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ABSTRACT

The use of intensity-modulated radiation therapy (IMRT) is devel-
oping rapidly in clinical routines. Because of the high complexity
and uniqueness of IMRT treatment plans, patient-specific pretreat-
ment quality assurance is generally considered a necessary prerequi-

site for patient treatment. In this work, we proposed a modified
methodology of electronic portal imaging device (EPID)–based
dose validation for pretreatment verification of IMRT fields by

applying artificial neural networks (ANNs). The ANN must be
trained and validated before use for pretreatment dose verification.
For this purpose, 20 EPID fluence maps of IMRT prostate

anterior-posterior fields were used as an input for ANN (feed forward
type) and a dose map of those fluence maps that were predicted by
treatment planning system as an output for ANN. After the training

and validation of the neural network, the analysis of 10 IMRT pros-
tate anterior-posterior fields showed excellent agreement between
ANN output and dose map predicted by the treatment planning sys-
tem. The average overall fields pass rate was 96.0% � 0.1% with

3 mm/3% criteria. The results indicated that the ANN can be
used as a low-cost, fast, and powerful tool for pretreatment dose veri-
fication, based on an EPID fluence map.
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R�ESUM�E

L’utilisation de la radioth�erapie avec modulation d’intensit�e (RTMI)
se d�eveloppe rapidement dans la routine clinique. En raison de la
grande complexit�e et du caract�ere unique des plans de traitement
en RTMI, l’assurance de qualit�e pr�ealable au traitement et sp�ecifique
au patient est g�en�eralement consid�er�ee comme un pr�erequis
n�ecessaire au traitement. Dans cette �etude, nous proposons une
m�ethodologie modifi�ee de validation de dose bas�ee sur appareil d’im-

agerie �a portail �electronique (EPID) pour la v�erification avant traite-
ment par l’application de r�eseaux neuronaux artificiels (RNN). Le
RNN doit être entrâın�e et valid�e avant son utilisation pour la

v�erification de la dose avant le traitement. �A cette fin, 20 cartes de
fluence EPID de champ ant�eropost�erieur (AP) de la prostate en
RCMI ont �et�e utilis�es comme intrants pour le RNN (de type charge-

ment en avant) et une carte de doses de ces cartes de fluence ayant �et�e
pr�edites par le syst�eme de planification de traitement (SPT) a �et�e uti-
lis�ee comme sortie pour le RNN. Apr�es l’entrâınement et la valida-
tion du r�eseau neural, l’analyse de dix champs AP de la prostate en

RCMI a montr�e un excellent accord entre la sortie du RNN et la
carte de doses pr�edite par le SPT. Le taux de r�eussite moyen global
des champs �etait de 96,0% � 0,1% avec un crit�ere de 3 mm/3%.

Les r�esultats indiquent que le RNN peut être utilis�e comme outil
rapide, puissant et peu coûteux pour la v�erification de la dose avant
le traitement, �a partir d’une carte de fluence EPID.
Keywords: Artificial neural network; electronic portal imaging device; dose verification; intensity modulated radiation therapy
Introduction

The use of intensity-modulated radiation therapy (IMRT) is
developing rapidly in clinical routine, and the advantages of
this technique include better target coverage along with better
sparing of organs at risk, improved target conformity, particu-
larly for concave target volumes, and delivery of ablative radia-
tion doses with a rapid fall-off [1]. Because of the high
complexity and uniqueness of IMRT treatment plans, pa-
tient-specific pretreatment quality assurance is generally consid-
ered a prerequisite for patient treatment [2]. The most widely
used form of pretreatment quality assurance for IMRT
nadian Association of Medical Radiation Technologists.
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generally consists of absolute and 2D-dose measurements (with
ionization chamber, diode, thermoluminescent dosimeter,
radiographic and radiochromic film, etc.) [1,3,4]. Another
approach to IMRT dose verification is the use of various matrix
detectors that have been produced to measure energy fluence or
absorbed dose in two dimensions [5,6]. Commercial options
are available based on different measurement techniques. These
include two-dimensional detectors, consisting of a large num-
ber of ionization chambers [7,8], or diodes [9,10] placed in a
regularly spaced array or at specific points in a phantom [5].
A possible drawback of these devices is that they have relatively
few measuring points and, so, a low spatial resolution. Another
drawback of these devices is that they are time-consuming
involving recalculation of the IMRT plan, temperature depen-
dency, and set-up time on the linear accelerator [2,8].

The use of electronic portal imaging devices (EPIDs) is
also of interest for IMRT verification [11]. Studies of the
basic dosimetric performance of EPIDs have been presented
for camera-based, liquid ionization, and amorphous silicon
(a-Si) flat-panel systems [11–13]. Compared with other
dosimetry devices, EPIDsdwhich are normally attached to
linear acceleratorsdhave no need for additional hardware to
perform portal dosimetry. EPID measurements can be per-
formed with minimum set-up requirements, and a 2D dose
conversion can be performed immediately using digital raw
data [14].

In general, two approaches have been adopted for the cali-
bration of an EPID for dose measurements: conversion of the
grayscale pixel value to a dose value and simulation (or predic-
tion) of the grayscale pixel value [15]. These approaches must
be validated in nonreference conditionsdin particular, the
robustness of these calibration models needs to be tested un-
der various different clinical situations. Another drawback of
these methods is its need for a detailed model of the EPID.
However, accurate technical details are not always available,
and, moreover, these methods require time and very complex
calculation algorithms [15].

In this work, we proposed a modified methodology of
EPID-based dose validation for pretreatment verification of
IMRT fields through the application of artificial neural net-
works (ANNs). Fluence maps of IMRT prostate anterior-
posterior (AP) treatment fields (without patient) obtained
by EPID were used as inputs for ANN and a dose map of
those fluence maps, predicted by treatment planning system
(TPS) were used as an output for ANN in training phase.

ANN and machine-learning algorithms have been widely
used for many pattern recognition problems in clinical and ra-
diation therapy applications; the results have demonstrated
that ANNs have good accuracy and high speed in response
to complex problems and situations [16–27]. An ANN is a
system composed of many simple interconnected processing
elements (artificial neurons) operating in parallel, the function
of which is determined by the network structure, the connec-
tion strengths, and the computation performed at the process-
ing elements. An artificial neuron is a mathematical, nonlinear
operator, which receives one or more inputs and computes a
S.R. Mahdavi et al./Journal of Medical Imaging a
(usually weighted) sum of the inputs to produce a single
output. Generally, this sum is passed through a nonlinear
function, known as the activation function. An ANN
approach has some inherent capabilities which other program-
ming techniques lack. They are naturally parallel and so hold
the promise of being able to solve intricate problems. The use
of ANN requires a low memory storage, and very short time
response once the network is trained [18,20].
Materials and Methods
Equipment
A linear accelerator with a 6 MV X-ray beam and dose rate
of 400 monitor units per minute (Varian Unique) equipped
with 80-leaf Varian millennium multileaf collimator was
used. An a-Si–based a-Si1000 EPID (Portal vision; Varian
Medical Systems, Palo Alto, USA) was used to acquire images.
The Portal Vision a-Si1000 flat-panel EPID has a 40 �
30 cm2 detecting surface with a matrix of 1024 � 768 pixels
(0.392-mm pixel pitch). Each pixel consists of a light-sensitive
photodiode and a thin film transistor to enable readouts.
Overlying the array is a copper plate (of 1 mm thickness)
and a scintillating layer (gadolinium oxysulphide) [13,28],
making the portal imager an indirect detection system. The
phosphor scintillator converts incident radiation into optical
photons, enhancing the sensitivity of the detector more than
10-fold. The electric charge generated by the incident optical
photons is accumulated in the photodiode until the signal is
read out and digitized through an analog-to-digital converter
[29]. The total water-equivalent thickness of the construction
materials in front of the photodiodes is 8 mm, as specified by
the manufacturer.

Eclipse (version 13.6) TPS (Varian Medical Systems, Palo
Alto, USA) was used to calculate dose distributions of IMRT
fields. The IMRT 2D dose map was calculated for 30 AP treat-
ment fields of different prostate cases and after that, 2D dose
maps converted in the 2-cm depth of cubic phantom with
25 cm and 30 cm length made of virtual water. The grid size,
for both the fluence (image) and dose maps, was 0.5 cm, and
an analytical anisotropic algorithm was used in the TPS.
2D Dose IMRT Fields Acquisition
In this study, 11,837 pixels of 20 dynamic IMRT pros-
tate AP treatment fields (without patient) were used for
training and validation of ANN. Dose per fraction, number
of fraction, grid size for dose calculation, algorithm of plan
optimization, and dose constrain for planning target volume
and organs at risk were same for all of IMRT prostate plans.
The pixels of 15 IMRT prostate AP fields were used for the
training of the ANN. For validation phase and response
evaluations of ANNs, we used pixels of 5 and 10 IMRT
prostate AP fields respectively. All IMRT treatment fields
were delivered to the linac treatment console via the ARIA
record and verification system (Varian Medical Systems,
Palo Alto, USA).
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EPID Setup and Acquisition of Fluence Maps
The thickness of the construction material in front of the
photodiodes is 1.5 cm (water-equivalent thickness is 8 mm).
All IMRT EPID images (fluence map) were acquired at
source EPID distance of 98.5 cm with 1.2 cm water equiva-
lent additional buildup, in 2 cm water equivalent (behind
the buildup region of 6 MV X-ray in water); the maximum
frame acquisition rate was 9.574 frames/s (see Figure 1).
When the EPID is used for dosimetry applications, such as
pretreatment verification of the intensity-modulated beams,
sufficient buildup needs to be applied to eliminate the contri-
bution of scattered electrons to the dosimetric image [12]. An
absence of buildup during the measurement will generate
large deviations between acquired and expected images, inhib-
iting both the relative and absolute evaluations of the dynamic
delivery. For this reason, we used sufficient buildup for image
acquisition. This work can improve the precision of neural
network responses.

Dark-field and flood-field calibration were performed for
EPID before image acquisition. Dark-field calibration charac-
terized the EPID response when there is no radiation beam.
Flood-field calibration was also conducted to normalize the
value of each individual pixel and achieve uniform spatial
response of the EPID. Images of EPID were acquired in the
integrated mode and were saved in dicom format.
Figure 1. Setup of a-Si1000 electronic portal imaging device for acquisition

fluence maps of intensity-modulated radiation therapy plan anterior-

posterior fields with 1.2 cm water equivalent additional buildup in source

electronic portal imaging device distance (SED) ¼ 98.5 cm.
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The Architecture of the Neural Network
To convert a 2D fluence map to a 2D dose map, in this
study (total time needed to do this was about 5 minutes),
we used feed forward (FF) multilayer ANN. The FF is a
kind of backpropagation NN. This study used a Levenberg-
Marquardt algorithm for FF-ANN training. The backpropa-
gation NN is essentially a network of simple processing
elements working together to produce a complex output.
These elements or nodes are arranged into different layers:
input, hidden, and output. The input layer propagated a
particular input vector’s components to hidden layers. Hid-
den layers, which are neuron nodes stacked in between inputs
and outputs, allow neural networks to learn more complicated
features and compute output values, which become inputs to
the output layer. The output layer computes the network
output for the particular input vector. In training phase,
ANN produces an output vector for given input vector based
on the current state of the network weights. The training set is
repeatedly presented to network, and the weight values are
adjusted in training set [17,23]. The structure of the neural
network model we used in this study contains seven nodes
for the input layer, three hidden layers, and an output layer
that leads to the terminal response. The input layer has seven
nodes (see Figure 2) that consisted of pixel coordinates (i, j),
pixel intensity X(i, j), row distance of target pixel from
central pixel F(i), and column distance of target pixel from
central pixel F(j) and X(i–1, j), X(iþ1, j), X(i, j–1),
X(i, jþ1), which are the neighboring pixel intensities of the
target pixels. The accuracy of the network can be improved
by introducing neighboring pixels [26,30].

There are three hidden layers in our model. It has been
theoretically proven that a maximum of three hidden layers
Figure 2. The schematic presentation of input variables of feed forward–

artificial neural network contains pixel coordinates (i, j), pixel intensity X(i,

j), row distance of target pixel from central pixel F(i), and column distance

of target pixel from central pixel F(j) and X(i–1, j), X(iþ1, j), X(i, j–1),

X(i, jþ1), which are the neighboring pixel intensities of target pixels.
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Figure 4. Performance of artificial neural network architectures for the same

set of training shows sufficient convergence between training and test data,

best training performance seen at epoch 6.
is sufficient to arbitrarily approach any continuous function
[25–30]. To find the numbers of sufficient hidden layers for
our designed ANN, the best convergence between training
and test data was considered. Initially, we started to solve
the problem by using NN with only a single hidden layer.
With one hidden layer, convergence did not occur after
training. We then added one more hidden layer because the
situation aforementioned shows that the continuous function,
which was to be approached, is too complicated. Adding one
hidden layer showed an increase in the convergence of the
performance of the network. In this investigation, we found
that three hidden layers have more sufficient performance
than one and two hidden layers, and the regression of the
network is more than 0.95% for random points (see
Figure 3). The output layer of the ANN is the layer that gives
a terminal response, which is a 2D dose modeled by an ANN.

We noticed that after 258 epochs, the performance of the
ANN did not change significantly, and sufficient convergence
between training and test data was obtained and best training
performance (minimum mean square error) seen at epoch 6
(Figure 4). Design, training and testing of ANN, and data
processing were performed with MATLAB software (version
8.5; MathWorks, USA).

Results
ANN 2D Dose Maps
Pixels of 5 and 10 IMRT prostate AP fields were used for
validation and response evaluations of ANNs. Regression be-
tween the pixel intensity of 2D dose map predicted by the
TPS (target) and pixel intensity of 2D dose map modeled
by ANN (output) data is more than 0.95% so that this regres-
sion value indicated the ANN has received enough input
values (11,837 pixels of 20 dynamic IMRT prostate AP treat-
ment fields) in training and validation phase and ANN to be
validated and ready for good responses (see Figure 5). After
training and validation, ANN modeled the 2D dose map of
the fluence map from EPID. A 2D dose map modeled by
the ANN is shown by Figure 6.
Figure 3. The regression value of network for training (R ¼ 0.88843) and test phas

value for all (training and test) is 0.90296.
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Gamma Evaluation of Neural Network Model
To compare the ANN 2D dose map with that from the
TPS, we normalized the ANN dose map to its maximum
dose. Similarly, the 2D dose map from the TPS was normal-
ized to the maximum dose. The gamma evaluation of the TPS
2D dose prediction and the 2D dose modeled by ANN of 10
AP treatment fields of prostate IMRT indicate very similar re-
sults. The average overall fields pass rate was more than 95%,
when the distance to agreement was (less than or equal to
symbol) 3 mm and a dose difference (DD) of (less than or
equal to symbol) 3% criteria were used.

Figure 7 shows the analysis of the 2D dose map with 0.5-
cm grid size, as acquired with the TPS and the ANN. In
Figures 7A, and B, 2D dose distributions of the TPS and
ANN are respectively shown. Figure 7C shows a horizontal
profile comparison between the TPS and ANN, and in
Figure. 7D, a dose line profile comparison indicates 96.0%
� 0.1% pass rate for gamma evaluation of 3 mm/3%.
e (R ¼ 0.97269) of artificial neural network (random point). The regression
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Figure 5. Regression line between target (2D dose map predicted by the treat-

ment planning system) and output (2D dose map modeled by artificial neural

network) data in validation phase of designed artificial neural network was

0.957431.
When the distance to agreement and DD were restricted to
2 mm/2% and 1 mm/1%, passing rates dropped to 94.3%
� 0.4% and 86.4% � 1.4%, respectively. It means that the
average pass rates decreases when the criteria are made tighter,
as would be expected.

To evaluate the robustness and accuracy of the trained
ANN, we took trained ANN (as described in 2.1 Section) un-
der stress condition. In this phase of study, we recalculated
2D dose of 10 IMRT prostate AP fields predicted by the
TPS with different grid sizes of, 0.4 cm, 0.3 cm, 0.2 cm,
and 0.1 cm, and gamma evaluation was used for comparing
2D dose map of them with 2D dose map modeled by trained
ANN. Results were summarized in Table 1; for all grid sizes,
it can be seen that average gamma values pass rates do not
have significant change when the 2D dose map grid sizes
are lower.
Figure 6. The artificial neural network (ANN) modeled the 2D dose map of the flu

portal imaging device that was used as input for ANN (right), 2D dose map mode
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Discussion

Other previous studies used ANN for modeling 2D dose
distribution, percentage depth dose, and dose profiles of
different fields [23–27]. In this study, we used a simple
improved method for portal dosimetry with the help of
ANN for the pretreatment verification of IMRT treatment.

The ability of ANN tomodel a 2D dose map, based on a flu-
ence map obtained by a-Si1000 EPID, was evaluated in this
study. Twenty fluence maps of IMRT prostate AP treatment
fields (without patient) obtained by EPID were used as inputs
for ANN (feed forward type) and a dose map of those fluence
maps, predicted by the TPS as an output for ANN in the
training and validation phase. After the training and validation
of neural networks, the analysis of 10 IMRT prostate AP fields
plans that were not seen earlier by trained ANNs, showed excel-
lent agreement between the ANN 2D dose map modeled and
the dose map predicted by the TPS. The average overall fields
pass rate was more than 95% when 3 mm/3% criteria were
used. This index value for 3 mm/3% criteria is comparable
with a very complex portal dosimetry method and expensive
commercial portal dosimetry software [15].

In similar study, Kalantzis et al [30] imported fluence
maps, which were acquired by a-Si1000 (Varian Medical Sys-
tems, Palo Alto, USA) to the Pinnacle TPS (Philips Radiation
Oncology Systems, Fitchburg, WI) to calculate the 2D dose
maps of the horizontal isocenter plane of a homogeneous vir-
tual cylindrical phantom. In this study, 2D dose predicted by
the TPS depends on the fluence map acquired by EPID. All
the fluence map measurements in study of Kalantzis et al
were performed without additional buildup that can be im-
pressed by scattered electrons and high gradient dose region.
As these conditions are a source of uncertainty in dose mea-
surement and in the TPS prediction, they should ideally be
avoided [12]. All IMRT EPID images in our study (fluence
maps) were acquired with sufficient buildup materials (totally:
2 water equivalent buildup) and the 2D dose map predicted
by the TPS is independent of the fluence map. On other
ence map from electronic portal imaging device. The fluence map electronic

led by ANN (left).

nd Radiation Sciences 49 (2018) 286-292



Figure 7. A, Isodose profile for 2D dose of the treatment planning system; B, isodose profile for 2D dose reconstructed by artificial neural network; C, horizontal

dose line profile comparison between the TPS and artificial neural network; D, 2D gamma index histogram; and 96% of gamma index value are smaller than 1.
advantage of the designed ANN in our study, in comparison
with similar studies [26–30], is that a uniquely trained ANN
can model a 2D dose map, and it does not require any design
for two neural networks of low- and high-dose gradient re-
gions on a 2D dose map. The results of this study indicated
that one NN can model the total region of a 2D dose map
(low-dose and high-dose regions) if trained with appropriate
node(s) for input layer, hidden layer, and optimize iteration.
The suitable and optimized responses of our designed neural
network can be because of the precise introduction of pixels
coordination and distances from central pixel and also the
introduction of four neighbors’ pixel intensities.

Good response and performance of ANN trained by 2D dose
mapwith 0.5 cmgrid size in comparison of 2Ddose predicted by
the TPS with different grid sizes indicated robustness and
Table 1

Gamma Index Evaluation Between 2D Dose Map Modeled by Trained ANN

and 2D Dose Map Predicted by the TPS with 0.5 cm, 0.4 cm, 0.3 cm, 0.2 cm,

and 0.1 cm Grid Size: Pass Rate with Gamma Evaluation of 3 mm/3%, 2 mm/

2% and 1 mm/1%

Gamma Criteria 2D Dose Map

Grid Size (cm)
1 mm/1% 2 mm/2% 3 mm/3%

86.4% � 1.4% 94.3% � 0.4% 96.0% � 0.1% 0.5

86.1% � 1.1% 94.1% � 0.3% 95.9% � 0.2% 0.4

85.9% � 1.3% 93.9% � 0.5% 95.7% � 0.1% 0.3

85.8% � 1.4% 93.7% � 0.5% 95.5% � 0.2% 0.2

85.4% � 0.9% 93.0% � 0.4% 95.3% � 0.2% 0.1
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accuracy of ANN in different and more stringent conditions.
This phase of the study increases our confidence about the perfor-
mance of trained ANN in different stress conditions that have
been previously been encountered by the ANN.

The extension of our method would be to evaluate the
ability of ANNs to predict the dose intensity for in vivo
dosimetry in heterogeneous irradiation fields for different
clinical situations.

Another extension of our method can use different modu-
lated IMRT fields and the evaluated ability of NN perfor-
mance in different modulated IMRT fields, ranging from
relatively less modulated IMRT fields of prostate cases to
highly modulated fields for head and neck cases. Another
way to extend and evaluate ANN ability for portal dosimetry
is to use different NN and compare their abilities for this task.

Conclusion

The results of this study showed the ability of the ANN as
a powerful tool for 2D dose reconstruction-based image
acquisition of EPID for IMRT fields without patients. In
addition, the results indicate that the low-cost method used
in this study is a precise and high-speed method for the pre-
treatment verification of IMRT treatment.

In future studies, we will want to use a 2D dose map
measured by qualifying a 2D array dosimeter as an output
of NN and comparing a 2D dose map modeled by this
method with a 2D dose map predicted by the TPS for the
same IMRT fields.
nd Radiation Sciences 49 (2018) 286-292 291



Footnotes

Contributors: All authors contributed to the conception or
design of the work, the acquisition, analysis, or interpretation
of the data. All authors were involved in drafting and com-
menting on the paper and have approved the final version.

Funding: This study did not receive any specific grant
from funding agencies in the public, commercial, or not-
for-profit sectors.

Competing interests: All authors have completed the
ICMJE uniform disclosure form at www.icmje.org/
coi_disclosure.pdf and declare: no financial relationships
with any organizations that might have an interest in the sub-
mitted work in the previous three years; no other relationships
or activities that could appear to have influenced the submit-
ted work.

Ethical approval: Requirement of Research Ethics Board
approval for this project was not required, as there was no pa-
tient involvement.
References

[1] Van Esch, A., Bohsung, J., Sorvari, P., Tenhunen, M., Paiusco, M., &

Iori, M. (2002). Acceptance tests and quality control procedures for the

clinical implementation of intensity modulated radiotherapy (IMRT)

using inverse planning and sliding windows technique: experience

from five radiotherapy departments. Radiother Oncol 65, 53–70.
[2] Burman, C., Chui, C., & Kutcher, G., et al. (1997). Planning delivery

and quality assurance of intensity-modulated radiotherapy using dy-

namic multileaf collimator: a strategy for large-scale implementation

for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol
Phys 39, 863–873.

[3] Van Elmpt, W. J., Nijsten, S. M., Mijnheer, B. J., Dekker, A. L., &

Lambin, P. (2007). The next step in patientspecific QA: 3D dose verifica-

tion for conformal and intensity modulated RT based on EPID dosimetry

and monte carlo calculations. Int J Radiat Oncol Biol Phys 69, 672–673.
[4] Sadagopan, R., Bencomo, J. A., Martin, R. L., Nilsson, G., Matzen, T., &

Balter, P. A. (2009). Characterization and clinical evaluation of a novel

IMRT quality assurance system. J Appl Clin Med Phys 10, 104–119.
[5] Poppe, B., Blechschmidt, A., & Djouguela, A., et al. (2006). Two-

dimensional ionization chamber arrays for IMRT plan verification.

Med Phys 33, 1005–1015.
[6] Wiezorek, T., Banz, N., & Schwedas, M., et al. (2005). Dosimetric

quality assurance for intensity-modulated radiotherapy feasibility study

for a filmless approach. Strahlenther Onkol 181, 468–474.
[7] Amerio, S., Boriano, A., & Bourhaleb, F., et al. (2004). Dosimetric

characterization of a large area pixel-segmented ionization chamber.

Med Phys 31, 414–420.
[8] Spezi, E., Angelini, A. L., Romani, F., & Ferri, A. (2005). Characteriza-

tion of a 2D ion chamber array for the verification of radiotherapy treat-

ments. Phys Med Biol 50, 3361–3373.
[9] Letourneau, D., Gulam, M., Yan, D., Oldham, M., & Wong, J. W.

(2004). Evaluation of a 2D diode array for IMRT quality assurance. Ra-
diother Oncol 70, 199–206.

[10] Jursinic, P. A., & Nelms, B. E. (2003). A 2-D diode array and analysis

software for verification of intensity modulated radiation therapy deliv-

ery. Med Phys 30, 870–879.
292 S.R. Mahdavi et al./Journal of Medical Imaging a
[11] Louwe, R. J., Tielenburg, R., Van Ingen, K. M., Mijnheer, B. J., & Van

Herk, M. B. (2004). The stability of liquid-filled matrix ionization

chamber electronic portal imaging devices for dosimetry purposes.

Med Phys 31, 819–827.
[12] De Boer, J. C., Heijmen, B. J., Pasma, K. L., & Visser, A. G. (2000).

Characterisation of a high-elbow, fluoroscopic electronic portal imaging

device for portal dosimetry. Phys Med Biol 45, 197–216.
[13] Chang, C. S., Tseng, Y., Hwang, J. M., Shih, R., & Chuang, K. S. (2016).

Dosimetric characteristics and day-to-day performance of an amorphous-

silicon type electronic portal imaging device. Radiat Meas 91, 9–14.
[14] Lee, C., Menk, F., Cadman, P., & Greer, P. B. (2009). A simple

approach to using an amorphous silicon EPID to verify IMRT planar

dose maps. Med Phys 36, 984–992.
[15] Van Elmpt, W., Mcdermott, L., & Nijsten, S., et al. (2008). A literature

review of electronic portal imaging for radiotherapy dosimetry. Radio-
ther Oncol 88(3), 289–309.

[16] Zhu, X., Ge, Y., Li, T., Thongphiew, D., Yin, F., & Wu, Q. (2011). A

planning evaluation tool for prostate adaptive IMRT based on machine

learning. Med Phys 38, 719–726.
[17] Derong, L., Zhongyu, P., & Lloyd, S. R. (2007). A neural network

method for detection of obstructive sleep apnea and narcolepsy on pupil

size and EEG, IEEE. Trans Neural Netw 19, 308–318.

[18] Cenci, M., Nagar, C., & Vecchione, A. (2000). PAPNET-assisted pri-

mary screening of conventional cervical smears. Anticancer Res 20,

3887–3899.

[19] Reddy, M. S., Edenbrandt, L., Svensson, J., Haisty, W. K., &

Pahlm, O. (1992). Neural network versus electrocardiographer and con-

ventional computer criteria in diagnosing anterior infarct from the EEG.

Comput Cardiol 11, 667–670.
[20] Yamashita, K., Yoshiura, T., & Arimura, H., et al. (2008). Performance

evaluation of radiologists with artificial nerual netwok for differential

diagnosis of intra-axial cerebral tumors on MR images. Am J Neurora-
diol 29, 1153–1158.

[21] Chen, S., Zhou, S., Zhang, J., Yin, F., Marks, L., & Das, S. K. (2007).

A neural network model to predict lung radiation-induced pneumonitis.

Med Phys 34, 3420–3427.
[22] Gunturkun, R. (2010). Determining the amount of anesthetic medicine

to be applied by using Elman’s recurrent neural networks via resilient

back propagation. J Med Syst 34, 493–497.
[23] Wu, X., & Zhu, Y. (2000). A neural network regression model for rela-

tive dose computation. Phys Med Biol 45, 913–922.
[24] Blake, S. (2004). Artificial neural network modeling of megavoltage

photon dose distributions. Phys Med Biol 49, 2515–2526.
[25] Mathieu, R., Maritn, E., Gschwind, R., Makovicka, L.,

ContassotVinier, S., & Bahi, J. (2005). Calculations of dose distribu-

tions using a neural network model. Phys Med Biol 50, 1019–1028.
[26] Vasseur, A., Makovicka, L., Maritn, E., Sauget, M., Contassot-

Vinier, S., & Bahi, J. (2008). Dose calculations using artificial neural

networks: a feasibility study for photon beams. Nucl Instrum Methods
Phys Res B 266, 1085–1093.

[27] Milan, J., & Bentley, R. E. (1974). The storage and masnipulation of

radiation dose data in a small digital computer,. Br J Radiol 47, 115–
121.

[28] Munro, P., & Bouius, D. C. (1998). X-ray quantum limited portal im-

aging using amorphous silicon flat-panel arrays. Med Phys 25, 689–702.
[29] El-Mohri, Y., Antonuk, L. E., & Yorkston, J., et al. (1999). Relative

dosimetry using active matrix flat-panel imager (AMFPI) technology.

Med Phys 26, 1530–1541.
[30] Kalantzis, G., Vasquez-Quino, L., Zalman, T., Pretx, G., & Lie, Y.

(2011). Toward IMRT 2D dose modeling using artificial neural net-

works: a feasibility study. Med Phys 38, 5807–5817.
nd Radiation Sciences 49 (2018) 286-292

http://www.icmje.org/coi_disclosure.pdf
http://www.icmje.org/coi_disclosure.pdf
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref1
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref1
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref1
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref1
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref1
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref2
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref2
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref2
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref2
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref2
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref3
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref3
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref3
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref3
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref4
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref4
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref4
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref5
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref5
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref5
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref6
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref6
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref6
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref7
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref7
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref7
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref8
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref8
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref8
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref9
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref9
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref9
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref10
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref10
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref10
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref11
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref11
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref11
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref11
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref12
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref12
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref12
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref13
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref13
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref13
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref14
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref14
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref14
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref15
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref15
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref15
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref16
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref16
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref16
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref17
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref17
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref17
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref18
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref18
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref18
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref19
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref19
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref19
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref19
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref20
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref20
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref20
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref20
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref21
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref21
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref21
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref22
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref22
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref22
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref23
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref23
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref24
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref24
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref25
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref25
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref25
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref26
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref26
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref26
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref26
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref27
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref27
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref27
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref28
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref28
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref29
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref29
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref29
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref30
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref30
http://refhub.elsevier.com/S1939-8654(18)30005-5/sref30

	2D Dose Reconstruction by Artificial Neural Network for Pretreatment Verification of IMRT Fields
	Introduction
	Materials and Methods
	Equipment
	2D Dose IMRT Fields Acquisition
	EPID Setup and Acquisition of Fluence Maps
	The Architecture of the Neural Network

	Results
	ANN 2D Dose Maps
	Gamma Evaluation of Neural Network Model

	Discussion
	Conclusion
	Footnotes
	References


