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Abstract: Nanoparticles (NPs) are currently used in diagnosis and treatment of many human diseases,
including autoimmune diseases and cancer. However, cytotoxic effects of NPs on normal cells and
living organs is a severe limiting factor that hinders their use in clinic. In addition, diversity of
NPs and their physico-chemical properties, including particle size, shape, surface area, dispersity
and protein corona effects are considered as key factors that have a crucial impact on their safe or
toxicological behaviors. Current studies on toxic effects of NPs are aimed to identify the targets
and mechanisms of their side effects, with a focus on elucidating the patterns of NP transport,
accumulation, degradation, and elimination, in both in vitro and in vitro models. NPs can enter
the body through inhalation, skin and digestive routes. Consequently, there is a need for reliable
information about effects of NPs on various organs in order to reveal their efficacy and impact on
health. This review covers the existing knowledge base on the subject that hopefully prepares us
better to address these challenges.

Keywords: nanoparticles; toxicological effects; organ-specific effects

1. Introduction

Nanoparticles (NPs) have become widely used in electronics, agriculture, textile production,
medicine, and many other industries and sciences (Figure 1) The International Organization for
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Standardization define NPs as structures whose sizes in one, two, or three dimensions are within
the range from 1 to 100 nm [1–5]. Apart from size, NPs may be classified in terms of their physical
parameters, e.g., electrical charge; chemical characteristics, such as the composition of the NP core or
shell; shape (tubes, films, rods, etc.); and origin: natural NPs (NPs contained in volcanic dust, viral
particles, etc.) and artificial NPs, which are the focus of this review [6]. NP toxicity for living organisms,
however, is the main factor limiting their use in treatment and diagnosis of diseases. At present,
researchers often face the problem and side effects related to their toxicity. In this respect, the choice of
an adequate experimental model for estimating toxicity in vitro (cell lines) and in vivo (experimental
animals) ones is of paramount importance. NPs can enter into the body through inhalation, skin,
and digestion, depending on their physicochemical characteristics and mode of their production [7].
The interactive contact with the body, depending on the type of compounds in NPs, can be respiratory,
digestive, or through skin or blood [8]. Some of NPs, such as ZnO and TiO2, have the ability to block
UV rays and are extensively used in various health products on the market, which raises concerns
about their risks to health, safety and the environment as they are dispersed in the environment.
According to primary studies, NPs can enter human body in different ways and they can access vital
organs in the body through the blood flow and induce damage to tissues and cells [1,7,8]. Although
the mechanism of NPs in this regard is not truly established, researchers have associated the toxicity of
NPs to parameters such as particle shape, size, dispersity, surface charge and protein corona effects.
Several studies have indicated that NPs activate oxidative stress and expression of genes involved
in inflammation [9–11]. NPs can enter the human body through respiration, ingestion, and injection
and consequently accumulate into different tissues and organs [11–14]. NPs can even reach the brain
by breaking the strong connection between cells and passing through the blood–brain barrier (BBB);
they attach to the cells containing CXCR6 chemokine receptor and overcome tight injunction in the
BBB [15]. The NPs’ passage through the membrane, their performance, and their cell metabolism are
still being studied and discussed. Thus, herein, we attempt to explain a part of the NPs performance
that hopefully can answer whether NPs have destructive and toxic effects on organs, or are they safe
enough [6]. Development of safe, biocompatible NPs that can be used for the diagnosis and treatment
of human diseases can only be based on a complete understanding of the interactions between all of
the factors and mechanisms underlying NP toxicity (Figure 1).
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Although the safety of many of their chemical components in medicine has been examined,
the toxic effect of NPs may be caused by their unique physical and chemical properties, which define
the specific mechanisms of interaction with living organs, tissues, and cells. In general, this rationalizes
the importance of studying the causes and mechanisms of the potential toxic effect of NPs.
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2. Medical Applications of Nanoparticles

In medicine, NPs can be used for diagnostic or therapeutic purposes. In diagnosis, they can
serve as fluorescent labels for detection of biomolecules and pathogens and as contrast agents in
magnetic resonance and other studies. In addition, NPs can be used for targeted delivery of drugs,
including protein and polynucleotide substances; in photodynamic therapy and thermal destruction of
tumors, and in prosthetic repair [16]. Some types of NPs have been used extensively in drug delivery,
diagnosis of diseases and the provision of biologic sensors; several nanometals have been produced
and evaluated, but gold and silver are the most widely used. These particles can be prepared in
different sizes and shapes, with a small particle size distribution. One of the unique features of these
particles is their optical behavior change by changing the particle size, meaning that NPs of different
sizes exhibit different colors at visible wavelengths. This feature can be used for diagnosis of the
disease and eventual drug delivery to facilitate both these processes. The surface variation of these
particles is easy to manipulate as various ligands such as sugars, peptides, proteins, and DNA can
bind to these particles [17].

Iron oxide superparamagnetic NPs are an important and widely used category of inorganic
materials used in drug delivery that can be prepared by chemical procedures such as co-precipitation
method or via biological means with the help of bacteria. Easy modification of the particles’ surface,
as well as direct bonding of the ligand to them, are salient features of these compounds. In addition,
having superparamagnetic property enables the use of these compounds in targeted drug delivery
via the magnetic field. Magnetic NPs loaded with a drug can be guided to a specific place in the
body by the application of an external magnetic field, thereby bringing the drug to a specific place.
For example, Fe3O4 (magnetite), γ-Fe2O3 (maghemite, ferrimagnetic) and superparamagnetic iron
oxide NPs (SPIONs) are the major NPs used in drug delivery. These particles are typically coated with
polymers such as dextran or chitosan to enhance their biocompatibility [18]. Two classes of compounds
that have recently been highly emphasized in the drug delivery are carbon nanotubes and fullerenes
(also known as Buckyballs); their size, shape and surface properties have empowered their use in
drug delivery. Single-wall carbon nanotubes and C60 fullerenes have a diameter of about 1 nanometer,
which is half the diameter of a DNA helix. Because of their small size, these particles can easily pass
through the membranes and biological barriers and penetrate into the cell. These structures allow
for surface engineering with their high surface to volume ratio. The surface of these particles can be
coated with various compounds to enhance solubility and biocompatibility, as well as the delivery of
different materials including biological molecules such as proteins, DNA and drugs. Pharmaceutical
compounds are often loaded onto or inside these structures. Targeting and simultaneous transfer of
two or more compounds are additional interesting features of importance in drug delivery by these
particles [17].

The term liposome was coined in 1961 by Alec D. Bangham. These double-layer vesicles consist
of a liquid part enclosed in a double layer lipid membrane, which is often a natural or synthetic
phospholipid. Amphiphilic nature, biocompatibility and the ease of surface changes are among
the factors that initiated the use of these structures as an option for drug delivery [17,19]. Another
example of lipid nanostructures is solid lipid NPs (SLNs) that form a solid lipid matrix consisting
of triglycerides, lipids, fatty acids, steroids and waxes, and have a size less than 1 µm. In order to
increase the stability of these particles, surfactant compounds are often deployed in their formulation.
These NPs can be used to load and carry drugs with very low solubility in an aqueous medium, release
them in a specific time frame, and transfer them to the desired site via, for instance, oral methods
or injection [20]. Another very commonly used materials, in the form of NPs for drug delivery,
are polymers, natural or synthetic, which need to be biocompatible, non-toxic and free from leachable
impurities besides comprising an appropriate physical structure and a desired half-life. Polymer
NPs are often selected from biodegradable types, the main advantage being their high stability and
their scale-up production in large quantities. These involve a large number of compounds that form
vesicular systems (nanocapsules) and matrix systems (nanospheres); the drug is kept inside a polymeric
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cavity in nanocapsules, while it is dispersed in a polymer matrix in nanospheres [17,20]. Polymer
micelles are self-assemblies of macromolecules that consist of block copolymers with non-covalent
bonds; block copolymer micelles have a core-shell structure. Specific properties of the micelles, such as
critical micellization concentration (CMC), aggregation number, size and shape of their final structure
depend on the structure and length of the polymer chains in the copolymer block. Polymer micelles
usually have a low CMC, which affects their ability to increase the solubility of loaded drugs and
the resistance of micelles [20,21] which can be effective in reducing the speed of drug release. These
structures also have more mechanical and biological stability compared to liposomes because the
interaction of vesicles and macrophages is less common in these structures, resulting in more protection
for the drug. Despite all these advantages, there is still no formulation for this structure class in the
pharmaceutical market. Hydrogel NPs are three-dimensional polymer structures used to encapsulate
and transfer drugs. These structures swell in water or in the bioenvironment and carry a large amount
of fluids inside. There are also stimulus-responsive hydrogels which release the drug under specific
environmental changes, such as temperature and pH changes. These systems have been used to
transfer DNA and proteins, heal wounds, make biosensors, and engineer tissues [17].

3. Mechanisms of Nanoparticle Toxicity: NP-Cell Interactions

Surface properties of NPs, namely hydrophobicity and hydrophilicity, affect many of the biological
environmental responses of these structures, such as interaction with plasma proteins, cellular uptake
and phagocytosis, stimulation of the immune system and particle removal. The surface properties
of nanoparticles result in different cellular responses such as adhesion, growth and differentiation.
The oxidative stress is induced by NPs through physicochemical interaction in the cell membrane
as they generate ions which cause toxicity in the cell membrane surface and that can be exploited
to eliminate cancer cell [22]. The higher the diameter of the NPs, the more their interaction with
the surface of the cell membrane and the higher the level of cellular toxicity. The cell membrane
is complex and dynamic comprising proteins and extracellular polymeric materials. As shown in
Figure 2, the penetration of NPs occurs through intrusion at the diffusion, endocytosis and membrane
proteins such as phospholipid layer. NPs are subsequently localized in endosomes and nucleus,
degraded in lysosomes or recycled back to the plasma membrane although the mechanism may still
be unclear. The toxicity of Au NPs with a diameter under 100 nm have been explored. In the range
of 3, 5, 50 and 100 nm, the toxicity was observed for the biggest and smallest sizes which included
apoptosis, oxidative stress, organelles and DNA destruction, and mutagenesis [23]. NPs enter cell
through endocytosis and their toxicity is predominantly through an increase of reactive oxygen species
(ROS) levels in the cell (Figure 2).

Nanomaterials 2018, 8, x FOR PEER REVIEW 5 of 28 

 

density, receptor emission, and free energy changes. The rod and cylindrical shapes of NPs, 
compared with the spherical shape, need more time for wrapping and this is due to the 
thermodynamic force for engulfment [28]. The interaction of NPs with macromolecules such as 
protein has been explored and such interface can result in structural changes of proteins [29]; proteins 
have multiple 3D structures and some structures change after attachment of NPs due to diversity of 
amino acids and the protein performance. NPs such as C60 fullerenes and SWCNTs with 
attachments, for destruction of the activity of enzymes such as human immunodeficiency virus type 
1 protease (HIV-1p) and S-DNA-glutathione, are used for therapeutic purposes [30]. But these 
features may also underline their toxicity in living organ, the key mechanism responsible for the 
cytotoxic effects of NPs being oxidative stress that results in an intracellular disharmony and 
consequently the increase of ROS (Figure 2). DNA strand damage is via base changes namely hydroxy 
deoxyguanosine formation and, when DNA is not repaired, the cell cross-linking results in the 
occurrence and progression of cancer. Oxidative stress subsequently activates various signaling 
pathways that may lead to cell death [31]. 

Briefly, the most common mechanisms of NP cytotoxicity entail the following (Figures 2 and 3): 

1. NPs may cause oxidation via increase of reactive oxygen species (ROS)  
2. NPs may damage cell membranes by perforating them 
3. NPs damage components of the cytoskeleton, disturbing intracellular transport and cell division 
4. NPs disturb transcription and damage DNA, thus accelerating mutagenesis 
5. NPs damage mitochondria and disturb their metabolism, which leads to cell energy imbalance 
6. NPs interfere with the formation of lysosomes, thereby hampering autophagy and degradation 

of macromolecules and triggering the apoptosis 
7. NPs cause structural changes in membrane proteins and disturb the transport of substances into 

and out of cells, including intercellular transport 
8. NPs activate the synthesis of inflammatory mediators by disturbing the normal mechanisms of 

cell metabolism, as well as tissue and organ metabolism (Figure 3). 

The penetration of NPs can occur through diffusion, endocytosis and membrane receptor proteins. 
NPs are then localized in late endosomes, mitochondria, endoplasmic reticulum (ER) or nucleus, then 
induce signaling pathways that are mostly depended on ROS. Mitochondrial ROS can lead to 
accumulation of more levels of ROS and resultant oxidative stress may disrupt protein folding process, 
causing ER stress and induce DNA damage, leading to activation of cell death pathways [32]. 

 
Figure 2. The main routes of nanoparticles (NP) entry into the cells and their subsequent intracellular 
mechanism(s) [24]. Figure 2. The main routes of nanoparticles (NP) entry into the cells and their subsequent intracellular

mechanism(s) [24].



Nanomaterials 2018, 8, 634 5 of 28

NPs can also increase inflammatory factors such as TNF-α, ll-8, ll-6, ll-1, and ultimately cause
mitochondrial damage (Figure 3) [24–26]. The interaction of NPs with the cell surface ligand and
membrane receptors is the main connection route for drug delivery and this is implemented through
endocytosis. Recently, with the aim of reducing the toxicity of NPs in drug delivery, amphipathic Au
NPs have been used. Being hydrophobic, they are protected against microbial attacks, swelling or
changes in pores due to pH changes as these NPs pass through membrane without damage; a behavior
reminiscent of the cyclic citrullinated peptide (CCP) for Rheumatoid arthritis therapy. α-helix protein
has a hydrophilic part and a hydrophobic part and CCP bonds with cationic group, enters the cell and
connects with the negative charge remained from the membrane [27]. The factors that are important
in the connection of NPs to the cell surface protein are surface charge and hydrophobicity of the
particles and the particles reaction with the protein tail or phospholipid head; the cationic level
being stronger than the anionic level in this process. The interaction of NPs with water molecules,
their hydrophobic property, is in fact a factor for drug delivery properties for medications whose
transfer is otherwise difficult. Coating NPs with ligands impacts the size, ligand density, receptor
emission, and free energy changes. The rod and cylindrical shapes of NPs, compared with the spherical
shape, need more time for wrapping and this is due to the thermodynamic force for engulfment [28].
The interaction of NPs with macromolecules such as protein has been explored and such interface can
result in structural changes of proteins [29]; proteins have multiple 3D structures and some structures
change after attachment of NPs due to diversity of amino acids and the protein performance. NPs
such as C60 fullerenes and SWCNTs with attachments, for destruction of the activity of enzymes
such as human immunodeficiency virus type 1 protease (HIV-1p) and S-DNA-glutathione, are used
for therapeutic purposes [30]. But these features may also underline their toxicity in living organ,
the key mechanism responsible for the cytotoxic effects of NPs being oxidative stress that results in
an intracellular disharmony and consequently the increase of ROS (Figure 2). DNA strand damage
is via base changes namely hydroxy deoxyguanosine formation and, when DNA is not repaired,
the cell cross-linking results in the occurrence and progression of cancer. Oxidative stress subsequently
activates various signaling pathways that may lead to cell death [31].

Briefly, the most common mechanisms of NP cytotoxicity entail the following (Figures 2 and 3):

1. NPs may cause oxidation via increase of reactive oxygen species (ROS)
2. NPs may damage cell membranes by perforating them
3. NPs damage components of the cytoskeleton, disturbing intracellular transport and cell division
4. NPs disturb transcription and damage DNA, thus accelerating mutagenesis
5. NPs damage mitochondria and disturb their metabolism, which leads to cell energy imbalance
6. NPs interfere with the formation of lysosomes, thereby hampering autophagy and degradation

of macromolecules and triggering the apoptosis
7. NPs cause structural changes in membrane proteins and disturb the transport of substances into

and out of cells, including intercellular transport
8. NPs activate the synthesis of inflammatory mediators by disturbing the normal mechanisms of

cell metabolism, as well as tissue and organ metabolism (Figure 3).

The penetration of NPs can occur through diffusion, endocytosis and membrane receptor proteins.
NPs are then localized in late endosomes, mitochondria, endoplasmic reticulum (ER) or nucleus,
then induce signaling pathways that are mostly depended on ROS. Mitochondrial ROS can lead to
accumulation of more levels of ROS and resultant oxidative stress may disrupt protein folding process,
causing ER stress and induce DNA damage, leading to activation of cell death pathways [32].

Although some NPs, such as Ag NPs, are used as an antimicrobial agent because of this
mechanism, inappropriate use of these NPs can damage other cells instead of microbes. For example,
Ag NPs can be used to disinfect wounds and prevent the growth of bacteria in that area. They
can prevent bacterial growth and replication through the above mechanisms and heal the wound.
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But, it should be noted that the same NPs can also affect the cells of human body around the injury site
and cause cell death.Nanomaterials 2018, 8, x FOR PEER REVIEW 6 of 28 
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3.1. The Effect of NP on the Protein Conformational Changes

A number of techniques such as nuclear magnetic resonance (NMR) spectroscopy [33], X-ray
crystallography [34], circular dichroism spectroscopy [35], isothermal calorimetry [36], differential
scanning calorimetry [37], fluorescence spectroscopy [38], and UV-visible spectroscopy [39] have been
widely used for analyzing the protein-NP interactions. The NP-induced conformational changes and
subsequent corona formation depends on several factors such as, protein type, NP type, size of NP,
shape of NP, pH and the temperature.

Subtle changes in the structure of NPs affect their surface properties and subsequent interaction
with proteins. The interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon
nanotube (MWCNT) of varying diameter with tau protein was investigated by different methods [40].
The circular dichroism bands of the tau protein after concentration variation of SWCNT showed
a remarkable increase of β-sheet content indicating that the binding of tau with SWCNT causes
the protein folding and more compact structure of natively unfolded structure of tau protein.
Also, as shown in Figure 4, the binding of MWCNT has not altered the secondary structure of tau
protein and has resulted in the protein aggregation. This study showed that SWCNT induced stronger
interactions with tau protein, causing more pronounced structural changes [40]. Also, transmission
electron microscopy (TEM) observation showed that tau protein can bind to the surface of SWCNT
thus dispersing it, whereas tau protein cannot attach on the MWCNT surface and eventually ends up in
MWCNT agglomeration [40]. Surface functionalization of NPs can also influence the protein adsorption
and subsequent NP induced conformational changes. Protein surface residues form an interaction
with energetically favorite counterparts on the NP surface based on their charge, hydrophobicity,
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and hydrophilicity [41]. Thermodynamic parameters can stipulate the kind of interaction between
protein and NPs namely standard enthalpy change (∆H0), standard entropy change (∆H0), standard
entropy change (∆S0), and standard Gibbs free energy change (∆G0). When ∆H0 and ∆S0 are negative,
then the main interacting forces between the NP and protein are hydrogen bonds and van der Waals
interactions. However, if ∆H0 is almost zero and ∆S0 is positive, then the common involving bonds
between NP and protein are electrostatic interactions [42].
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compared to multi-walled carbon nanotubes (MWCNT) [40].

3.2. The Effect of Protein Corona on the Toxicity of NPs

After injection of NPs into the bloodstream, there is a competition between different biological
molecules to interact with the surface of NPs (Vermann effect). In the first step, the smallest abundant
proteins are adsorbed onto the surface of the NPs, however, over time, they are replaced by proteins
with higher affinity [43]. The structure and composition of the protein corona depends on the
physicochemical properties of the NPs, the physiological environment and the duration of exposure
in that environment. Protein corona changes the size and surface composition of nanomaterials and
provides them a new biological identity which determines the physiological responses including
aggregation, cellular absorption, and the half-life of NPs in the blood, signaling synthesis, transfer,
accumulation and toxicity. The corona on NPs is complex with no general protein corona specific to
NPs [44]. Albumin, immunoglobulin G (IgG), fibrinogen, and Apo lipoproteins are found in the corona
of all studied NPs; these proteins are prevalent in the blood plasma and hence, over time, may be
replaced by proteins with lower concentration but higher affinity on the surface of NPs. Molecules
that are weakly attached to the NP and interact with it are soft coronas. NPs with a pre-formed agent
group, such as polyethylene glycolated (PEGylated) NPs, contain only one weak covering corona and
no hard corona [45]. Protein corona reduces the toxicity of NPs by reducing their cellular absorption.
In other words, NPs with less protein corona have more cellular absorption and are thus more cytotoxic.
This phenomenon has been reported for CNTs [46], graphene oxide Nano sheets [47] and biopolymer
NPs in various cell environments [48]. In the case of common toxic nanomaterials, such as positively
charge polystyrene NPs, protein corona has a protective role against membrane damage [49,50].
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3.3. The Effect of Protein Corona on Non-specific Cellular Uptake

The specific entry of NPs into the cell is accomplished by a receptor-specific ligand. Non-specific
cellular uptake is a random process of the cell performed without bio molecular control. The amount of
NP entry into the cell depends on protein corona. The non-specific cellular uptake of oligonucleotide-
mediated AuNPs has been investigated which showed that their absorption significantly increased
in an environment free of serum proteins [51]. Similarly, the cellular absorption of FePt NPs with
quantum dots (QDs) is reduced dramatically in HeLa cells through the formation of protein corona [51].

3.4. The Effect of Protein Corona on Bio-distribution of NPs

The nature of the NP’s core, whether non-polymeric or polymeric, shows that pre-coating increases
NP’s persistence in the blood and reduces the clearance rate. A study disclosed that the life of bovine
serum albumin (BSA)-coated Nano drugs was 6 times more than that of non-coated ones [48].

3.5. The Effect of Surface Charge of NPs on Their Toxicity

NP hydrophobicity and surface charge changes the biological distribution of NPs due to their
effect on the level of interactions between NPs and the immune system, plasma proteins, extracellular
matrix, and non-target cells. Hydrophobic/charged NPs are less persistent in the circulation due to
the opsonization of particles by plasma proteins and ultimately by the RES system. Positively charged
NPs are attached to negatively charged non-target cells in a non-specific manner; hydrophobic groups
on the NP surface induce NP aggregation, which accelerates the identification and relocation by the
respiratory (RES) system. In order to reduce this interaction, the surface of the particle is covered with
hydrophilic PEG, which reduces the level of opsonization and hence increases particles’ persistence in
the circulation [52].

4. The Effects of Physicochemical Properties of NPs on Cytotoxicity

In fact, a unique property of nanomaterials is their high surface-to-volume ratio which endow
them with useful characteristics, but is ironically that trait is also associated with unique mechanisms
of toxicity. Toxicity has generally been thought to originate from nanomaterials’ size and surface area,
composition, shape, and so forth as discussed in the following sections.

4.1. The Effect of NPs Size on Cytotoxicity

NP cytotoxicity is affected by changes in NP size [53] and is dependent on the surface-to-volume
ratio [54]. Sedimentation velocity, mass diffusivity, attachment efficiency, and deposition velocity
depend on the size of the NPs [55]. The size of NPs plays an important role in interacting with the
biological system, and it has been revealed that various biological mechanisms such as endocytosis,
cellular uptake, and particle processing efficiency in the endocytic path depend on the size of
materials [56]. NP size affects the ion release rate, the smaller the size, the faster the release rate
and the more the interaction with cell membrane; therefore, it will penetrate into the cell and induces
higher toxic effect [57]. In general, size-dependent toxicity of NPs can be related to their ability to enter
biological systems.

NP sizes of less than 50 nm administered through intravenous injection reach the tissues faster
than 100–200 nm NPs and exert stronger toxic effects. If the size of NPs is reduced, their contact surface
will increase and the level of oxidation and DNA damage will also rise. The size of NPs indicates their
pharmaceutical behavior, that is, sizes of less than 50 nm quickly connect to all tissues and exert toxic
effects. NPs larger than 50 nm are used by the RES, which stops its path to other tissues. But again,
organs like the liver and spleen are the main targets of oxidative stress.

The size of NPs has a direct effect on their physiological activity. NPs of size less than 1 µm enter
the cell and their effects are unknown; those larger than 1 µm do not easily enter the cell, but they
replace a series of proteins that are absorbed at their surface and react with the cell. Accordingly,
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the NPs size is effective in cell endocytosis [58]. For example, Kim et al. showed that the toxicity
of Ag NPs in in vitro model on MC3T3-E1 and PC12 cells is size-dependent. NPs size and dosage
affected cell viability as it produced intracellular ROS, LDH release is a useful method for detection of
necrosis [59].

4.2. The effect of NPs Structure and Shape on Cytotoxicity

NPs come in a variety of shapes, such as spherical, rod-like, filament, and plate-shaped which
influences their toxicity [60].

The shape of NPs is effective in the membrane packaging process in endocytosis and phagocytosis [61];
endocytosis of spherical NPs is faster than tubular NPs [62]. Non-spherical NPs are more exposed to
blood flow and have more toxic effects.

CNTs can be of single-walled CNTs (SWCNTs) or multi-walled (MWCNTs) class that affect
their mechanisms on cell viability; SWCNTs produce more ROSs that MWCNTs [63]. The toxicity
of Nano-carbons was found to be dependent on shape and concentration [64]. TiO2 NPs cause
oxidative damage to DNA, induce lipid peroxidation and micronuclei formation in the presence of
light, and these NP-induced effects change with shape [65].

4.3. The Effect of NPs Surface on Cytotoxicity

Surface charge of NPs affects biological aspects such as absorption, colloidal behavior, plasma
protein binding, and passage through the blood-brain barrier [66]. Negatively charged NPs have
more cellular absorption than the positive and neutral NPs due to resistance by plasma proteins,
which causes hemolysis and platelet aggregation and eventually toxicity.

NPs surface affects absorption level of ions and biomolecules that may alter cellular response.
In addition, surface charge determines the colloid behavior which is the response of the organism to
changes in NPs shape and size in the form of cellular accumulation. The effect of surface chemistry
of NPs on human immune cells and RBCs in in vivo and in vitro models has been investigated [67].
For instance, the effect of silicon surface charge on cell lines reduced the ATP and genotoxicity
for negative hydrophilic and hydrophobic charge relative to hydrophilic, positively charged
amine-modified surfaces. The interaction between NPs and cells initially depends on the nature
of NPs surface. The incubation of NPs with cells may interfere with cell adhesion, affecting cellular
properties such as morphology, cytoskeleton, proliferation, and even survival. Of course, it is worth
noting that the surface of NPs and the groups on their surface have a significant effect on adhesion.
For example, bare iron oxide NPs with an approximate diameter of 50 nm have 64% less cell adhesion
compared to polyethylene glycol (PEG) coated ones. This can be due to the difference in the interaction
of NPs/cells with different charges in the presence or absence of surface-coating agents, while the
metabolism of the nanotube function is different [68].

4.4. The Effect of NPs Concentration on Cytotoxicity

The 2 mg/mL concentration of silicon had a toxic effect on the cell, but no toxic effect was
observed in 4 mg/mL [69]. Varied concentrations of Ag NPs altered mitochondrial function and LDH
release; the toxicity changed with changing concentrations, however [9].

5. In Vivo Study of Nanoparticle Toxicity

In addition to the numerous study of the behavior of NPs in the in vivo model is being extensively
studied. These studies are focused on the biomedical applications of NPs, the NPs toxicity for living
organisms remains an important topic. Although NPs are highly promising for difference medical
applications, they are potentially side effect. This side effects cannot be estimated exactly in vitro,
following from the comparison of the in vivo and in vitro effects of NPs. Metal oxide NPs such as
titanium dioxide (TiO2) are among the most used NPs, in particular, in environment protection
measures. Therefore, it was important to evaluate their toxicity in the bioavailability, in experiments
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with their injection to experimental animals. This study has been performed by Kiss B et al [70].
Experimental animals (rats) were injected with a suspension of TiO2 NPs at a dose of 15 µg/cm2 and
their bio distribution, as well as the general condition of the animals, was monitored. The results
have shown that the animals have inflammation or another manifestation of a toxic effect observed,
within 24 h suggesting that TiO2 NPs are relatively hazardous.

Silver NPs are another example of NPs potentially useful in medicine, because of their
antimicrobial activity. Their toxicity and bio distribution were analyzed by Mitra Korani [71] in
an experiment where Guiana Pigs were dermal exposure with 100, 1000, 10,000 ppm of silver
NPs of different sizes (less than 100 nm). The results have shown a close correlation between
dermal exposure and tissue levels of Ag NPs was found and tissue with the following ranking:
kidney–muscle–bone–skin–liver–heart–spleen (Figure 5). In histopathological studies, severe proximal
convoluted tubule degeneration and distal convoluted tubule were seen in the kidneys of the middle
and high-dose animals. Separated lines and marrow space narrow were determined as two major
signs of bone toxicities which observed in three different dose levels of Ag NPs. Increased dermal
dose of Ag NPs caused cardiocyte deformity, congestion and inflammation. The three different Ag
NPs concentration gave comparable results for several endpoints measured in heart, bone and kidney,
but differed in tissue concentrations and the extent of histopathological changes. It seems that Ag ions
could be detected in different organs after dermal exposure, which has the potential to provide target
organ toxicities in a time and dose dependent manner.
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Gold NPs have been shown to be toxic for mice, causing weight loss, decrease in the hematocrit,
red blood cell count. In drug delivery using gold NPs, it is also important to know their toxic properties,
because the positive effect of their use should overcome over the negative one. Results in one study
have been obtained for gelatin NPs modified with polyethylene glycol, which are designed to be
used for delivery of ibuprofen sodium salt [72]. The NPs have proved to be nontoxic at the dose
that is necessary for effective drug delivery (1 mg/Kg), which has been confirmed by estimation of
inflammatory cytokine levels in the in vivo model, as well as histological analysis of their organs.
CNTs are among the nano-carbon structures that, due to their hollow and small structure (smaller
than red blood cells), play a special role in the field of medicine, such as drug delivery to target cells,
bio-sensoring blood glucose, detecting and destroying cancerous cells, tissue engineering, and so on.
Recent studies have shown that CNTs can be used for biological purposes, such as crystallization
of proteins, and the production of bioreactors and biosensors. The intrinsic fluorescence properties
of nanotubes make them suitable biosensors for identifying specific targets in human body tissues,
such as cancer tumors. Numerous methods have now been devised to connect DNA molecules and
proteins to the internal and external surfaces of nanotubes; this enhances the ability to target and
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destroy single cancer cells or viral infectious cells [73]. The assembly of special enzymes to nanotubes
has resulted in their widespread use as enzymatic biosensors, which allows the identification and
measurement of a variety of biological molecules most widely used in the rapid measurement of blood
glucose. Recently, the use of CNTs in tissue engineering has attracted the attention of researchers;
the key role of CNTs in the culture of tissue cells such as fibroblasts is such an example [73].

Quantum dots are among the NPs that are most promising for medical applications. However,
they are potentially side effect for health, because they exhibit various toxic effects in both in vitro
and in vivo experiments. The primary application of QDs is now in the field of photography and
disintegrating biological compounds. Their additional applications include marking single molecules
and optical tracking of their behavior. In these methods, QDs act as chemical marks. Biomolecules,
such as antibodies, bind to QDs which makes QDs attach, in a purposeful and specific manner, to target
molecules or target cells whose surface is covered by supplemented antigens. The binding of antibodies
on the surface of QDs to antigens attached to the surface of these specific cells or proteins results
in the emission of light from QDs. If there is no target cell or protein in the sample, no emission
will be observed. Therefore, optical tracking of cells or biomolecules is possible over an extended
period of time. It should be noted that QDs are extensively used in the detection of cancerous tumors.
It passes through the BBB pathway and through trigeminal nerve or olfactory epithelium. CdSe/Zn
NPs with a diameter of 13 nm have the ability to reach tumor tissue in laboratory mice. Six days
after the injection, brain nuclei were isolated and Cd was observed in the brain tissue, but there was
no indication of astrocyte damage and nerve inflammation. However, the toxicity of this particle
for the nerve tissue needs further investigation. QD toxicity is size-dependent; sizes below 20 nm
accumulate in the brain parenchyma. In vitro studies used these NPs to target brain tumors in the
cell-line, which in the long term were able to reduce the volume of cancer cells [74]. Similar results
were obtained by Zhang et al. [75] where they showed that CdTe QDs predominantly accumulated
in the liver, decreasing the amount of antioxidants in it and inducing oxidative stress in liver cells.
Cadmium and tellurium ions tend to accumulate in various organs and tissues upon degradation and
decay of the cores of CdTe/ZnS QDs.

6. Study of Toxicity in Cell Cultures

Many studies of NP toxicity are carried out in cell cultures serving as models of numerous types of
human and animal cell. In some cases, cancer cells are used, specially, for the evaluation of toxic effects
of NPs used in cancer chemotherapy. The type of cells is selected according to the potential route by
which NPs enter the body. This may be oral uptake (mainly by ingestion), transdermal uptake (through
the skin surface), inhalation uptake of NPs contained in the breathing air, or intentional NP injection in
clinic. Intestinal epithelium cells are often used in experimental models for studying the toxicity of
ingested NPs. In in vitro model, the kinetics of NP uptake by cells and the viability of cells upon the
NP uptake are studied. The NPs that use in drug delivery, or those used for imaging, are administered
by injection. The toxicity of these NPs is studied in primary epithelial cell cultures. Most commonly,
an increase in ROS, GSH, IL-1β, IL-6, IL-8, and TNF-α, are estimated. In addition, various tumor
cells (gastrointestinal, human colon, skin, pancreatic PANC-1cells, human lung adenocarcinoma cells,
human hepatocellular carcinoma HepG2 cells, human skin carcinoma A431 cells) are used. The toxicity
of inhaled NPs is studied using the primary cell lines and different tissues of the respiratory system,
including, primary rat brain microvessel endothelial cells (rBMEC), murine neural stem cells (NSCs),
human pulmonary cell line (lung adenocarcinoma epithelial A549 cell line), different human epithelial
cells and fibroblasts, catla heart cell line (SICH), cardiac microvascular endothelial cells, keratinocyte
cell line (HaCaT), human dermal fibroblasts, human immortalized sebaceous gland cell line (SZ95),
rat liver derived cell line (BRL 3A), human hepatoblastoma C3A cell line, and embryonic kidney cells
(HEK293). The toxicity of the NPs that enter the body trans dermally is usually studied in keratinocytes,
fibroblasts, and, more rarely, sebocytes (Table 1).
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Table 1. Toxic effects of nanoparticles on different organs/tissues.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

Brain

AuNP
0.8–50 µg/mL, (3, 5, 7, 10,
30 and 60 nm), (24 h)

Only the smallest NP tested
(3 nm) induced mild signs of
cellular toxicity [76].

rBMEC (primary rat brain
microvessel endothelial cells) Non-toxic even at highest concentrations in 24 h [76].

50 µg/mL (6–120 h) - Zebrafish cembryos Time- and dose-dependent correlating increases in
permeability and cytotoxicity of cells [77].

AgNP 6.25–50 µg/mL, (25, 40 or
80 nm in size), (24 h)

Time- and dose-dependent
increase in pro-inflammatory
cytokine release and related
rises in permeability and
cytotoxicity of cells [76].

rBMEC (primary rat brain
microvessel endothelial cells)

Time- and dose-dependent increase in
pro-inflammatory cytokine release and correlating
increases in permeability and cytotoxicity of cells [78].

Cu 30–50 mg/Kg

increasing toxicity on
neuromuscular system and
increase NPs penetration of the
blood-brain barrier [78].

- -

Al 30–50 mg/Kg

increasing toxicity on
neuromuscular system and
increase NPs penetration of the
blood-brain barrier [78].

- -

CdSe 1, 10, 20 nm, (24 h) - Primary rat hippocampal neuron
cells in culture Decrease of cells viability [79].

Superparamagnetic
iron-oxide

nanoparticles
(SPION)

208 or 1042 µg/mL of:
Ferumoxtran-10;
Ferumoxytol (20–50 nm);
Ferumoxide (60–185 nm)
(3 months)

Increasing uptake NPs into the
CNS parenchyma [80]. Murine neural stem cells (NSCs)

Depleted intracellular glutathione levels, altered
activities of SOD and GPx, hyperpolarization of the
mitochondrial membrane, dissipated cell-membrane
potential and increased DNA damage [81].

TiO2

30–45 nm, (2–72 h)
leakage of lactate
dehydrogenase (LDH) [82] Neuro-2A

permeability of NPs in plasma membrane, increasing
apoptosis [82].

ZnO
Fe2O3
Al2O3
CrO3
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

CNT
PEG-SWCNTs at
concentrations of 0.5, 2.1
and 1 mg/mL

Accumulation in the
hippocampus which induces
oxidative stress [83].

PC12 cells

Decreased mitochondrial membrane potential (MMP),
induced ROS and increased the level of lipid peroxide
and decreased the activities of superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px), catalase (CAT)
and glutathione (GSH) [84].

QD
0.68 mg containing 50
nmol Cd (13.5 nm in size),
(6 h) Intraperitoneal

Moderately high quantities of
Cd ions was observed in brain
tissue but no signs of
inflammation or parenchymal
damage were detected [74].

Neuron like PC12 cells Cell death, axonal degeneration [85].

Lung

AgNP
515 g/m3, (6 h/day, 5
days/week for 13 weeks),
inhalation

Dose- and time-dependent
increase in blood Ag
nanoparticle concentration was
observed along with correlating
increases in alveolar
inflammation and small
granulomatous lesions [86].

- -

Cu

0.1–3300 µg/mL, (3 and
24 h)

-
Human pulmonary cell line (lung
adenocarcinoma epithelial cell
line (A549))

Mitochondria-dependent cellular apoptosis associated
with ROS [87].

Zn
CO
Sb
Ag
Ni
Fe

CuO 0–40 µg/cm2 - Human lung epithelial cells
(A549)

Mitochondria-dependent cellular apoptosis associated
with DNA damage [88].

SPION 200–1000 µg/mL, (24 h) Increased cytokines,
inflammation, TNF-α [89].

Human lung epithelial cells
(A549)

Activation of JNK, stimulation of tumor necrosis
factor-alpha (TNFα), reduction of NF-kB,
increased ROS [90].
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

SWCNT 10–100 µg/mL (24 h, 48 h
and 72 h)

Dose- and time-dependent
decline in cell viability: up to
50% decrease at maximum
dosage after 72 h. Oxidative
stress was exhibited as a
mechanism of cytotoxicity [91].

Human lung epithelial cells
(A549)

low acute toxicity was confirmed with the in vivo
model by dispersion of SWCNTs in serum [92].

QD 12.5 µg, (7 days) Increased levels of LDH and
albumin [93].

Human lung adenocarcinoma
cells

Mitochondria-dependent cellular apoptosis associated
with decrease of cells viability [94].

Heart

AgNPs 100, 1000 and 10,000 ppm,
(period of 13 weeks)

increasing cardiocyte deformity,
congestion and
inflammation [71].

Catla heart cell line (SICH) Increased lipid peroxidation (LPO) level and decreased
level of GSH, SOD and CAT [95].

Iron oxide NPs
100, 200, 300 and 500
µg/mL, (period of 2
weeks)

Showed that baseline maximal
oxidative capacities were
proteins in the heart [96].

Cardiac microvascular
endothelial cells

Induced a concentration- and time-dependent
cytotoxicity with decrease of cells viability

CNT 1–0.3 mg/Kg body weight

Blocks potassium channels. The
suppressed and inhibited IK
and potassium channels lead to
increased heart rate [97].

Microvascular Endothelial Cells Dose- and time-dependent increasing DNA
damage [98].

QD - - Human hepatocellular carcinoma,
HepG2 cells

Mitochondria-dependent cellular apoptosis associated
with ROS [99].

Dermal

AgNP 50 and 100 µg/mL, (24 h)

Mitochondria-dependent
cellular apoptosis related to
ROS at a concentration of
≥ 50 µg/mL [100].

A431 (human skin carcinoma)

No evidence for Cellular damage up to a concentration
of 6.25 g/mL. Morphological changes at concentrations
between 6.25 and 50 g/mL with concomitant rise in
GSH, SOD and lipid peroxidation.
DNA fragmentation suggests cell death by
apoptosis [101].

TiO2 15 µg/cm2, (24 h)
Cytotoxicity was detected to be
apoptosis [101].

HaCaT (keratinocyte cell line),
human dermal fibroblasts,
human immortalized sebaceous
gland cell line (SZ95)

Cytotoxicity was observed to be affecting cellular
functions such as cell proliferation, differentiation and
mobility resulting in apoptosis [70].

Fe3O4 65 nm - Skin tumor cells Increases ROS, deceasing cancer cells [102].
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

CNT 10 µg/mL, (72 h)
NPs increased relatively IL8
and ROS factors in
animal [103].

Human Dermal Fibroblast Cells Mitochondria-dependent cellular apoptosis associated
with decrease cell viability [104].

QD
4.6 nm core/shell
diameter QD for 8 h
and 24 h

Increased IL-1b, IL-6,
and IL-8 [105].

Human epidermal keratinocytes
(HEKs) Increased IL-1β, IL-6, IL-8, and TNF-α factors [106].

Liver

AgNPs 10, 50, 100, 150, 200, 400
ppm for 24 h - Primary mouse fibroblasts,

primary hepatocytes
Production of mediators of oxidative-stress.
increase GSH [107].

CdSe 62.5–1000 µg/mL, (1–8 h) - Primary rat hepatocytes
Evidence for cellular damage up to a concentration of
62.5 µg/mL with concomitant rise in GSH, SOD and
lipid peroxidation [108].

ZnO NPs 100, 300 and 600 mg/Kg,
(7 days) - Human hepatocyte (L02)

Mitochondria-dependent cellular apoptosis associated
with ROS, reduction of SOD, depletion of GSH,
and oxidative DNA damage [91].

Al2O3 235,245 ppm

Blood cell and melanoma
macrophage accumulation,
hepatocyte necrosis, vaculation
and portal vein alteration [109].

- -

TiO2

5, 10, 50, 100 or 150
mg/Kg, (daily for 14
days)

NPs increased relatively IL-8
and ROS factors in
animal [110].

Rat liver derived cell line
(BRL 3A)

Mitochondria-dependent cellular apoptosis associated
with ROS, reduction of SOD, depletion of GSH,
and oxidative DNA damage [9].

CNT ~25 µg/cm2 NPs increased relatively
apoptosis factor in animal [111].

Human hepatoblastoma C3A
cell line

Mitochondria-dependent cellular apoptosis associated
with ROS, IL8, reduction of SOD, depletion of GSH,
and oxidative DNA damage [112].

QDs 1000 µg/mL, (24 h) NPs increased relatively ROS
in liver [113]. Primary rat hepatocytes Cytotoxicity was thought to be due to the release of free

cadmium ions [108].
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

Kidney

AuNPs
5, 10,100 ppm,
(via IP injection for
7 successive days)

Increase levels of CREA, UREA,
total bilirubin ALP in rats’
blood serum were examined to
show a degree of kidney
functionality [114].

Embryonic kidney cells
(HEK293).

Toxicity was dose dependent. In a dose of 44 mg/mL
for 4 h, toxicity was observed on
DNA/transferrin [115].

ZnO NPs 100, 300 and 1000 mg/Kg
in 2 weeks

Significant increase in serum
creatinine and blood urea
nitrogen, decrease in
hemoglobin, haematocrit and
mean corpuscular hemoglobin
concentration [116].

Human embryonic kidney
(HEK293) cells

Lead to cellular morphological modifications,
mitochondrial dysfunction, and cause reduction of SOD,
depletion of GSH, and oxidative DNA damage [91].

CuO NPs
A dose of 10 mg/Kg three
times a week up to
19 injections

Toxicity showed with DNA
fragmentation [117]. Embryonic kidney cells (HEK293) Increased ROS, decreased cell viability [118]

TiO2 1, 10, 100 µg/mL Embryonic kidney cells - DNA damage and genomic toxicity [119].

CNT 4 mg/Kg, (7 days)
Increase level of IL-8,
LDH and lipid peroxidation
in serum [120].

Embryonic kidney cells (HEK293)
Decreased cell viability, increase cell membrane
damage, LDH release, reduced glutathione (GSH),
interleukin-8 (IL-8), lipid peroxidation [121]

QD 1.5 µmol/Kg, (1, 7, 14,
and 28 days) - Embryonic kidney cells (HEK293)

Time-dependent decrease of mitochondrial
transmembrane potential, up regulate Bcl-2 expression,
alleviated apoptosis [122].

Spleen

AgNPs

30, 300 and 1000 mg/Kg
doses of AgNPs (60 nm),
28 days of oral
administration

Ag induces the permeability of
cell membrane to potassium
and sodium and interrupts the
activity of Na-K-ATPase and
mitochondria. Inhibition of
NF-kB activity, a decrease in
expression bcl-2, increase in
caspase-3 expression [123,124].

- -

Fe2O3

0.1, 0.5 and 1.0 mg/L
(9.2 × 10−4, 4.6 × 10−3

and 9.2 × 10−3 mM)
aqueous suspensions for
60 days

Accumulated in the spleen
organ and induce acute
toxicity [125].

- -
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

CNT

1.5 mL; 2 mg multi-walled
(MW) CNT per body
weight (bw),
(1, 6, 24, 48 and 144 h)

After i.p. administration,
MWCNT translocate
progressively in the spleen,
with a peak of concentration
after 48 h, and determine
lymphoid hyperplasia and an
increase in the number of cells
which undergo apoptosis, in
parallel with the enhancement
of the mitosis in the white pulp
and with transient alterations of
oxidative stress and
inflammation [126].

- -

QD 6000 g for 10 min,
Distribution in different body
organs and aggregation in
spleen [127–129]

- -

Stomach

AgNPs
28-day repeated oral dose
of AgNPs of 60 nm,
2.6 mg Ag/Kg b.w./day

Aggregation in stomach
tissues [130]. - -

Au NPs - - Gastrointestinal cancer cells Removing tumor cells from healthy cells [131].

CdSe 0.84 × 105 µm - Human colon carcinoma cell line Removing tumor cells from healthy cells [132].

TiO2 NPs 1012 particles/person per
day in 2 weeks

Aggregation in stomach
tissues [133]. - -

ZnO NPs 5, 50, 300, 1000 and
2000 mg/Kg b.w

Aggregation in stomach
tissues [134]. - -

CNT <5 µm, 10–20 µm, (7 days) Inflammation [135–138] - -

QD 2 to 200 nmol/mL, (24 h) NPs increased relativel ROS
factors in animal [139] - -

Pancreas

Ag NPs AgNPs (100 µg/mL),
(24 h)

NPs increased relatively ROS
factors in animal [140]. Pancreas cancer BxPC-3 Cells Inhibition of NF-kB activity, a decrease in bcl-2, and an

increase in caspase-3 and survivin expression [141].

AuNPs

50 nm, 2.5 mg/Kg, Male
Wistar diabetic with
autism spectrum disorder
pups, i.p. 7 day

NPs increased relatively ROS
factors in animal [142] - -
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

cobalt ferrite NPs - - human pancreatic cancer cells Accumulation in cells increasing apoptosis [143].

ZnO NPs 0, 500, 1000, and 2000
mg/Kg/day for 14 days.

Decreased body weight, feed
consumption, alterations in
blood factors (HB, HCT, MCV,
MCH, MCHC, and LYM) and
increase in blood cells (WBCs
and NEUs), and
histopathological alterations in
the pancreas [144].

- -

TiO2 42 days - Pancreatic cancer cells (PANC-1) Tumor growth inhibition and induce cell toxicity [145].

CNT 5, 10 and 50 µg/mL - Pancreatic cancer cells (PANC-1) Hyperthermia; necrosis of malignant cells [146]

QD 0.2 mL, (7 h) NPs increased relatively ROS
factors in animal organ [147]. - -

Ear

AgNPs 4000 µg/mL AgNPs
induced

Hearing loss with partial
recovery within 7 days and
increasing ROS in animal organ
[148].

BALB/c 3T3 cell line Impairment of the mitochondrial function [148].

SPION 150 µL of 15 mg/mL,
(1–4 h, 4 and 7 days)

Uptake into the CNS
parenchyma [149]. - -

CNT 150 µL of 15 mg/mL,
(1, 2, 4 h, 4 and 7 days

Accumulation in CNS
parenchyma. No pathological
alterations were observed [150].

- -

QD 1 mg/mL or 4.5 mg/mL),
(24 h)

Limb abnormalities, body wall
defects, neural tube
defects [150].

- -

Eye

AuNPs 2, 20 and 200 nm, 72 h NPs increased relatively ROS
factors in animal [151]. Human corneal cells

Increasing apoptosis and aberrant expression factor
pigmentation, development (pax6a, pax6b, otx2,
and rx1) and pigmentation (sox10) [151].

Iron oxide 2, 20 and 200 nm, (72 h) NPs increased relatively ROS
factors in animal [151]. - -
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Table 1. Cont.

Target NP
Concentration, (Size),

(Time), Route of
Administration

Major Outcomes Cell In Vitro Effect

Silica NPs 50, 100 and 150 nm, (48 h) NPs increased relatively ROS in
cell [152]. - -

CNT Up to 750 nm every week
for 9 weeks

Eye-irritation, retinal
degeneration [74]. - -

QD
17 weeks of age, in the
range of 2.7–3.6 Kg in
body weight

Eye-irritation, retinal
degeneration [153]. - -
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7. Conclusions

Nanoparticles have many biomedical applications due to their unique characteristics such as size,
shape, chemistry and charge. However, the signaling pathways through which NPs can produce toxic
effects need to be understood better. Recent studies have shown that inflammation, necrosis, ROS and
apoptosis are key factors that mediate the mechanism of toxicity of NPs. These results may create a
barrier to the use of NPs in diagnosis and in the treatment of diseases for which they are ideally suited.
It is important to identify the dose, shape, and the properties of NPs that are responsible for their
toxicity in order to reduce their side effect by appropriately modifying the formulation or to use a NP
with lower toxicity. The dose of NPs is an important factor in their toxicological profile, along with
their accumulation, distribution, metabolism and disposal. In line with this, intravenously injected NPs
have a higher toxicity than those administered to the skin. According to the results of various studies,
there should be protocols that show which doses and what structures of NPs are more toxic. In general,
the problems in the evaluation of NP toxicity are due to the disparity between different toxicological
studies performed on the NPs of diverse origins and make-up. Accordingly, the study of NP toxicity
in various applications, especially biomedicine applications such as drug delivery, bio-security and
NP toxicity, is very crucial. Consequently, there is a need for the development of accepted and specific
protocols to identify the actual particle with its surface surroundings and the composition of NPs that
renders them toxic. It is hoped that our increased knowledge of NPs lead to their safer design with
reduced toxicity so that they can be used for treatment of assorted diseases and drug delivery.
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