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Abstract

In this study, the effect of adenosine receptor agents on nicotine induced antinociception, in formalin test, has been investigated. Intraperi-
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oneal (i.p.) administration of different doses of nicotine (0.1, 1, 10 and 100�g kg ) induced a dose-dependent antinociception in mic
he both first and second phases of the test. Adenosine receptor antagonist, theophylline (5, 10, 20 and 80 mg kg−1, i.p.) also induced antinoc
eption in the both phases, while a dose of the drug (40 mg kg−1, i.p.) did not induce any response. Theophylline reduced antinocice
nduced by nicotine in both phases of formalin test. The A2 receptor agonist, 5′-N-ethylcarboxamide adenosine (NECA; 1 and 5�g kg−1, i.p.)
lso produced antinociception, which was reversed with different doses of theophylline (5, 10, 20 and 40 mg kg−1, i.p.). But administratio
f the adenosine receptor agonist, NECA did not potentiate the response of nicotine. It is concluded that adenosine system may

n modulation of antinociception induced by nicotine.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Adenosine is a neurotransmitter which, has generally in-
ibitory effect on nervous system[1], so that, adenosine re-
eptor activation inhibits neural activity in many areas along
he neuroaxis[2]. Moreover, it is one of the several endoge-
ous compounds that may have a role in nociceptive infor-
ation [3], and contributes to antinociception induced by
ipioids, noradrenaline, 5-hydroxytryptamine, tricyclic an-

idepressants and transcutaneous electrical nerve stimulation
4]. Adenosine functions through at least three subtypes of
denosine receptor: A1, A2 and A3 [5,6]. These receptor sites
ave been pharmacologically characterized by use of adeno-
ine agonists and antagonists[7]. Adenosine has complex
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effects on pain transmission at peripheral and spinal
due to different subtypes of adenosine receptors.

In fact, there is a controversy on the role of A1 adeno
sine receptors in antinociception. Some of studies con
the antinociceptive effect of the receptors[3,8–12], while
the others show the nociceptive response induced by th1
adenosine receptors[13–15]. Meanwhile, it has been su
gested that activation of the peripheral A1 adenosine re
ceptors produce pronociceptive and pain enhancing e
[4,16].

Adenosine has recently been proposed to be a signi
anti-inflammatory autacoid released peripherally under
ditions of inflammation[17,18]. It seems that the A2 recep-
tor involves in the anti-inflammatory effect[18,19]. Within
the spinal cord, activation of the both A1 and A2 produce
antinociception. Antinociceptive actions of adenosine
adenosine analogs have been shown in a wide range o
[4]. Adenosine receptor agonists have been proved to be
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potent in reducing hyperalgesia and allodynia than normal
acute pain conditions[20,21].

The involvement of adenosine in antinociception and an-
tiallodynia induced by opioids has also been demonstrated
[22–24], and release of adenosine in the spinal cord con-
tributes to the spinal efficacy of opioids[4].

Furthermore, nicotine, the psychoactive component of to-
bacco products, is widely consumed by humans[25–28]. The
drug exhibits several pharmacological actions in the central
and peripheral nervous systems and releases a number of
neurotransmitters[29–32]. This drug is also able to activate
endogenous opioid system(s)[33]. Acute nicotinic receptor
stimulation activates enkephalin and beta-endorphin[34–38]
release and biosynthesis in discrete brain nuclei and periph-
eral tissues. While, there are other reports indicating that
chronic administration of nicotine reduces met-enkelphalin
and beta-endorphin[37,39,40]. Moreover, the drug has been
shown to induce antinociception in different tests[41–47].
The aim of this study was to investigate the effect of adeno-
sine receptor agonist and antagonists on the antinociception
induced by nicotine in mice.

2. Materials and methods

2.1. Animals
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(100�g kg−1, i.p.). Group 5 received different doses of nico-
tine (1, 5 and 10�g kg−1, i.p.) alone or nicotine plus NECA
(1 and 5�g kg−1, i.p.). In all groups antinociception was as-
sessed after nicotine injection.

2.4. Antinociception recording

Animals were allowed to acclimatize for 30 min be-
fore formalin injection. Twenty-five microliters of formalin
(2.5%) was injected subcutaneously into the dorsal surface
of the right hind paw of the mouse using a microsyringe with
a 26-gauge needle. Immediately after formalin injection, ani-
mals were placed individually in a glass cylinder (20 cm wide,
25 cm long) on a flat glass floor and a mirror was arranged in
a 45◦ angle under the cylinder to allow clear observation of
the paws of the animals[48].

Pain response was recorded immediately after formalin
injection for a period of 50 min. The total time (s) spent lick-
ing the injected paw during periods of 0–5 min (first phase)
and 15–50 min (second phase) after formalin injection were
measured as an indicator of pain.

2.5. Statistical analysis

One-way and two-way ANOVAs followed by
Newman–Keuls test, were used for analysis of the data.
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Male NMRI mice (20–30 g) were used in these exp
ents. They were kept 10 per cage (45 cm× 30 cm× 15 cm)
t an environmental temperature of 23± 1◦C on a 12-h

ight–dark cycle. The animals had free access to food
ater, except during the time of experiments. Each an
as used once only and was euthanized immediately

he experiment. The study was carried out according to
utional guideline for animal care and use.

.2. Drugs

The following drugs (−)-nicotine base, adenosine a
ist, 5′-(N-ethyl) carboxamido adenosine (NECA) and th
hylline were purchased from Sigma–Aldrich, UK. Nicot
olutions were prepared in saline and the pH adjusted t
0.1 with a small amount of NaOH and other drugs were

olved in saline. All the drugs were injected intraperitone
i.p.) in a volume of 10 ml kg−1.

.3. Drug treatment

The animals were treated as follows: groups 1 and
eived different doses of nicotine (0.1, 1, 10 and 100�g kg−1,

.p.) or theophylline (5, 10, 20, 40 and 80 mg kg−1, i.p.), re-
pectively and antinociception was assessed as descri
ection 2.4. Group 3 received different doses of theophyl

5, 10 and 20 mg kg−1, i.p.) in the presence or absence
ower dose of nicotine (1�g kg−1, i.p.). Group 4 receive
ifferent doses of theophylline (5, 10, 20 and 40 mg kg−1,

.p.) in the presence or absence of higher dose of nic
ifferences between means were considered statist
ignificant ifP < 0.05. Each point is the mean± S.E.M. of
ight mice.

. Results

.1. Effect of nicotine or theophylline in formalin test

Fig. 1 indicates antinociception induced by nicotine
ormalin test. One-way ANOVA showed that intraperiton
njection of mice with different doses nicotine (0.1, 1, 10
00�g kg−1, i.p.) induced antinociception in the first [F(4,
5) = 38.6,P < 0.0001] (Fig. 1A) and second phases [F(4,
5) = 63.6,P< 0.0001] (Fig. 1B) of the test. The response
icotine was maximum with 100�g kg−1 of the drug.

Fig. 2 indicates the response of theophylline in form
est. One-way ANOVA indicated that administration of d
erent doses of theophylline (5, 10, 20 and 80 mg kg−1, i.p.)
o mice induced antinociception in the first [F(5, 42) = 9.6,P
0.0001] (Fig. 2A) and second [F(5, 42) = 81.6,P< 0.0001]

Fig. 2B) phases of formalin test. However, increasing of
rug doses decreased the response of drug. The drug i
f 40 mg kg−1, did not induce antinociception. However,
ose of 80 mg kg−1, showed antinociception.

.2. Effect of adenosine receptor agonist or antagonist
n nicotine-induced antinociception in formalin test

Fig. 3 indicates effect of theophylline in the presence
bsence of lower dose of nicotine. Two-way ANOVA show
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Fig. 1. Antinociceptive effect of nicotine in the formalin test. Mice were in-
jected intraperitoneally (i.p.) either with saline (sal, 10 ml kg−1) or different
doses of nicotine (0.1, 1, 10 and 100�g kg−1) 15 min before formalin injec-
tion. Antinociception during 0–5 min (panel A; first phase) and 15–50 min
(panel B; second phase) after formalin injection was recorded. Each point
is the mean± S.E.M. of eight experiments.∗∗∗P < 0.001 different from
respective saline control group.

Fig. 2. Effect of theophylline in the formalin test. Animals were administered
either saline (sal, 10 ml kg−1) or different doses of theophylline (5, 10, 20,
40 and 80 mg kg−1, i.p.) 60 min before formalin injection. Antinociception
during 0–5 min (panel A; first phase) and 15–50 min (panel B; second phase)
after formalin injection was recorded. Each point is the mean± S.E.M. of
eight experiments.∗P < 0.05,∗∗∗P < 0.001 different from respective saline
control group.

that combination of theophylline (5, 10 and 20 mg kg−1, i.p.)
and lower dose of nicotine (1�g kg−1, i.p.) reduced nicotine
response with interactions in the first [F(3, 56) = 150.4,P
< 0.0001] (Fig. 3A) and second phase [F(3, 56) = 107.0,P
< 0.0001] (Fig. 3B) of formalin test. Post hoc analysis also
showed that the drugs induced antinociception in the both
phases of the test.

Fig. 4indicates effect of theophylline in the presence or ab-
sence of higher dose of nicotine. Two-way ANOVA showed
that combination of theophylline (5, 10, 20 and 40 mg kg−1,
i.p.) and higher dose of nicotine (100�g kg−1, i.p.) reduced
nicotine response with interactions in the first [F(5, 84) =
85.7,P < 0.0001] (Fig. 4A) and second phase [F(5, 84) =
193.6,P < 0.0001] of formalin test (Fig. 4B). Post-hoc anal-
ysis also showed that the drugs induced antinociception in
the both phases of the test.

Fig. 5A shows the antinociception induced by different
doses of nicotine in the presence or absence of NECA in the
first phase of formalin test. Two-way ANOVA indicated that
combination of nicotine (1, 10 and 100�g kg−1, i.p.) with
NECA (1�g kg−1, i.p.) [F(3, 56) = 40.3,P < 0.0001] and
also nicotine with NECA 5�g kg−1 [F(3, 56) = 39.3,P <
0.0001] induced interactions. Post hoc analysis also showed
that NECA did not potentiate nicotine response in first phase
of the test.
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ig. 3. Effect of theophylline in the presence or absence of lower do

icotine in the formalin test. Animals were administered either theophylline
5, 10 and 20 mg kg−1, i.p.) 60 min before formalin injection, or theophylline
lus nicotine (1�g kg−1, i.p.). Nicotine was administered 15 min prior to

ormalin injection. Antinociception during 0–5 min (panel A; first phase) and
5–50 min (panel B; second phase) after formalin injection was recorded.
ach point is the mean± S.E.M. of eight experiments.∗P < 0.05,∗∗P <
.01,∗∗∗P < 0.001 different from respective saline control group.
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Fig. 4. Effect of theophylline in the presence or absence of higher dose of
nicotine in the formalin test. Animals were administered either theophylline
(5, 10, 20 and 40 mg kg−1, i.p.) 60 min before formalin injection, or theo-
phylline plus nicotine (100�g kg−1, i.p.). Nicotine was administered 15 min
prior to formalin injection. Antinociception during 0–5 min (panel A; first
phase) and 15–50 min (panel B; second phase) after formalin injection was
recorded. Each point is the mean± S.E.M. of eight experiments.∗∗P< 0.01,
∗∗∗P < 0.001 different from respective saline control group.

Fig. 5. Effect of nicotine in the presence or absence of 5′-N-
ethylcarboxamide adenosine (NECA) in the formalin test. Animals were
administered either nicotine (1, 10 and 100�g kg−1, i.p.) 15 min before
formalin injection or nicotine plus NECA (1 and 5�g kg−1, i.p.). NECA
was administered 30 min prior to formalin injection. Antinociception during
0–5 min (panel A; first phase) and 15–50 min (panel B; second phase) after
formalin injection was recorded. Each point is the mean± S.E.M. of eight
experiments.∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001 different from respective
saline control group.

Fig. 5B shows the antinociception induced by nicotine in
the presence or absence of NECA in the second phase of for-
malin test. Two-way ANOVA indicated that combination of
nicotine (1, 10 and 100�g kg−1, i.p.) and NECA 1�g kg−1

[F(3, 56) = 48.8,P< 0.0001] and NECA 5�g kg−1 [F(3, 56)
= 66.9,P < 0.0001] induced interactions. Further analysis
showed that NECA did not potentiate the response of nicotine
in the second phase of the test. NECA in doses higher than
5�g kg−1 (10, 50 and 100�g kg−1, i.p.) induced antinoci-
ception, which a part of the response may be due to sedation.

3.3. Effect of theophylline on adenosine-induced
antinociception in formalin test

Antinociception induced by different doses of theo-
phylline (5, 10, 20 and 50 mg kg−1, i.p.) in the presence
or absence of NECA 5�g kg−1 is shown inFig. 6. Two-
way ANOVA showed that combination of theophylline with
NECA induced interaction in the first phase (Fig. 6A) [F(3,
56) = 48.8,P < 0.0001] and second phase (Fig. 6B) [F(3,
56) = 48.8,P< 0.0001] of the formalin test. Further analysis
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ig. 6. Effect of theophylline in the presence or absence of 5′-N-
thylcarboxamide adenosine (NECA) in the formalin test. Animals were
dministered either theophylline (5, 10, 20 and 40 mg kg−1, i.p.) 60 min be-

ore formalin injection or theophylline plus NECA (5�g kg−1, i.p.). NECA
as administered 30 min prior to formalin injection. Antinociception during
–5 min (panel A; first phase) and 15–50 min (panel B; second phase) after

ormalin injection was recorded. Each point is the mean± S.E.M. of eight
xperiments.∗P< 0.05,∗∗∗P< 0.001 different from respective saline control
roup.+P < 0.05,+++P < 0.001 different from respective NECA control
roup.



H. Homayounfar et al. / Pharmacological Research 51 (2005) 197–203 201

showed that theophylline reversed the antinociceptive effect
of NECA.

4. Discussion

The formalin test is a model of injury-produced pain,
which was introduced by Dubuisson and Dennis[49]. It mea-
sures the response to a long-lasting nociceptive stimulus; re-
semble clinical pain. The test produced a distinct biphasic
response. The early response (first phase) was recorded dur-
ing the 5 min after formalin injection, and the late response
(second phase) recorded 20–50 min after formalin injection.
It has been reported that the action of analgesics differs in the
early phase and late phase[50–52].

The present data showed that nicotine induced a dose-
dependent antinociception in the first and second phases of
formalin test. This is in agreement with previous reports
that nicotine induces antinociception (seeSection 1). Interac-
tion between nicotinic and opioid systems has been observed
[33,36]. The antinociceptive effect of nicotine is shown to be
mediated through cholinergic[42], opioid receptor[53] and
GABA-A receptor mechanisms[54]. Bernardini et al.[55]
showed that nicotine can weakly excite C-nociceptors, while
muscarinic receptor desensitization leads to antinociception.
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by higher doses of theophylline (20 and 40 mg kg−1) in the
present study.

In the present study, the effects of nicotine in the pres-
ence or absence of theophylline or adenosine receptor ago-
nist, NECA have been investigated in the formalin test. How-
ever, adenosine mechanism may be involved in the nicotine
response, our present data showed that NECA did not poten-
tiate the response of nicotine and the additive effect may be
involved in the response of combination of the two drugs.

On the other hand, combination of nicotine with theo-
phylline elicits lower antinociceptive effect, which can sup-
port adenosine receptor mechanism in the antinociceptive re-
sponse of nicotine. This data even further supports the hy-
pothesis that blockade of the A2 receptors by theophylline de-
creases antinociception. In addition to inhibition of phospho-
diesterase and 5′-nucleotide, methylxanthines are reported
to have a variety of actions unrelated to their antagonism
of adenosine receptors, including alterations in intracellu-
lar Ca2+ concentrations and modulation of GABA or nora-
drenergic transmission[74,75]. Whether, these mechanisms
are involved in the present theophylline effects, it should
be examined. Overall, it is concluded that adenosine recep-
tor mechanism may be involved in modulation of nicotine-
induced antinociception.
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elease of endogenous opioid peptides[33,58,59]and thes
eptides are able to release adenosine[60–63].

The present study also showed that theophylline, an ad
ine antagonist and also a phosphodiesterase inhibitor[64],
nduced antinociception. However, the drug showed a
ffect. Antinociception decreased by increasing the do

he drug to 40 mg kg−1 and increased again in 80 mg kg−1.
his is in agreement with the data showing that increa
oses of methylxanthines decreases antinociception[65,66].
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