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Cigarette smoking is the leading cause of lung cancer worldwide. In this study, we evaluated the 
serum autoantibody (AAb) repertoires of non-small cell lung cancer (NSCLC) patients and smokers 
(SM), leading to the identification of overactivated pathways and hubs involved in the pathogenesis of 
NSCLC. Surface- and solution-phase biopanning were performed on immunoglobulin G purified from 
the sera of NSCLC and SM groups. In total, 20 NSCLC- and 12 SM-specific peptides were detected, 
which were used to generate NSCLC and SM protein datasets. NSCLC- and SM-related proteins were 
visualized using STRING and Gephi, and their modules were analyzed using Enrichr. By integrating 
the overrepresented pathways such as pathways in cancer, epithelial growth factor receptor, c-Met, 
interleukin-4 (IL-4) and IL-6 signaling pathways, along with a set of proteins (e.g. phospholipase 
D (PLD), IL-4 receptor, IL-17 receptor, laminins, collagens, and mucins) into the PLD pathway and 
inflammatory cytokines network as the most critical events in both groups, two super networks were 
made to elucidate new aspects of NSCLC pathogenesis and to determine the influence of cigarette 
smoking on tumour formation. Taken together, assessment of the AAb repertoires using a systems 
biology approach can delineate the hidden events involved in various disorders.

Lung cancer is recognized as a fatal malignancy, accounting for more than a quarter of all cancer deaths in the 
United States and 1.6 million deaths every year worldwide1,2. Approximately 85% of all new cases of lung cancer 
are classified as non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma and 
large-cell carcinoma2. Despite an overall increase in the rate of survival for most cancers, 5-year survival for lung 
cancer has not improved significantly1. On the other hand, smoking is a primary risk factor for lung cancer, and 
nearly 14–25% of lifetime smokers (SM) are expected to develop lung cancer2. Accordingly, the carcinogenic 
effects of tobacco smoke through deregulation of various cellular pathways and DNA adduct formation have been 
extensively studied in the past decades3.
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The low success rate of lung cancer treatment originates from delayed diagnosis, which reduces the chance of 
total tumour excision via surgery and acquired resistance to available medication regimens4,5. Imaging methods 
are usually applied in the diagnosis of lung cancer. However, the high costs of these methods, radiation exposure, 
and false positive or negative results, restrict their applications as screening tests2,4. Moreover, resistance to con-
ventional chemotherapeutics, such as platinum agents, antitubulars, topoisomerase II inhibitors, and antimetab-
olites, is quite common among NSCLC patients who eventually develop resistance to chemotherapeutics5.

Autoantibody (AAb) production, as a reaction of the immune system to tumour antigens, is an inevitable 
phenomenon in cancers6. Since AAb production occurs during the early stages of disease, it may serve as a func-
tional tool for NSCLC diagnosis4,7. Therefore, detection of AAbs in NSCLC patients has been the subject of a few 
investigations to determine the AAb repertoires and identify AAbs against particular proteins4,7–14. Nevertheless, 
for comparison of the AAb repertoires and identification of common autoantigens, limited research has been 
performed on the sera of NSCLC patients and SM.

In contrast to studies assessing lung cancer via bioinformatics tools15–19, a few studies have focused on 
smoking with a systems biology approach; for instance, expression-based network analysis and assessment of 
protein-protein interactions have revealed changes in human blood20, human buccal mucosa21, and mouse lung 
samples22 due to cigarette exposure. For exhibiting the direct correlation between smoking and lung cancer, Ying 
Liu et al. analysed three protein expression datasets of lung adenocarcinoma and divided them into two subcate-
gories of SM and non-SM. The results revealed Ras signalling pathway (SP) and proteoglycans in cancer as the key 
pathways in lung cancer development in SM23. Furthermore, Wang et al. constructed a graphical model to assess 
gross network alterations during transition from normal to cancer tissue in SM. The findings demonstrated a gain 
of epithelial growth factor receptor (EGFR) and platelet-derived growth factor receptor A (PDGFRA) modules in 
addition to a loss of interleukin-6 (IL-6) module in lung cancer24.

In the present study, we carried out biopanning with a phage-displayed random peptide library on immu-
noglobulin G (IgG) purified from the sera of NSCLC patients and SM to detect peptides based on their AAbs. 
NSCLC- and SM-specific proteins, predicted from the detected peptides, were investigated with systems biol-
ogy tools to demonstrate their involvement as hubs in significant pathways driving lung cancer pathogenesis. 
Furthermore, they were used to construct two super networks for clarifying multidimensional contribution of 
smoking to NSCLC.

Results
Peptide library enrichment led to the generation of NSCLC and SM protein datasets.  To 
assess the binding of NSCLC and SM IgG to phage pools after three consecutive rounds of surface- (SU) and 
solution-phase (SL) biopanning, all the input and output phages were screened via polyclonal phage enzyme-
linked immunosorbent assay (ELISA). The highest signals were observed in the third round of SU and SL bio-
panning (data not shown). Based on monoclonal phage ELISA on random clones obtained from the third round 
of biopanning, 30 NSCLC (SU, FLU1-20; SL, FLL21-30) and 15 SM (SU, FSU1-5 and FSU11-20; SL, FSL6-10 and 
FSL21-25) clones were selected, which showed the highest intensities in comparison to the controls (Fig. 1a and 
b). Among the designated phage clones, three FLL and five FSU clones failed to produce meaningful sequences. 
In addition, two NSCLC-specific peptides (FLU7 and FLU8) containing sequences with three consecutive his-
tidine residues, and one SM-specific peptide (FSL25) due to its similarity to another peptide sequence in this 
group, were omitted. Notably, among NSCLC-specific clones, FLU6, FLU9, and FLU15 (-CRNVHHKNC-), FLL22 
and FLL29 (-CTRHWPHHC-), in addition to FLL26 and FLL27 (-CQSLHGANC-), showed similar sequences 
(Fig. 1c). Additionally, clones FSL7, FSL8, FSL10, and FSL21-24 showed an identical amino acid composition 
(-CQSLHGANC-) to clones FLL26 and FLL27 (Fig. 1d).

Evaluation of the selected peptides in the MimoDB demonstrated that 21 NSCLC- and 13 SM-specific pep-
tides, were true target binders. Blasting peptides FLU22, FLU29, and FSL9 (score ≥18.5) followed by an assessment 
in the UniProt database and review of the literature, did not present major proteins; accordingly, these peptides 
were deleted from the final peptide lists. However, blasting the remaining peptide sequences led to the prediction 
of 531 NSCLC and 346 SM proteins with 50 common proteins (Supplementary dataset). Figure 1c and d show 
the sequence and quantity of proteins predicted from each peptide. Furthermore, the list of proteins found in 
more than one clone is presented in Table S1. Peptides FLU19, FLL26, FLL27, and FLL30 accounted for the lowest 
number of NSCLC-related proteins (<10), while peptides FLU5 and FLU10 represented the highest number of 
NSCLC-related proteins (>40). Moreover, peptides FSU1, FSU15 and FSU17 were individually related to more 
than 40 proteins whereas a group of SM-specific peptides (FSU2 and FSU18, and FSL7, FSL8, FSL10, and FSL21-24) 
accounted for less than 10 proteins in the SM protein dataset. Markedly, retinoic acid-induced protein 1 (RAI1), 
dermatan-sulfate epimerase (DSE), and protein kinase C delta (PRKCD) were proteins predicted from more than 
one peptide in both NSCLC and SM groups.

Protein complexes in the NSCLC and SM groups.  Gene set enrichment by Consensus PathDB (CPDB) 
revealed multiple physically associated protein complexes, with at least two members in the NSCLC or SM protein 
dataset. Proline-rich tyrosine kinase 2 (PYK2)/Src homology region 2-containing protein tyrosine phosphatase 
2 (SHP2) complex (two out of two components; 2/2), ADP-ribosylation factor 6 (ARF6)/Guanosine triphos-
phate (GTP)/Nucleoside diphosphate kinase A (NME1)/T-lymphoma invasion and metastasis-inducing protein 
1 (Tiam1) complex (2/3), proto-oncogene tyrosine-protein kinase Src (SRC)-PRKCD-CUB domain-containing 
protein 1 (CDCP1) complex (2/3), and Janus kinase 1 (JAK1): Interleukin-13 receptor subunit alpha-1 
(IL-13RA-1): Interleukin-4 receptor alpha (IL-4RA): Tyrosine kinase 2 (TYK2) complex (2/4) were among the 
most significant complexes in the NSCLC group (p-value < 0.05). APC-stimulated guanine nucleotide exchange 
factor 2 (ASEF2)/Adenomatous polyposis coli (APC) complex (2/2), Early elongation complex with hyperphos-
phorylated RNA polymerase II C-terminal domain (Pol II CTD) (4/4), Positive transcription elongation factor 
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(P-TEFb) complex (2/3), and Tankyrin 1-tankyrin 2-telomeric repeat binding factor (TRF1) complex (2/3) 
were the most significant complexes in the SM group (p-value < 0.05). Histone deacetylase 2 (HDAC2) and 
lysine-specific demethylase 1 (LSD1) complexes were common in the datasets. Table S2 shows the overlapped 
components and p-value of each complex.

Primary classification of all proteins via Pathway Studio®.  Network analysis of NSCLC and SM 
protein datasets using Pathway Studio® presented a similar pattern in some cell processes, including proliferation 
(40%, p-value: 1.7E-13; and 42%, p-value: 7.1E-15, respectively), differentiation (36%, p-value: 3.7E-23; and 41%, 
p-value: 2.9E-26, respectively), and migration (27%, p-value: 5.0E-19; and 32%, p-value: 2.9E-23, respectively) as 
the top three processes associated with the highest proteins count (Fig. 2a). Although cell growth seemed to be an 
important phenomenon in the SM group, lack of cell survival arm was witnessed.

Diseases analysis demonstrated cancer (20%, p-value: 3.1E-6), carcinogenesis (19%, p-value: 2.1E-19), metas-
tasis (14%, p-value: 3.2E-10), abnormality (13%, p-value: 5.6E-10), neoplastic transformation (6%, p-value: 6.8E-
7), malignant transformation (6%, p-value: 4.3E-7), and neoplasm invasion (4%, p-value: 4.1E-5), as the most 
important diseases linked to the NSCLC group (Fig. 2b). Moreover, carcinogenesis (p-value: 1.9E-14) was a major 
event, involving 19% of SM proteins. Other events in this group included metastasis (16%, p-value: 7.3E-10), 
abnormality (11%, p-value: 7.0E-5), congenital malformation (9%, p-value: 1.8E-8), neoplastic transformation 
(8%, p-value: 5.0E-8), neurodegeneration (8%, p-value: 1.5E-5), malignant transformation (5%, p-value: 5.9E-
5), and neurodegenerative disease (5%, p-value: 6.3E-5). Although carcinogenesis, metastasis, and abnormality 
owned similar shares in both groups, cancer state and neurodegenerative disease were major disorders which 
were specifically associated with the NSCLC and SM groups, respectively. The percentage indicates the ratio of 
involved proteins to the total number of proteins in each dataset.

Gene Ontology (GO) and pathway enrichment analysis of NSCLC and SM protein data-
sets.  The NSCLC network constructed via Gephi contained 316 nodes and 513 edges, while the SM network 
consisted of 179 nodes and 255 edges (Fig. 3a). GO enrichment of the top six NSCLC- and SM-related modules 
by Metascape exhibited terms such as transmembrane receptor protein tyrosine kinase SP (GO:0007169), phos-
pholipid metabolic process (GO:0006644), intrinsic apoptotic SP in response to oxidative stress (GO:0008631), 
collagen trimer (GO:0005581), DNA metabolic process (GO:0006259), signal transduction by p53 class mediator 
(GO:0072331), chromatin remodelling (GO:0006338), integrin-mediated SP (GO:0007229), cellular response 
to organic cyclic compound (GO:0071407), O-glycan processing (GO:0016266), regulation of GTPase activity 
(GO:0043087), phospholipid binding (GO:0005543), and apical junction complex (GO:0043296) in the NSCLC 

Figure 1.  Monoclonal phage ELISA and number of proteins predicted from each selected peptide. (a) 
Randomly selected NSCLC and (b) SM clones were screened by monoclonal phage ELISA; intensities are 
reported as mean ± SD. Columns 1–10 (grey) and 11–20 (black) belong to clones from SU and SL biopanning 
with the highest intensities, respectively, and the blue columns indicate the controls (bovine serum albumin 
(BSA)). Peptides identified with the purified IgG of (c) NSCLC patients (orange) and (d) SM (yellow) are plotted 
against the number of human proteins which matched to each sequence after blasting with a cut-off of 18.5 and 
manual deletion of unrelated entities. Mild orange (c) and (d) mild yellow indicate the peptides obtained from 
SL biopanning.
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group, as well as regulation of cell migration (GO:0030334), inositol lipid-mediated signalling (GO:0048017), reg-
ulation of canonical Wnt SP (GO:0060828), DNA repair (GO:0006281), mitotic cell cycle process (GO:1903047), 
regulation of small GTPase-mediated signal transduction (GO:0051056), kinase activity (GO:0016301), calmod-
ulin binding (GO:0005516), and toll-like receptor SP (GO:0002224) in the SM group. Furthermore, there were 
some terms related to cardiovascular diseases and diabetes which are highly prevalent disorders among Iranian 
population (as also confirmed among the participants of this study)25,26.

Expectedly, pathways enrichment analysis based on the KEGG and WikiPathways databases in Enrichr pre-
sented a group of important pathways in the top six modules of NSCLC, including phospholipase D (PLD) SP, 
phosphoinositide 3-kinase-Akt (PI3K-Akt) SP, JAK-signal transducer and activator of transcription (JAK-STAT) 
SP, gonadotropin-releasing hormone (GnRH) SP, chemokine SP, natural killer cell (NKC) mediated cytotoxicity, 
pathways in cancer, signalling of hepatocyte growth factor receptor (HGFR), EGF/EGFR SP, IL-4 SP, IL-6 SP, 
type II interferon signalling (IFNγ), mitogen-activated protein kinase (MAPK) SP, signalling pathways regulating 
pluripotency of stem cells, ataxia telangiectasia mutated (ATM) SP, Fanconi anaemia pathway, nicotine addiction, 
gamma-aminobutyric acid (GABAergic) synapse, and Ras SP (Fig. 3a). Similarly, critical pathways were found 

Figure 2.  Top NSCLC- and SM-related cell processes and diseases based on Pathway Studio®. (a) The most 
significant cell processes. (b) The most significant diseases. Significant cell processes and diseases associated with 
the NSCLC (orange) and SM (yellow) groups were selected based on the network analysis function in Pathway 
Studio®. They are reported as the percentage of the number of proteins involved in the cell process or disease, to 
the total number of proteins in the related dataset (NSCLC or SM; 100 × n involved proteins/n total protein in dataset).



www.nature.com/scientificreports/

5SCIEnTIFIC REPOrTS | 7: 13812  | DOI:10.1038/s41598-017-14195-1

in the SM group, such as PI3K-Akt SP, pathways in cancer, extracellular matrix (ECM)-receptor interaction, Fc 
gamma R-mediated phagocytosis, microRNAs in cancer, glutamatergic synapse, Wnt SP, PLD SP, DNA damage 
response (DDR) only ATM dependent, alpha 6 Beta 4 SP, EGF/EGFR SP, neurogenic locus notch homolog protein 
(NOTCH) SP, transforming growth factor beta (TGF-β) SP, transcriptional misregulation in cancer, Forkhead box 
O (FoxO) SP, tight junction, and tumour necrosis factor (TNF) SP (Fig. 3b). Table S3 summarizes the information 
on some significant pathways identified via data mining.

CFTR, PRKCD, PTK2B, CHEK1, and NOTCH1 as functional hubs.  According to features such as 
betweenness centrality and degree implemented in Gephi, several NSCLC- and SM-specific hubs were iden-
tified (Table S4a). Proteins such as cystic fibrosis transmembrane conductance regulator (CFTR), PRKCD, 
tight junction protein ZO-1 (TJP1), PTK2B, TIAM1, nucleoside diphosphate kinase A (NME1), phospholipase 
C beta 2 (PLCB2), brefeldin A-inhibited guanine nucleotide-exchange protein 1 (ARFGEF1), and checkpoint 
kinase 1 (CHEK1) were NSCLC-specific hubs. Furthermore, NOTCH1, calpain-13 (CAPN13), DNA-directed 
RNA polymerase II subunit RPB2 (POLR2B), E3 ubiquitin-protein ligase NEDD4 (NEDD4), serine/
threonine-protein kinase Sgk1 (SGK1), serine/threonine-protein kinase Sgk3 (SGK3), APC, PLD2, ARFGEF1, 
and regulatory-associated protein of mTOR (RPTOR) were highly ranked proteins in the SM group.

Assessment of NSCLC-specific hubs in the WebGestalt database demonstrated disorders such as lung neo-
plasms (p-value: 0.014), epithelial cancers (p-value: 0.014), lung diseases (p-value: 0.015), and carcinoma (p-value: 
0.025), as well as several malignancies and disorders related to cancer. Evaluation of SM-specific hubs revealed 
confirmative results such as precancerous conditions (p-value: 0.003), substance-related disorders (p-value: 
0.008), chromosome aberrations (p-value: 0.016), and stress (p-value: 0.021), in addition to adenocarcinoma and 
neoplasms.

Potential drugs, which could modulate NSCLC hubs, were determined by searching DrugBank and Reaxys® 
(Table S4b). Among NSCLC-specific hubs, a group of drugs was found to target PRKCD, PTK2B, and CHEK1, 
as indicated in several types of malignancies. In this regard, drugs such as bosutinib, dasatinib, axatinib, and 

Figure 3.  Network visualization, modularity and pathway analysis of NSCLC and SM. The node size 
demonstrates the betweenness centrality and the edge thickness shows the combined score of STRING. Pathway 
enrichment analysis of the top six modules (M) of (a) NSCLC and (b) SM was performed using Enrichr 
(based on the KEGG and WikiPathways databases). (c) NSCLC- and (d) SM-specific hubs are also displayed, 
respectively.

http://S3
http://S4a
http://S4b


www.nature.com/scientificreports/

6SCIEnTIFIC REPOrTS | 7: 13812  | DOI:10.1038/s41598-017-14195-1

lapatinib have been developed to concurrently inhibit these three kinases. Astonishingly, PTK2B inhibitors, 
crizotinib and mereletinib, are prescribed for patients with metastatic NSCLC showing specific molecular 
characteristics27,28.

Ability of the selected hubs for discrimination of NSCLC, SM, and control sera.  Based on fea-
tures such as betweenness centrality and degree, PTK2B and NOTCH1 were selected from the NSCLC and SM 
groups, respectively. The data exhibited specific binding of two hubs to the corresponding NSCLC and SM sera 
(p-value < 0.01). In contrast, they showed poor binding to the sera of age-matched healthy subjects (Fig. 4).

The PLD SP and inflammatory cytokines network as overriding events in the NSCLC and SM 
groups.  The PLD SP was undoubtedly the most significant NSCLC pathway. Remarkably, PLD was found 
among SM-specific proteins. Furthermore, phospholipid metabolic process and phospholipid binding were over-
represented GO terms identified through NSCLC-related module analysis. According to the literature review 
and evaluation of pathways involved in tumour formation and development, the PLD SP took centre stage in 
the pathogenesis of NSCLC in this study. Curation of the PLD SP derived from the KEGG database with the 
information attained through data-mining and Pathway Studio® led to the formation of a super network con-
structed with several NSCLC (e.g. PRKCD, PTK2B, PLCB2, and ARFGEF1) and SM (e.g. PLD2, ARFGEF1, and 
RPTOR) hubs. Among the mentioned hubs, RPTOR, a SM-specific hub, was also found in the NSCLC protein 
dataset. As exhibited in Fig. 5, a group of NSCLC proteins such as SHC-transforming protein 4 (SHC4), SHP2, 
mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), phosphatidylinositol 4-phosphate 3-kinase 
C2 domain-containing subunit beta (PIK3C2B), diacylglycerol kinase theta (DGKQ), laminin subunit alpha-3 
(LAMA3), arf-GAP with dual PH domain-containing protein 1 (ADAP1), ral guanine nucleotide dissociation 
stimulator (RALGDS), and G-protein-coupled receptors (GPCRs, including lysophosphatidic acid receptor 4 
(LPAR4), lysophosphatidic acid receptor 6 (LPAR6), and orexin receptor type 1 (HCRTR1)) linked to the PLD 
SP, were observed in this network. Among the mentioned proteins, LPAR4, HCRTR1, and MAP4K1 were present 
in the SM protein dataset, as well. In addition, there were several key proteins such as NOTCH1, APC, pyru-
vate dehydrogenase (acetyl-transferring) kinase isozyme 1, mitochondrial (PDK1), laminin subunit alpha-1 
(LAMA1), laminin subunit alpha-5 (LAMA5), and metabotropic glutamate receptor 5 (GRM5) which were only 
found in the SM protein dataset. Based on the KEGG and WikiPathways databases, significant SPs such as EGF/
EGFR SP, HGFR SP, MAPK SP, PI3K-Akt SP, Ras SP, glycerophospholipid metabolism, glutamatergic synapse, 
ECM-receptor interaction, small cell lung cancer, microRNAs in cancer, DDR, and pathways in cancer identified 
via analysis of NSCLC and SM modules-related pathways, were also integrated in this super network. The mem-
bers of this super network were linked to each other, resulting in a cascade of events. Binding of lysophosphatidic 
acid (LPA) to its receptors, LPAR4 and LPAR6, activates GPCR-related pathways which stimulate PLD29,30. Two 
other GPCRs, HCRTR1 activated by neuropeptide orexin and GRM5 activated by glutamate (released due to 
the indirect action of HIFs31 like HIF3A observed in the SM group), promote various pathways leading to PLD 
activation32,33. Another remarkable receptor in this network, EGFR, stimulates PLD via multiple routes con-
taining proteins, some of which were found in this study, as well (Fig. 5)30. Among proteins involved in path-
ways leading to PLD activation, ARF1 acts as a key protein activated and inactivated by ARFGEF1 and ADAP1, 
respectively34. Several pathways such as glycerophospholipid metabolism, sphingolipid, mechanistic target of 
rapamycin (mTOR), and MAPK SPs, are induced through phosphatidic acid (PA) produced by the enzymatic 
activity of PLD30,35,36. Components of ECM (LAMA1, 3, and 5) induce the synthesis of PA by activation of PLD 
which stimulates matrix metalloproteinases (MMPs) and enhances the invasive capacity of tumor cells37. Among 
pathways connected to the PLD SP, pathways in cancer was one of the critical events observed in both NSCLC 
and SM groups and was linked to other significant pathways such as microRNAs in cancer, DDR, and small cell 
lung cancer. A set of proteins, including LPAR4, LPAR6, collagen alpha-3(IV) chain-like (COL4A3), PLCB2, and 
granulocyte-macrophage colony-stimulating factor receptor subunit alpha (CSF2RA) from the NSCLC protein 

Figure 4.  Binding assessment of the selected hubs to the NSCLC and SM sera. The results of PTK2B and 
NOTCH1 binding to the sera of 30 NSCLC patients (peach), 30 SM (red), and 40 age-matched healthy subjects 
(HC, as the controls) are presented (*p-value < 0.01).
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dataset as well as APC, LAMA1, LAMA5, and PLD1 from the SM protein dataset, were involved in pathways in 
cancer. All NSCLC- and SM-specific proteins playing roles in the above-mentioned SPs are presented in Fig. 5.

The second super network was constructed to describe how cytokines alter the tumour microenvironment 
(e.g. ECM proteins) and how tumour recruits them to fabricate the immune system (Fig. 6). This network was 
originated from multiple significant pathways such as JAK-STAT SP, chemokine SP, NKC-mediated cytotoxicity, 
signalling of HGFR (c-Met), EGF/EGFR SP, IL-4 SP, IL-6 SP, and type II interferon signalling obtained from the 
NSCLC module analysis and ECM-receptor interaction, Fc gamma R-mediated phagocytosis, TGF- β SP, tight 
junction, and TNF SP obtained from the SM module analysis. It consisted of various proteins, including TJP1 
(NSCLC hub), leukemia inhibitory factor (LIF), IL-4R, IL-1 receptor type 2 (IL-1R2), IL-17 receptor A (IL-17RA), 
CSF2RA, TNF ligand superfamily member 15 (TNFSF15), TYK2, PIK3C2B, nuclear receptor coactivator 3 
(NCOA3), mucin-4 (MUC4), MUC13, MUC16, COL4A3, collagen alpha-1(XXVI) chain (COL26A1), and col-
lagen alpha-1(XXVII) chain (COL27A1) which were present in the NSCLC protein dataset. SM-specific proteins 
such as TNF receptor superfamily member 25 (TNFRSF25), IL-17 receptor C (IL-17RC), TGF-beta-induced pro-
tein ig-h3 (TGFBI), MUC16, collagen alpha-1(III) chain (COL3A1), collagen alpha-1(XVI) chain (COL16A1), 
and COL27A1, were also integrated into the network. A remarkable relationship was found among the predicted 
proteins in this network. One of the most important pathways in the NSCLC group was IL-6 SP. IL-6 production 
is induced by IL-1R238, IL-1739,40 and cigarette smoking41. There is a two-way interaction between IL-6 and HGF, 
resulting in increased invasiveness of a lung cancer cell line42 and an autocrine loop between IL-6 and TGF-β1 
which its dysregulation causes an array of inflammatory disorders43. As shown in Fig. 6, IL-6 can augment the 
expression of MUC4 and MUC13 through JAK/STAT SP44,45. Production of LIF, an IL-6 family cytokine, by syno-
vial fibroblasts is also induced by IL-1739. Another interleukin, IL-4, can increase the transcription of MUC4 (via 
JAK/STAT) and MUC16 (through JAK/STAT and NCOA3)44,46,47. Furthermore, IL-4 triggers M2 macrophages 
to produce much more collagen a3 (VI)48. Expression of TJP1 is also decreased by IL-4, and its distribution at 
the interface of adjacent cells is disrupted by IL-17 receptor C (IL-17RC)49,50. The major cytokine in this net-
work, TGF-β, contributes to the modification of tumour microenvironment via MUC4 upregulation in an inter-
dependent manner with retinoic acid and interferon type II (IFNγ)51. TGF-β increases TJP1 expression52 and 
inhibits collagens degradation through activation of TGFBI53. Locally-secreted cytokines not only modulate the 
structure of tumour microenvironment, but also disrupt the protective function of the immune system. TGF-β 
signalling plays critical roles in the inhibition of tumour-specific CD8 T cell- and NK cell-mediated cytotoxicity 
through regulatory T cells54,55. In addition, IL-4, IL-6, and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) increase the population of myeloid-derived suppressor cells (MDSCs) which interrupt the identifi-
cation of tumour antigens by T cells through induction of nitric oxide synthase and consequent nitration of T 
cell receptor56. The final link is related to the TNF family which seems to be involved in tumour suppression57. 

Figure 5.  The super network constructed based on the PLD SP. The network was established based on the 
PLD SP in the KEGG database30 and was expanded by the addition of some pathways and neighbours via 
WikiPathways and data mining in the literature. As the identified pathways are shown in this figure, the FcεRI 
SP has been deleted from the PLD SP. LPAR4, LPAR6, GRM5, HCRTR1, and EGFR are the known receptors 
in this network. Different genes involved in the PLD SP and other related pathways are presented as coloured 
boxes. Yellow and pink colours indicate NSCLC- and SM-specific proteins in significant pathways found in this 
study, respectively. Brown and plum colours correspond to proteins from the NSCLC and SM protein datasets, 
respectively. Additionally, blue and yellow ribbons show common proteins and pathways between the two 
groups, respectively.
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However, the binding of TNFSF15 to its receptor, TNFRSF25, amplifies the expression of IL-4, IL-6, GM-CSF, and 
IL-1758,59, which may explain the overactivity of these tumour-promoting cytokines in our network.

Discussion
A combination of events such as cigarette smoking, nicotine addiction, delayed diagnosis, and resistance develop-
ment during chemotherapy, has led to major concerns about lung cancer. Therefore, it can be useful to compare 
the AAb repertoires of NSCLC patients with SM to discover proteins involved in lung cancer pathogenesis60,61. 
According to the literature, AAbs exist in the plasma of patients several months to years before the emergence 
of any clinical signs, reflecting the functional immunoreactivity against tumour antigens62. AAbs against 
tumour-specific antigens generated due to antigen mutation, overexpression, or altered structure, have been 
recruited to discover cancer biomarkers63. Aside from the important role of AAbs in the discovery of tumour 
antigens for the development of T cell-based vaccines, they can act as therapeutic antibodies by either blocking 
tumour antigens or recruiting the immune system63. Various studies have assessed cancer-specific antibodies in 
different types of malignancies63. Similarly, several studies have examined NSCLC patients and have identified 
a panel of AAbs binding to rho-associated protein kinase 1, protein kinase C beta, complement factor H, c-myc, 
cyclin A, B1 and D1, cyclin-dependent kinase 2, MUC1, Dickkopf-related protein 1, p53, NY-ESO-1, and annex-
ins (I and II)8–14. Furthermore, Yao, et al. introduced four combined AAb biomarkers identifying nucleolar and 
coiled-body phosphoprotein 1, metastasis-associated lung adenocarcinoma transcription 1, hyaluronan mediated 
motility receptor, and spermine oxidase for early detection of NSCLC7.

In the present study, classification of the predicted proteins into significant cellular processes revealed some 
overlapped areas as well as dissimilarities in the cellular behaviour of NSCLC and SM. Network enrichment 
analysis of NSCLC- and SM-related modules resulted in the identification of remarkable pathways which play 
key roles in cancer initiation, progression, or suppression. NSCLC-specific pathways included MAPK64,65, 
PI3K-Akt66, PLD36, Ras67, EGF/EGFR68–71, c-Met72–74, LPARs75, IL-476 and IL-677–79 SPs which play significant 
roles in tumorigenesis and cancer development. Remarkably, we found tumour suppressor pathways such as 
Fanconi anaemia pathway80 and ATM SP81 in the NSCLC group, which might be activated as feedbacks to the 
overactivated pathways in cancer cells.

Considerably, analysis of SM-related modules revealed multiple tumour-promoting pathways such as 
PI3K-Akt, PLD, and EGF/EGFR SPs which were commonly found in the NSCLC group. Conversely, activation of 
tumour suppressor pathways, including DDR and FoxO82 SPs as well as negative regulation of Wnt SP83 in the SM 
group, show activation of cellular defensive mechanisms against the carcinogenic compounds of cigarette smoke. 
Moreover, we found TGF-β and TNF SPs in this group, known as “double-edged swords”, which can promote 

Figure 6.  The super network constructed based on the relationship between inflammatory cytokines and 
tumour microenvironment. Similar to the first super network, the second network was created by proteins, 
particularly inflammatory cytokines, involved in significant NSCLC and SM pathways. IL-4, IL-6, IL-17, GM-
CSF, and TGF-β are the most important cytokines in this network. Purple, blue, and green colours indicate 
presence of protein in the NSCLC protein dataset, presence of protein in the SM dataset, and unavailability of 
proteins in the datasets, respectively. Blue ribbons also show the presence of protein in the SM protein dataset.



www.nature.com/scientificreports/

9SCIEnTIFIC REPOrTS | 7: 13812  | DOI:10.1038/s41598-017-14195-1

or suppress cancers84,85. As the results demonstrate, carcinogenic events are strongly significant in SM and may 
accelerate the emergence of disorders such as cancer.

Among NSCLC-specific hubs, there are four proteins which can be considered as the key players involved in 
lung cancer development. The first hub is CFTR which its dysregulation has been reported in a group of cancers 
such as breast, gastric, prostate, lung, and colorectal cancers (CRC)86. Moreover, a significant correlation has been 
reported between CFTR downregulation and lung cancer progression and metastasis86,87. In contrast to studies 
reporting CFTR suppression in epithelial cells due to exposure to cigarette smoke, Li, et al. showed CFTR upregu-
lation through nicotine-derived nitrosamine ketone (NNK), as one of the most toxic tobacco-specific carcinogens 
in cigarette smoke88. CFTR as an ABC transporter promotes protection against tobacco-specific carcinogens in 
cigarette smoke88. On the other hand, AAbs can lead to the development of lung cancer by blocking CFTR.

The second hub, PTK2B, is a part of protein complexes found in this study. This hub plays major roles in 
cancer cells due to its connections to critical pathways such as PLD, EGFR, and c-Met SPs30. It has been reported 
that PTK2B is upregulated in NSCLC. In fact, its higher expression and greater activity lead to the progression of 
NSCLC through modulating extracellular signal-regulated kinase 1/2 (ERK1/2)89. Furthermore, wound-induced 
activation of PTK2B stimulates EGFR activation in the epithelial cells of lung lesions90. PTK2B was also detected 
as a sunitinib-specific target in NSCLC patients with kirsten rat sarcoma viral oncogene (KRAS) mutations91. 
Likewise, prescription of crizotinib and merelotinib in NSCLC patients underscores the importance of PTK2B 
in the pathogenesis of lung cancer. KRAS-activated PRKCD promotes growth, invasion, and migration of cancer 
cells, through MAPK signalling in NSCLC cell lines (and mouse model), whereas PRKCD activation in cells 
without active KRAS leads to tumour suppression92. In this regard, the PRKCD inhibitor, rottlerin, can effectively 
potentiate chemotherapy-induced apoptosis, particularly if it is used concomitantly with trastuzumab93. Liu, et 
al. found that CHEK1 overexpression is associated with poor overall survival in NSCLC patients, and inhibition 
of CHEK1 by miR-195 suppresses tumour cell growth, migration, and invasion94. In this regard, Xiaojie, et al. 
revealed that miR-195 synergizes with microtubule-targeting agents (eribulin and paclitaxel) via CHEK1 reg-
ulation, leading to the inhibition of NSCLC cells growth95. In agreement with other studies, we confirmed the 
involvement of CFTR, PTK2B, PRKCD, and CHEK1 in NSCLC pathogenesis.

In terms of major cancer-related proteins among SM-specific hubs, NOTCH1, ARFGEF1, PLD2, and RPTOR 
were strongly aligned with hallmarks of NSCLC. NOTCH1 contributes to cell proliferation, invasion, and 
chemoresistance. Its involvement in tumor progression and prognosis of NSCLC has been demonstrated in dif-
ferent studies96,97. Mutations and upregulation of Notch1 have been reported in 10% and 30% of NSCLC patients, 
respectively97,98. Konishi, et al. showed that suppression of NOTCH signaling inhibits the growth of NSCLC99. 
Furthermore, NOTCH signaling can crosstalk with other SPs such as Wnt and TGF-β driving cancer develop-
ment98. Therefore, targeting NOTCH signaling by therapeutic agents like antibodies which can inhibit delta-like 
protein 4 (Dll4) binding to NOTCH1, may be advantageous for NSCLC patients96,98. In this regard, a humanized 
anti-Dll4 antibody, demcizumab, is currently under evaluation in three Phase 1b studies on pancreatic cancer, 
CRC, and NSCLC98.

As illustrated in the results section, three interconnected proteins, ARFGEF1, PLD2, and RPTOR, were suc-
cessively activated, stimulating the cancer driver mTOR SP. Intriguingly, mutations in ARFGEF1, an activator 
of ARF1, have been reported in lung cancer100. Among these three proteins, PLDs have been garnering atten-
tion as potential contributors to cellular signalling of tumours101. Surprisingly, PLD represented an important 
intersection for other pathways in this study, and the first super network was constructed based on this enzyme. 
The existence of PLD isozymes (PLD1 and PLD2) in the SM protein dataset indicates the role of these junction 
boxes in the initiation of tumorigenesis. PLD is activated through a variety of signals such as neurotransmitters, 
hormones, and growth factors, transducing signals into pivotal cellular events, including proliferation, secretion, 
respiratory burst, and actin cytoskeletal reorganization102. As mentioned in the results section, PLD network 
involves proteins such as LPAR4, LPAR6, HCRTR1, and GRM5, as well as pathways like EGF/EGFR SP, which 
their roles have been proven in initiation and progression of several cancers. Phosphatidic acid, the product of 
PLD enzymatic activity, can be also converted to LPA and form a positive loop of LPA-LPARs30. LPA is involved 
in various cancer-related processes such as proliferation, growth, and survival75. Even though LPAR4 and LPAR6 
are newly-discovered members of LPAR family, their contributions to hepatocellular carcinoma103 and thy-
roid cancer104 have been demonstrated, respectively. Although HCRTR1 stimulation with high doses of orexin 
causes apoptosis in colon and prostate cancers105,106, elevated serum orexin level has not been detected in cancer 
patients107. It seems that the normal serum level of orexin is not sufficient to induce apoptosis in cancer cells. 
Physiologically activated HCRTR1 may activate some pathways other than apoptosis, such as the PLD SP which 
contributes to tumour progression33,105. Therefore, pharmacologically activated HCRTR1 may be promising in 
cancer prevention or treatment.

Hypoxia, as a common feature of tumour microenvironment, increases the transcription of glutamate recep-
tors, promotes the activation of GRM1, 3, 4, and 5, and supports proliferation and survival of several types of 
tumours through MAPK and PI3K/Akt SPs31,107. Noteworthy, GRM4 and 8 have been reported as susceptibility 
genes in NSCLC31. One of the critical pathways in both NSCLC and SM groups is the EGFR SP. More than half of 
lung tumours express receptors from EGFR family and one-fifth of lung tumours carry EGFR mutations, causing 
proliferation, migration, and metastasis68,71. Despite the preliminary response of all mutated lung tumours to 
tyrosine kinase inhibitors, they essentially acquire resistance68. Activation of mTOR, a master regulator of cell 
growth and proliferation, is one of the most important consequences of PLD activation. Accordingly, combina-
tion therapy of mTOR antagonists with standard regimens for lung cancer has enhanced treatment efficacy in 
early-stage trials108. Similarly, the MAPK SP, triggered by both PA and PLD, is associated with P53 degradation 
and MMPs induction, leading to cell survival and motility, respectively36. Overall, the PLD super network clarifies 
why treatment fails in this type of lung cancer and presents new insights into NSCLC chemotherapy. Moreover, 
this network underscores the pivotal function of PLDs in the occurrence of lung cancer in smokers.
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Another super network constructed in this study is a complicated linkage between inflammatory cytokines 
and tumour microenvironment. Inflammation is a mixed blessing in cancer and the T helper 2 response deteri-
orates the state of cancer through suppression of cellular immunity56. Incidentally, the significance of IL-4 and 
IL-6 SPs in the present study may suggest inappropriate activation of this unfavourable arm of immunity. IL-4 SP 
promotes metastasis by changing the microenvironment of epithelial tumours76. It has been reported that serum 
IL-6 levels in NSCLC patients (especially metastatic cases) are higher than healthy subjects77,78, and blockade of 
IL-6/STAT3 signalling results in the inhibition of lung tumour growth109. Besides, STAT3 is persistently activated 
in GPCR C5a-knockout (KO) mice, a spontaneous lung cancer developing model, and the use of an antibody 
against LIF leads to STAT3 inactivation in this model110. The IL-6 and c-Met loop causes cell invasion through 
MMP activation in A549 cells, as well42,72. Proteins such as IL-6 and c-Met, in cooperation with IL-17 and TGF-β, 
play various roles in the regulation of proteins such as mucins, collagens, and TJP1. It has been demonstrated 
that mucins such as MUC4 and MUC13 are associated with cancer development; the circulating level of MUC16 
is even used to monitor patients with ovarian cancer111–113. Regarding collagens, their increased and decreased 
expressions are correlated with malignancy114; accordingly, collagen XXIII has been suggested as a biomarker for 
the diagnosis of NSCLC115. Another study showed that COL4A3 cleavage by MMP-9 produces tumstatin which is 
a circulating anti-angiogenic factor116. Hence, AAb against COL4A3 may worsen the state of cancer by preventing 
the generation of tumstatin. Additionally, COL27A1 is aberrantly expressed in idiopathic pulmonary fibrosis117, 
a condition associated with lung cancer118. Ni and colleagues found that the expression of TJP1 was decreased 
in NSCLC tissue in comparison to adjacent non-tumour tissue and its overexpression was correlated with better 
prognosis in NSCLC patients119. Considerably, increased MDSCs population as well as dysfunction of NKCs and 
CD8+ T cells highlight an inefficient immune system in NSCLC120–122. Notably, our network exhibits how IL-4, 
IL-6, GM-CSF, and TGF-β predispose these phenomena.

In conclusion, given the rapid emergence of lung cancer in smoker populations across the world, new aspects 
of NSCLC pathogenesis and effects of cigarette smoke should be addressed. Tailoring the AAb profiling with 
a systems biology approach provides an excellent image of the network of AAbs targeting proteins which may 
be key drivers of cancer-interacting SPs such as PLD, PI3K-Akt, MAPK, EGF/EGFR, c-Met, Ras, DDR, IL-4, 
IL-6, and TGF-β SPs in the NSCLC and SM groups. Based on the PLD SP and inflammatory cytokines net-
work, two super networks were constructed with NSCLC- and SM-specific proteins such as PLD1/2, PRKCD, 
PTK2B, LPARs, RPTOR, NOTCH1, TJP1, laminins, mucins, and collagens as well as pathways found in this 
study. Focusing on these super networks will help to design novel therapeutic agents targeting proteins involved 
in the pathogenesis of lung cancer.

Methods
Sample collection.  For obtaining a repertoire of NSCLC AAbs, 67 blood samples of untreated newly-di-
agnosed adenocarcinoma and squamous cell carcinoma patients (stages I, Ib, II, and IIIa) were collected from 
different centres, including Baqiyatallah and Masih Daneshvari hospitals123, Tehran, Iran, as well as Kurdistan 
Hospital in Sanandaj, Iran. The patients aged 22–77 years (mean, 50.7 years) were all confirmed for NSCLC 
via histopathological tests and were classified into different stages based on the tumour/node/metastasis scale 
(TNM) staging system. Furthermore, 57 subjects (age range, 20–72 years; mean, 40.0 years) were allocated to the 
SM group according to the complete blood cell count, blood level of C-reactive protein (≤6 mg/dL), erythrocyte 
sedimentation rate (≤32 mm/h), rheumatoid factor (negative), and chest X-ray imaging to evaluate their overall 
health. All the subjects in the SM group were current smokers with different smoking patterns, ranging from a 
few cigarettes per week to heavy smoking.

A control group of 92 healthy non-SM volunteers (range, 11–80 years; mean, 38.9 years) were also ana-
lysed, based on the same criteria considered for the subjects in the SM group and were enrolled in the study. All 
healthy participants avoided anti-inflammatory drugs for three days prior to blood collection. The demographic 
information was collected from the subjects, and they were interviewed for potential risk factors for cancers 
and autoimmune diseases, including personal and family medical history. This study was done in accordance 
with the Helsinki Declaration124,125 and was approved by the Ethics Committee of Baqiyatallah University of 
Medical Sciences, the Ethics Committee of Masih Daneshvari Hospital123, and the Ethics Committee of Kurdistan 
University of Medical Sciences. All participants provided written informed consent before enrollment. The char-
acteristics of all three groups are presented in Table S5.

IgG purification from the sera of healthy control (HC), NSCLC patients, and SM.  The sera of each 
group (HC, NSCLC, and SM) were mixed separately and IgG purification was performed using Melon™ Gel IgG 
Purification Kit (Pierce, Rockford, IL) according to the manufacturer’s instructions. The purification accuracy 
was confirmed by reducing SDS-PAGE analysis.

Biopanning.  Using Ph.D.TM-C7C Phage Display Peptide Library Kit (New England Biolabs, Beverly, MA), SU 
and SL biopanning were carried out for three successive cycles on the purified IgG of NSCLC and SM groups. For 
SU biopanning, 96-well Nunc MaxiSorp flat-bottom plates were coated with IgG of HC, NSCLC and SM groups. 
In addition, for SL biopanning, Protein G Mag Sepharose Xtra (GE healthcare, US) was employed to expose IgG, 
according to the manufacturer’s instructions. In both procedures, the phages of three inputs were subtracted on 
HC IgG before being transferred to the wells coated with IgG (NSCLC or SM IgG) or microtubes containing IgG 
(NSCLC or SM IgG) according to the instructions of Ph.D.TM-C7C Phage Display Peptide Library Kit and Protein 
G Mag Sepharose Xtra).

http://S5
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Polyclonal and monoclonal phage ELISA.  Polyclonal phage ELISA was conducted on phages obtained 
from three rounds of SU and SL biopanning on NSCLC and SM IgG. The specificity of peptides displayed on 60 
selected phages (30 clones from SU biopanning and 30 clones from SL biopanning) to NSCLC and SM IgG was 
individually assayed by monoclonal phage ELISA according to the manufacturer’s instructions (Ph.D.TM-C7C kit) 
(see Supplementary information).‌

DNA sequencing.  To extract the single-stranded phage DNAs, 20 and 10 clones obtained from SU and SL 
biopanning on NSCLC IgG, along with 15 and 10 clones obtained from SU and SL biopanning on SM IgG, were 
selected, respectively, according to the Ph.D.TM-C7C kit instructions. After sequencing and inference of amino 
acid sequences by Gene Runner version 5.0, the peptides were analysed in the Biopanning Data Bank (MimoDB) 
(http://immunet.cn/bdb/) to discard target-unrelated peptides126. Based on default parameters for the Blastp 
(score ≥18.5), the selected peptides were blasted against the Refseq_protein database for the Homo sapiens127.

Determination of protein complexes in the NSCLC and SM protein datasets.  NSCLC- and 
SM-specific proteins obtained through blasting (score ≥18.5) and preliminary analysis of the literature and 
UniProt database, were assessed in CPDB (http://cpdb.molgen.mpg.de) to find significant protein complexes 
with at least two members in the NSCLC or SM protein dataset (p-value < 0.05).

Primary evaluation of NSCLC and SM protein datasets in Pathway Studio®.  Pathway Studio® 
11.2.5.9 (https://mammalcedfx.pathwaystudio.com) was used to exhibit the top cellular processes and diseases 
in two datasets. For this purpose, the NSCLC and SM protein datasets were separately introduced to Pathway 
Studio® and the Summary Analysis function was used to present a quick analytical summary of the datasets.

GO and pathway-enrichment analysis of predicted proteins.  For visualizing molecular interaction 
networks, the NSCLC and SM protein datasets were introduced to STRING 10.0 (http://string-db.org)128 and 
the nodes (proteins) and edges (protein-protein interactions) were extracted and transferred to Gephi 0.9.1129. 
The combined scores (from STRING) were defined as the edge weights. Modularity function implemented in 
Gephi was used for clustering, and the nodes were coloured differentially based on their modules. To identify 
GO terms and pathways related to the top six NSCLC and SM modules, Metascape (http://metascape.org)130 
and Enrichr web tools (http://amp.pharm.mssm.edu/Enrichr/)131 were recruited. Disease Association Analysis 
in the WebGestalt database (http://webgestalt.org)132 was performed for 25 NSCLC- and 26 SM-specific nodes 
(hubs) which showed the highest scores of betweenness centrality and degree. Target-based search were also 
implemented with DrugBank 5.0 (https://drugbank.ca)133 and Reaxys® (https://reaxys.com) to identify marketed 
drugs affecting NSCLC-specific hubs.

To present a final image of NSCLC pathogenesis in this study, two super networks were constructed by com-
bining pathways obtained from the KEGG PATHWAY and WikiPathways databases. Considering the PLD path-
way as a central event in the NSCLC group, a super network was built on the PLD SP taken from the KEGG 
database30. This super network was developed by trimming the unrelated branches and adding connections based 
on the literature review.

Another super network was constructed, considering the effects of inflammatory cytokines on tumour 
microenvironment. For this purpose, proteins involved in GO terms and pathways related to inflammation or 
ECM, were introduced to Pathway Studio® for generating a primary network. Using “the properties function” 
defined in Pathway Studio®, each network component was assessed, leading to the generation of a secondary 
network expanded with NSCLC key proteins. Data mining was also carried out to verify this super network with 
the deliberated connections.

Assessment of the selected hubs by ELISA.  PTK2B (ORIGENE) and NOTCH1 (R&D systems), as the 
representatives of NSCLC and SM groups, were selected for ELISA, respectively (see Supplementary information).

Statistical analysis.  The statistical analyses were carried out using GraphPad prism®. The data were stated 
as the mean ± SD and the statistical significance (p-value < 0.05) was determined by two-tailed Student’s t-test.
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