-
positive. In the lateral part of the ventral TS, there was
a population of Rxfp3 mRNA-positive neurons which were
vGAT mRNA-negative. Overall, ∼79% of Rxfp3 mRNA-positive
neurons in TS co-expressed vGAT mRNA (193/245 neurons),
while the remainder were negative (∼21%; 52/245 neurons;
Figures 2, 9C–K).

Similar to ventral TS, the LSV contained a large population
of vGAT mRNA-positive neurons and most were Rxfp3/vGAT
mRNA-positive (64%; 142/223 neurons). In addition to these
GABAergic neurons, this area also contained a large non-
GABAergic population (36%; 80/223 neurons; Figures 2, 9G,H).
Finally, we noted that within the SFO, a vast majority of Rxfp3
mRNA-positive neurons were vGAT mRNA-negative (93%; 28/30
cells; Figures 2, 9O–R).

DISCUSSION

In this study, we have employed RNAscope multiplex in situ
hybridization (Wang et al., 2014a,b; Li and Kim, 2015) to
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FIGURE 7 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), ChAT, and PV mRNAs relative to DAPI-stained nuclei in the HDB at bregma +1.08 mm
(A) +0.60 mm (C), and schematic map illustrating different colocalization neuronal phenotypes and their distribution (B,D). Dotted lines indicate the vertical and
horizontal limbs of the diagonal band border. Higher magnification images illustrate colocalization of Rxfp3 (E), PV (F), SOM mRNA (G), and merged signals (H);
Rxfp3 (I), ChAT (J), vGAT mRNA (K), and merged signals (L) in the HDB, respectively. Arrowheads indicate neurons double-labeled for Rxfp3, SOM, and PV (E–H)
or Rxfp3 and vGAT (I–L). No colocalization of Rxfp3 and ChAT mRNAs was observed. Calibration bar in (A) 125 µm, (C) 200 µm, (E–H) 20 µm, and (I–L) 50 µm.

characterize the neurochemical phenotype of Rxfp3 mRNA-
positive neurons in the rat septal area. The highly specific nature
of the method means that these data represent a more accurate
estimation of the distribution of RXFP3 than studies using

putative antisera against the receptor protein (Meadows and
Byrnes, 2014), although this powerful approach does not provide
information about the subcellular location of RXFP3, which
might be available with alternative protein detection methods.
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FIGURE 8 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), ChAT, and PV mRNAs relative to DAPI-stained nuclei in the HDB at bregma +0.6 mm
(A) +0.48 mm (C) and schematic map illustrating different colocalization neuronal phenotypes and their distribution (B,D). Dotted lines indicate the vertical and
horizontal limbs of the diagonal band border. Higher magnification images illustrate colocalization of Rxfp3 (E), PV (F), vGAT mRNA (G), and merged signals (H);
Rxfp3 (I), PV (J), vGAT mRNA (K), and merged signals (L) in the HDB, respectively. Arrowheads indicate neurons double-labeled for Rxfp3, vGAT, and PV (E–H) or
Rxfp3 and vGAT (I–L). Lack of colocalization of Rxfp3 and PV mRNA indicated with open arrowheads. Calibration bar in (A,C) 125 µm, (E–L) 20 µm.

In the septal area, neurons expressing Rxfp3 transcripts
were concentrated in the MS complex, including the diagonal
band nuclei, and in the posterior septum, including the SFi
and TS nuclei. Some Rxfp3 mRNA-positive neurons were

also detected in LS divisions. Our findings are consistent
with previous studies of the presence and distribution
of Rxfp3 mRNA in the rat septal area detected using
radioactive oligonucleotide probes. Specifically, MS and
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FIGURE 9 | Distribution of neurons expressing Rxfp3, vGAT (slc32a1), and ChAT mRNA, relative to DAPI-stained nuclei in LSD, SFi, TS, LSV, and SFO at bregma
–0.24 mm (A), and a schematic map illustrating the different neuronal phenotypes and their distribution (B). Dotted lines indicate the midline and borders between
the different regions. High-magnification images illustrate the co-localization of Rxfp3 (C,G,K,O), ChAT (D,H,L,P), vGAT (E,I,M,Q) mRNA and merged signals
(F,J,N,R) in the TS, LSV, SFi, and SFO, respectively. Arrowheads indicate neurons double-labeled for Rxfp3 and vGAT mRNA. No co-localization of Rxfp3 and ChAT
mRNA was observed (open arrowheads). Calibration bar in (A) 500 µm and (C–R) 50 µm.
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HDB displayed moderate to high levels of Rxfp3 mRNA,
while in LSI and VDB, expression was moderate (Sutton
et al., 2004; Ma et al., 2007). These findings are consistent
with concurrent studies of these and other transcripts in
rat hippocampus (Ma and Gundlach, unpublished data).
Therefore, in light of the strong innervation of the rat
septal region by Rln3-positive nerve fibers, the presence of
septal RXFP3 binding sites, and functional studies (Ma et al.,
2007, 2009), we conclude that the detection of Rxfp3 mRNA
reflects the expression of functional RXFP3 protein by these
neurons.

In the MS, VBD, and HDB, the vast majority of Rxfp3
mRNA-positive neurons co-expressed vGAT mRNA.
Furthermore, a population of these presumed GABAergic
Rxfp3 mRNA-positive neurons are PV mRNA-positive
(Wei et al., 2012). Septal PV/GABA neurons are the main
source of the GABAergic projections to the hippocampus
and specifically target hippocampal interneurons (Freund
and Antal, 1988; Freund and Gulyas, 1997). A number of
studies have demonstrated that PV/GABA neuron activity is
crucial for hippocampal theta rhythm (Borhegyi et al., 2004;
Bassant et al., 2005; Simon et al., 2006). The modulation of
the GABAergic inter-neuronal inhibition of hippocampal
pyramidal neurons has been reported to be a source for
hippocampal theta rhythm synchronization (Toth et al.,
1997). In addition, septal PV/GABA neurons expressing cyclic
nucleotide activated, non-selective cation channels play a role in
driving hippocampal theta rhythm (Varga et al., 2008; Hangya
et al., 2009). Notably, RXFP3 activation results in inhibition
of cellular cAMP synthesis in cell-based assays in vitro (Liu
et al., 2003; van der Westhuizen et al. 2007, 2010), consistent
with a similar interaction in vivo (see further discussion
below).

In contrast to the strong association with GABAergic neurons,
only a small number of cholinergic (ChAT mRNA-positive)
neurons co-expressed Rxfp3 mRNA. However, anterograde
neural tract-tracing and immunohistochemical studies suggest
that cholinergic (ChAT-positive) septal neurons receive a robust
innervation from the Rln3 rich NI (Olucha-Bordonau et al.,
2012). Thus, the influence of NI neurons on the septal
cholinergic system might be mediated by NI neurons that
contain GABA only or other peptides, such as cholecystokinin,
which is expressed in the NI (Kubota et al., 1983; Olucha-
Bordonau et al., 2003) (Ma and Gundlach, unpublished
data).

The discovery that Rxfp3 mRNA is absent from MS
cholinergic neurons provides new insights into the nature of
the coordinated neural actions that result in the generation
and modulation of hippocampal theta rhythm, and since
RXFP3 activation often produces neuronal inhibition in vitro
(Blasiak et al., 2013; Kania et al., 2017), it is possible
that pERK activation in MS cholinergic neurons occurs via
RXFP3-mediated inhibition of non-PV, GABAergic interneurons
(Leranth and Frotscher, 1989). In this regard, optogenetic
activation of cholinergic septohippocampal neurons suppressed
ripple sharp waves and enhance theta rhythm oscillations
(Vandecasteele et al., 2014) and local circuit inhibitory actions

on cholinergic neurons are a primary process in the generation
of septal rhythmicity (Leão et al., 2015). Furthermore, icv
infusion of an RXFP3 agonist (RXFP3-A2; Shabanpoor et al.,
2012) resulted in increased phosphorylation of ERK in the
MS, mainly in ChAT-immunoreactive neurons (Albert-Gascó
et al., 2017). Given the observed absence of Rxfp3- and
ChAT mRNA-positive neurons in the MS in the present
study, and the observation that RXFP3 activation routinely
induces neuronal inhibition (Kania et al., 2017), there is a
possibility that the pERK activation within the cholinergic
neurons occurs via a reduction in local circuit inhibition within
the MS.

In addition, ∼25% of the Rxfp3 mRNA-positive neurons
in the MS were non-GABAergic, non-cholinergic in nature.
Although further studies are required to better identify
the phenotype of these neurons, it is presumed that some
or many are glutamatergic neurons, since they constitute
∼25% of the total MS neuron population (Colom et al.,
2005; Gritti et al., 2006). Glutamatergic neurons provide
both local and septohippocampal projections (Manseau
et al., 2005; Henderson et al., 2010; Huh et al., 2010) and
interestingly, optogenetic activation of MS glutamatergic
neurons produces strong theta rhythm synchronization,
mainly mediated by local septal circuits (Robinson et al.,
2016).

Considerable data suggest a strong link between RXFP3
activation in the MS and modulation of hippocampal theta
rhythm. Hippocampal theta rhythm has been traditionally
associated with arousal mechanisms which are directly
involved in attentional mechanisms of memory (Vinogradova,
1995). The NI, along with other brainstem areas, the
hypothalamus and the basal forebrain, promote arousal
and fast electroencephalographic (EEG) rhythms (Brown and
McKenna, 2015; Korotkova et al., 2018). Moreover, stimulation
of the NI promotes arousal and is associated with cortical EEG
desynchronization, increased locomotor activity, and head-
scanning vigilance behavior during fear recall (Ma et al., 2017).
In addition, ipsilateral NI stimulation induces locomotion and
rotation at latencies consistent with a role in the modulation
of premotor areas like the basal forebrain (Farooq et al., 2016).
Furthermore, Rln3 and Rxfp3 gene knockout mice display
reduced voluntary running wheel activity during the dark,
active phase (Smith et al., 2012; Hosken et al., 2015) providing
further evidence for a likely role for this signaling system
in sustained arousal and related locomotor and exploratory
activity.

Indeed, the MS controls exploratory behavior (Köhler and
Srebro, 1980; Poucet, 1989; Mamad et al., 2015; Gangadharan
et al., 2016). Different forms of memory, including spatial
working memory and object recognition can be affected
by manipulations of the MS (Givens and Olton, 1994;
Fitz et al., 2008; Roland et al., 2014; Okada et al., 2015;
Gangadharan et al., 2016). Interestingly, interference with
global or septal Rln3/RXFP3 signaling in the rat results in
disruption of spatial working memory in the spontaneous
alternation test (Ma et al., 2009; Albert-Gascó et al.,
2017).
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CONCLUSION

The strong expression of Rxfp3 mRNA by GABAergic neurons
in the rat MS and adjacent nuclei, is consistent with the central
role of these neurons in the control of hippocampal theta
rhythm by actions on local septal circuits. In turn, these actions
may indirectly influence septal cholinergic neurons/circuits and
hippocampal interneurons via septohippocampal projections.
Notably, independent studies have revealed a strong Rln3
innervation of the hippocampus and identified Rxfp3 mRNA
expression by hippocampal GABA neurons in the rat (Ma and
Gundlach, unpublished data), consistent with direct actions
of Rln3/RXFP3 signaling on these circuits. Therefore, further
studies of the neurotransmitter and neurochemical phenotype of
septal and hippocampal neurons that express Rxfp3 mRNA and
their precise functional roles are warranted in both normal adult
rats and mice, and in models of neuropathology and cognitive
and psychiatric disorders.
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