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ABSTRACT
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in
living experimental animal models of infections have mostly relied on sacrificing the animals,
dissociating the tissue and counting the number of colony forming units. However, the discovery of
several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria,
fungi, parasites and mice to make them emit light, either after administration of the luciferase
substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided
a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted
from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical
location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI
technology has been used to follow bacterial infections in traumatic skin wounds and burns,
osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm
and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent
have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic
infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored
by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied
using BLI. This rapidly growing technology is expected to continue to provide much useful
information, while drastically reducing the numbers of animals needed in experimental studies.
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Introduction to bioluminescent organisms

Bioluminescence is used by various organisms, including
microorganisms, for various purposes including commu-
nication, reproduction, and defense from predators, and
is defined as the enzymatic production of visible light
from cells. The use of photoactive proteins in biology
and medicine commenced with the original isolation and
modification of green fluorescent protein (GFP) as well
as the transfection of Escherichia coli (E. coli) with the
GFP gene, for which Chalfie, Shimomura and Tsien won
the Nobel Prize in Chemistry in 2008.1 The gene
sequence for firefly luciferase and its mechanism of
action was determined by Marlene Deluca starting in the
1970s.2 These two original types of light emitting pro-
teins have led to an explosion of interest in biolumines-
cence in molecular biology and biomedical sciences,

which has grown beyond the initial use as molecular
probes for microscopic studies.

Firefly luciferase is an oxidative enzyme that generates
light in a classical and well-understood multistep mecha-
nism (Fig. 1). In eukaryotes, D-luciferin is initially
adenylated by Mg-ATP, generating D-luciferyl-adenylate
and pyrophosphate. D-luciferyl-adenylate is then oxi-
dized in the presence of an equivalent of molecular oxy-
gen (O2) yielding a highly strained dioxetenone ring (in
red), which is relieved by a homolytic O-O bond cleav-
age. Decarboxylation not only relieves the instability of
the radical adduct, but also generates excited oxyluci-
ferin. Oxyluciferin (aromatic in the enol form) tautomer-
izes with the keto form. Remarkably, both the enol and
keto forms of excited oxyluciferin are capable of relaxing
back to ground state oxyluciferin with the consequent
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emission of a visible photon.3 The light emitted in the
process ranges anywhere from 550 nm (lime green) to
620 nm (red) and the reason for variations in color has
yet to be unambiguously identified.4 To date, variation in
the excited state oxyluciferin emission wavelength is
thought to be a consequence of keto/enol population
densities, the torsional angle between thiazole and ben-
zothiazole (red and green respectively in Figure 1), or the
microenvironment in which the decay process occurs.5

Luciferase enzymes have been found to be expressed in
a wide range of different life forms.6 It has been estimated
using phylogenetic analysis that luciferase systems may
have arisen from more than 30 independent evolutionary
origins.7 In addition to the beetle luciferase enzymes,
found in fireflies and click beetles, marine organisms and
bacteria have provided rich sources of luciferase systems.
Bioluminescence is also found in dinoflagellates8 and
some fungi.9 In some marine organisms such as Renilla,
the luciferase is closely coupled to a fluorescent protein
such as GFP to red shift the emission from the blue to
the green spectrum. Due to the increasing demand for
these light-emitting systems both for use in luciferase
reporter assays and for bioluminescence imaging (BLI),
molecular biologists and genetic engineers have carried
out numerous modification and optimization procedures
on the amino-acid sequences of these proteins. Table 1
shows the different luciferase enzymes that have become
important in bioluminescence imaging.

For BLI in animals the following advantages and disad-
vantages must be taken into account. The peak

wavelength of the emission is important for efficient
detection by imaging systems because red light is signifi-
cantly less absorbed by endogenous chromophores and is
also significantly less scattered by tissue. All luciferases are
oxidizing enzymes and need the presence of significant
amounts of O2 to function optimally, so their activity in
acutely hypoxic tissues may be compromised. Moreover
beetle luciferases also need cellular ATP to function, so
ATP availability may be a limiting factor. For systems that
need administration of exogenous luciferase substrates, the
penetration of the substrate molecule into the cells is
important and the pharmacokinetics and biodistribution
of the substrate must also be taken into account. Besides
both D-luciferin and coelenterazine have been found to be
substrates of multi-dug efflux transporters such as ABCG2
and p-glycoprotein.10,11 The Gaussia luciferase (Gluc) is
secreted from the cells, and this will increase the back-
ground signal in in-vivo imaging.12 The bacterial luciferase
operon should be stably integrated into the bacterial chro-
mosome using a transposon to avoid the loss of plas-
mids.13 The precise promoter employed in the genetic
construct also has a major effect on the efficiency of biolu-
minescence production.6 The recent introduction of
NanoLuc (NLuc) has caused some interest.14 A luciferase
enzyme was isolated from the deep-sea shrimp Oplopho-
rus gracilirostris, and underwent three rounds of mutagen-
esis to produce the novel NLuc system. This enzyme is
small (only 19.1 kDa), and its specific activity is over 150-
fold higher than FLuc and RLuc. Its novel substrate, furi-
mazine, provides additional possibilities to carry out mul-
tiplexed imaging studies. One of the most exciting
applications of bioluminescence (and the topic of this
review) is the use of BLI to model host/pathogen interac-
tions and track disease progress. This invaluable scientific
technology relies on the engineering of either the host or
the pathogen to express luciferase enzymes, rather than
GFP.15 BLI for infectious diseases is surprisingly similar to
the observation of “glowing wounds” (termed “Angel’s
Glow”) that was seen in injured soldiers during the Amer-
ican Civil War. These infected wounds were not only
non-lethal to the soldiers, but field surgeons observed that
wounds that happened to display visible luminescence
actually promoted patient survival. Nowadays, it is under-
stood that these “glowing wounds” were a consequence of
infection by the gamma-proteobacteria Photorhabdus
luminescens (previously called Xenorhabdus luminescens)
native to the gut of nematodes. Angel’s Glow is due to the
bacterial luciferase system of P. luminescens and the
enhanced patient survival was due to production of antibi-
otics by P. luminescens which prevented growth of other-
wise more lethal wound pathogens.

In contrast to the aforementioned luciferase systems
of eukaryotes, the prokaryotic bioluminescence that is

Figure 1. Chemical reactions leading to light emission from
D-luciferin and firefly luciferase.
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catalyzed by a different luciferase is dependent on the
oxidation of long-chain aldehydes reacting with reduced
flavin mononucleotide in the presence of oxygen, yield-
ing the oxidized flavin, a long-chain fatty acid, and
light.16 While the mechanism of light production differs
markedly between prokaryotes and eukaryotes in terms
of substrate specificity, the point which is worth noting,
is that the different luciferase enzymes are highly special-
ized and capable of facilitating several distinct chemical
processes that result in light production.

The lux operon found in P. luminescens is convenient
for BLI purposes in that it contains both the genes for
the synthesis of luciferase and for the synthesis of the
aldehyde substrate,3 so no additional substrate needs to
be added. On the other hand, the use of the P. pyralis
luciferase and marine luciferase enzymes is less desirable
in infections in that exogenous D-luciferin or coelentera-
zine must be administered rather than the substrate
being endogenously synthesized in cells. Accordingly, in
1995 Contag et al17 successfully transferred the P. lumi-
nescens lux operon (luxCDABE) to the Gram-negative
enteropathogen Salmonella typhimurium (S. typhimu-
rium) and since then successful transfection has been
carried out in a plethora of different microorganisms. It
was found to be necessary to use a modified P. lumines-
cens lux transposon plasmid pAUL-Atn4001 lux-
ABCDE-Kmr that had been specifically tailored for
Gram-positive bacteria.18 This is because the P. lumines-
cens lux CDABE operon (that functions well in Gram-
negative bacteria) is not translated in Gram-positive bac-
teria, as these organisms do not have the correct ribo-
some-binding sites in the mRNA sequences. By
reorganizing the gene order in the cassette to ABCDE
instead of CDABE and inserting a Gram-positive
BBBFGD32 ribosome-binding site upstream of all 5
genes contained within the operon, Gram-positive bacte-
ria could then be stably transformed.

The principle behind the use of BLI for modeling and
monitoring infectious diseases is simple yet extremely use-
ful. Provided an animal or model organism is solely

infected with a microbial strain that expresses the bacterial
luciferase enzyme system, the light production (typically
measured at 490 nm for the P. luminescens variant) is pro-
portional to themicrobial concentration.With appropriate
in-vitro calibration, not only is qualitative information
derived but quantitative microbial load estimation may
also be made. The in-vitro and in-vivo correlations are dis-
cussed below. To date, the relationship between detected
luminescence and microbial load concentration has been
used in BLI monitoring of infections caused by the Gram-
negative bacteria, E. coli,19Citrobacter,20 the Gram-positive
bacteria Staphyloccocus aureus (S. aureus) (methicillin-
intermediate and resistant isolates),18 and Streptococcus
pneumoniae (S. pneumoniae),21 mycobacteria,22 Candida
albicans (C. albicans)23,24,25,26 and even the filamentous
fungi Aspergillus fumigatus (A. fumigatus).27 Fig. 2B shows
a correlation plot using Pseudomonas aeruginosa (P. aeru-
ginosa) Xen41.

BLI provides a number of advantages that can be used
to provide information about the dynamics of the infec-
tious processes. Many animal models of human biology
and diseases have been investigated successfully using
BLI. Recombinant strains of bacteria expressing lucifer-
ase, have reduced the need to sacrifice animals at differ-
ent time-points, so each animal can be used as its own
control over the length of the experiment, and overcom-
ing the problem of animal-to–animal variation if groups
of animals are sacrificed at different time-points. Animal
studies using these bioluminescent strains have provided
information via qualitative and quantitative analysis of
the microbial load, and have identified progression or
migration to previously unknown sites in the body.
Many research groups have employed BLI as advanta-
geous technique to monitor the effectiveness of antimi-
crobial techniques in a variety of animal models of
infections caused by different bioluminescent pathogens.
These methods have also been validated in mouse mod-
els of infected wounds,28 burns,29 soft tissue infections,30

and in dentistry, for endodontic treatment of both
Gram-positive and Gram-negative bacteria.31

Figure 2. In vitro studies with P. aeruginosa XEN41. (A) Serial dilutions in a 96 well plate imaged by BLI. (B) Correlation between lumi-
nescence signal and number of CFU. (C) Colonies formed by streaking bacteria on an agar plate according to Jett et al.34
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In this paper, we will review in-vivomonitoring of infec-
tious diseases in living animals using BLI for bacterial infec-
tions in dermal wounds (burns, abrasions, soft tissue and
surgical sites), internal bacterial infections (biofilms, end-
odontics, meningitis, otitis, osteomyelitis, Salmonella, Myco-
bacteria and lung infections), fungal (Candida, Aspergillus),
eukaryotic parasitic infections (Plasmodium, Leishmania,
Trypanosomes, Toxoplasma) and viral infections.

Correlation of Bioluminescence signal
of microorganisms with colony forming units

In-vitro correlation

The emission of light from bioluminescent cells isline
numbers usually measured by a luminometer either in
tube format or in a 96-well luminescence plate format
(Fig. 2A) for P. aeruginosa Xen41. The lowest number of
cells that can be detected depends on the sensitivity of
the photomultiplier tube (PMT) involved, but has been
reported to be as low as 200 CFU (colony forming units)
for bacteria with lux32 and 1000 CFU for Candida with
GLuc.33 The highest number of cells that can be reliably
detected is again determined by the saturation point of
the PMT, as the linear response is limited at some point.
Moreover, it is possible that at very high cell densities,
neighboring cells will absorb some of the emitted light
and therefore prevent it reaching the PMT. Nevertheless,
the signal of bioluminescence vs CFU is linear over sev-
eral orders of magnitude Fig. 2C shows a serial dilution
of bioluminescent bacteria streaked on an agar plate by
the method of Jett et al.34

In-vivo correlation

The bioluminescence signal from infections in small
animals or from model organisms is usually imaged
in a highly sensitive CCD camera. These cameras can
either be based on an image intensifier attached to
the CCD, or on a cooled back-lit CCD camera. The
company Xenogen Inc (Alameida, CA; now part of
Perkin-Elmer) was instrumental in popularizng this
technique in laboratories around the world. Xenogen
manufacture a series of IVIS in-vivo imaging systems
that include bioluminescence along with other modal-
ities. They were also responsible for the genetic engi-
neering of a number microbial strains and cancer
cells that stably express various forms of luciferase.
Many studies have correlated BLI studies with num-
bers of CFU determined by sacrificing the animals,
removing the tissue, weighing it and then homogeniz-
ing the tissue samples in such a way that serial dilu-
tions can allow CFU to be enumerated.

Animal models of bacterial infectious disease
using BLI

External traumatic skin infection models

External traumatic skin injuries such as surgical wounds,
burns, and traumatic abrasions and lacerations result in
damage to many structures and cell layers and are fre-
quently complicated by infection leading to prolonged heal-
ing. Animal models have been used to study a wide range
of different traumatic wound infections and for testing new
anti-microbial strategies.35 Studies have been carried out
that have varied in the animal species used, the strains of
microorganisms applied, the number of CFU applied, size
of the wounds etc.36 Dermal wounds such as excisions
result in damage to many structures and cell layers, whereas
skin abrasions are wounds where the upper layer of the skin
comprising the epidermis has been rubbed off or torn off
the and there may also be partial damage to the dermis
down to the subcutaneous layer. These external traumatic
skin wounds are frequently complicated by infection result-
ing in prolonged healing Table 2 shows a summary of rep-
resentative animal models of dermal abrasions, excisional
wounds and burn infections that have been monitored by
BLI using bioluminescent microorganisms.

The Hamblin laboratory has developed a series of mouse
models of infections viz. excisional-type wounds, scratch
wounds and abrasion wounds, largely to test antimicrobial
photodynamic therapy (aPDT).37 aPDT involves the combi-
nation of a non-toxic dye called a photosensitizer (PS)
together with harmless visible light to excite the PS to pro-
duce reactive oxygen species that kill the microbial cells
without harming the host tissue.38 The first report con-
cerned excision-type dermal wounds on the mouse dorsal
surface that were infected with bioluminescent Escherichia
coli DH5a (Fig. 3).36 Because this particular strain of E. coli
is non-invasive, the infection was self-limiting and multiple
wounds could be constructed on a single mouse to allow the
testing of a treatment such as aPDT with different wounds
acting as appropriate controls. They showed that mouse
excisional wounds infected by a virulent strain of biolumi-
nescent P. aeruginosa could be successfully treated with
aPDT, saving mice from death due to sepsis.39 Subsequent
studies went on to study excision wounds infected with bio-
luminescent Proteus mirabilis treated with aPDT mediated
by a cationic fullerene,40 and excisional wounds infected
with P. aeruginosa, P. mirabilis and S. aureus that were
treated by application of an antimicrobial chitosan acetate
bandage.40

Two different models of infected skin abrasions were
developed by the Hamblin lab. The first consisted of an
overlapping series of needle scratches that could develop
an infection by methicillin-resistant S. aureus (MRSA)
(Fig. 4).41 In order for the infection to become established
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the mice need to be rendered temporarily neutropenic.
This was accomplished by administering two successive
IP injections of cyclophosphamide, the first of 100 mg/kg
4 days before wounding and the second of 150 mg/kg
1 day before wounding. The second model involved
removal of a superficial layer of epidermis by scraping
with a scalpel blade or by using “sandpaper”, that could
be infected with C. albicans.42 See Bioluminescent reporter
systems in fungi’ section for a discussion about the genetic
engineering necessary to produce bioluminescent Candida
and other fungal species.

Skin and soft tissue infection (SSTI) models

SSTIs are a rapidly progressing cause of morbidity and an
uncommon, but significant cause of mortality, which may
cause necrosis, abscesses and ulcers. In some cases, the
causative organism is not identified. The emergence of
multi-drug resistant organisms in SSTI has further placed
a huge burden on health care management. Gad et al.
devised a model of deep-tissue abscesses infected with bio-
luminescent S. aureus (Fig. 5).30 The mice needed to be
rendered neutropenic with cyclophosphamide as described

Table 2. Summary of representative external traumatic wound infection models monitored by bioluminescent imaging (BLI).

Wound model
Host animal
species

Bioluminescent
microorganism

Methods used to produced
external traumatic wounds Study findings/Treatment Ref

Dermal needle-
scratch

BALB/c mice Methicillin-resistant
S. aureus (MRSA)

Mice pre-treated with
cyclophosphamide. Skin
needle scratch abrasion
wounds created on the
dorsal surfaces

PDT mediated by PEI-ce6
conjugateC red light.
Treated wounds healed
faster

41

Dermal abrasion BALB/c mice MRSA Abrasion wounds made using a
needle by creating
orthogonally crossed scratch
lines. Bacterial suspension
containing 108 CFU of
bioluminescent MRSA
inoculated on each scratched
area

PDT using a phthalocyanine
derivative and toluidine
blue with red light
reduced MRSA signal and
stimulated wound
healing

18

Dermal abrasion BALB/c mice C. albicans Scalpel blade is used to scrape
the superficial skin until a
reddened area appears and
then the area is inoculated
with bioluminescent C.
albicans

PDT using phenothiazinium
salts and red light

42

Dermal excision Male BALB/c mice E. coli Full-thickness transdermal
excisional wounds created on
dorsal surface

Antimicrobial PDT with pL-
ce6 conjugate and red
light

28

Burn wounds Male BALB/c mice Acinetobacter
baumannii

Full-thickness (3rd degree) burn
wounds created on dorsal
surface of mice

Pulsed electric field (PEF)
applied externally

206

Burn wounds Male BALB/c mice S. aureus, Third-degree dermal burn
wounds

Antimicrobial PDT using
decacationic
monoadducts and
bisadducts of70 fullerene

207

A. baumannii
E. coli

Burn wounds Female BALB/c
mice

C.Pseudomonas
aeruginosa

Full-thickness dermal burns Blue light (415 nm)
treatment offered safe
and effective therapy
against P. aerugiosa
infected burn wounds

208

Burn wounds Female BALB/c
mice

C. albicans Third degree burn wounds were
infected with fungal
inoculum

Efficacy of UVC light (254
nm) treatment against
C. albicans infection
monitored by BLI

209

Burn wounds Female BALB/c
mice

S. aureus Third-degree burn wounds were
infected with S. aureus

Antimicrobial PDT mediated
by meso-mono-phenyl-tri
(N-methyl-4-pyridyl)-
porphyrin (PTMPP) was
monitored by BLI to treat
burn wounds.

210

Dermal abrasion
and burn
wounds

Female BALB/c
mice

A. baumannii and Dermal abrasion and full-
thickness burn created and
inoculated with
bioluminescent multi-drug
resistant A. baumannii
isolated from battle-field
soldier wounds

Efficacy of UVC light against
combat-related wound
infection with A.
baumannii , monitored by
BLI

211

C. albicans
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above. The model was used to test aPDT accomplished by
injecting a solution of the photosensitizer into the infected
area, followed by illumination with a surface spot of red
laser light. A two-leg infection model was employed to
allow the non-treated left leg to act as an internal control.

Recently, an anti-microbial nanofiber wound dressing
including a nisin-eluting scaffold showed a significant
reduction in S. aureus Xen36 as evidenced by BLI in a
murine excision dermal infection model.43 In another
study, in-vivo imaging technologies like BLI and 19F-MRI
using perfluorocarbon were found effective for visualization
of the effect of antibiotic therapy (vancomycin or linezolid)
in a local S. aureus infection.44 The efficacy of different sys-
temic and topical antibiotics against community-acquired
MRSA (CA-MRSA) infected full-thickness dermal wounds
was evaluated by BLI to monitor the bacterial burden in
mice. Infection is the main cause of failure of implanted

prosthetic biomaterials owing to peri- or early post-opera-
tive bacterial contamination. The progression of a biomate-
rial-associated infection (BAI) in real-time was
demonstrated by Engelsman et al44 using surgical meshes
with adherent S. aureus Xen29 in a soft tissue implant
model in mice. Both bacterial growth and invasion into the
surrounding tissue was monitored longitudinally by BLI.
The study reported that the bioluminescence spread beyond
the mesh area into surrounding tissues, presumably due to
the “foreign body effect”. Recently, the same group com-
pared the persistence of S. aureus Xen29 on and around
both degradable and non-degradable surgical meshes that
had been subcutaneously implanted in mice and monitored
by longitudinal BLI. They showed that the use of biodegrad-
able biomaterials yields major advantages (compared to
non-biodegradable materials) with respect to the prevention
of biofilm growth as well as allowing the host immune sys-
tem to clear the bacteria.45 Local spread of S. aureus in a
skin infection model in mice has been demonstrated non-
invasively by using BLI. This study showed that the pres-
ence of coagulase enzymess that trigger fibrin formation
together with staphylokinase that functions as a plasmino-
gen activator, contributed to S. aureus skin infection by
enhancing bacterial spread as a result of both fibrinolysis
and proteolysis.46

Burn infections

Burn injury is one of the most devastating types of dam-
age that can compromise the defensive role of the skin.
Burn wounds are highly susceptible to microbial infec-
tion leading to poor wound healing, development of sys-
temic infection and even death. BLI has been widely
used to study burn infection with a variety of pathogens
and the treatment modalities. Burns in experimental ani-
mals that have been infected with different strains of
bioluminescent bacteria such as P. aeruginosa,47

Figure 3. BLI of a mouse model of excisional wounds infected
with non-pathogenic E. coli and treated with PDT. Figure adapted
from data in.28

Figure 4. BLI of an immunosuppressed mouse model of deep soft tissue infection infected with S. aureus and treated with PDT. Figure
adapted from data in.30
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Acinetobacter baumannii29,47,48 and MRSA49 have been
longitudinally monitored by BLI.

Osteomyelitis infection model

Osteomyelitis is the infection of bone and sometimes
bone marrow, typically arising after trauma that damages
bone tissue, or can be caused by systemic spread of infec-
tious microbes to bone tissue, or localized spread within
the tissue that eventually reaches bone.50 Osteomyelitis is
particularly dangerous due to the host response; as leu-
kocytes enter the infected bone tissue region, they
attempt to engulf bacteria and in the process release lytic
enzymes that further break down the bone matrix.51

Osteomyelitis is often caused by S. aureus and Strepto-
coccus spp. Bones with high vascularization and marrow
content, including the femur, humerus, maxilla, tibia,
and vertebra are most commonly the site of osteomyelitis
infection.

In 2008, Li et al. designed a murine model of oste-
omyelitis by coating an orthopedic pin with lux-
ABCDE transformed S. aureus (Xen29) and
monitored the osteolytic kinetics and the immune
response. After implantation of the infected pin,
osteolysis, occurrence of sequestrum (dead bone
which separates from healthy bone), and biofilm for-
mation were noted.52 BLI imaging was combined with
nuc real-time quantitative PCR to monitor the bacte-
rial growth. Both techniques revealed that 4 days
post-implantation, the infection reached the greatest
microbial burden which was then followed by biofilm
growth at a lower metabolic rate. A similar technique
was used to show that bone marrow could harbor
localized listeriosis.53 Funao et al. created a BLI model

of S. aureus osteomyelitis involving femur infection,
which may be used to model chronic osteomyelitis
that occurs in diabetic patients.54 They observed peak
photonic emission from the same S. aureus Xen29
strain at 3 days post-infection, that remained high for
7 days.

BLI monitoring of osteomyelitis has been used to test
potential anti-microbial techniques. Bisland et al. created
a dual tibial S. aureus osteomyelitis model using rats and
used this model to monitor the effect of aPDT.55 PDT
was performed using the photosensitizer-precursor, 5-
aminolevulinic acid (5-ALA), which leads to excessive
endogenous production of protoporphyrin IX (or copro-
porphyrin in the case of S. aureus), that in turn acts as a
photosensitizer. Intraperitoneal injection with 300 mg
kg¡1 5-ALA was carried out and after 4 h the rat tibias
were irradiated transcutaneously with 75 J cm¡2 of 635
§ 10 nm laser light. One day post-treatment, biolumi-
nescence was monitored. A decrease in bioluminescent
signal (approximately 40%) was observed 24 h after
treatment, although 48 h after treatment, the biolumines-
cent signal reduction was only about 20%. These statisti-
cally significant yet relatively poor reductions in viable
cell counts may be explained by several issues. First and
foremost, bone is not easily irradiated due to the scatter-
ing effect of the dense collagen and hydroxyapatite
matrix. Moreover, the photosensitizer choice for PDT is
not necessarily optimal: typically, cationic phenothiazi-
nium dyes (such as methylene blue or toluidine blue O,
etc.) work very well in the elimination of Gram-positive
pathogens.56 5-ALA was probably chosen seeing as it is
already approved by the US Food and Drug Administra-
tion (FDA) for the PDT treatment of several neoplastic
conditions.57 Despite these issues, the Bisland work is an

Figure 5. BLI of a female rat model of urinary tract infection with uropathogenic E. coli and treated with PDT. Unpublished data.
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excellent proof-of-concept paper for using BLI to moni-
tor PDT for osteomyelitis.

Studies have been performed for the development of
suitable in-vivo models of osteomyelitis (and several
other bacterial infections) using the BLI technique to
monitor therapeutic interventions in real-time. A range
of these models is listed in Table 3.

Gastrointestinal tract infection models

Salmonella enteric species such as typhimurium, typhi,
and enteriditis are Gram-negative, facultative intracellu-
lar bacteria and cause a number of human infections
wordwide.58 The use of BLI for longitudinal monitoring
of bacterial infection was first demonstrated using S.
typhimurium which had been genetically constructed to
express lux operon.17 In this study, groups of mice were
orally infected with three different strains of Salmonella,
each expressing lux genes from a plasmid encoding Lux
operon. The authors found that the course of infection
could be either long-term chronic, or self-regulating, and
the efficacy of antibiotic treatment could be monitored
non-invasively in real-time.17

Monack et al59 performed an in-vivo study using BLI
to monitor S. typhimurium chronic disease. Mice
infected with S. typhimurium for 80 days exhibited
higher bioluminescence signals, and immunohistochemi-
cal examination of the mesenteric lymph nodes showed
that bacteria did not co-localize with neutrophils; but
rather the bacteria were localized within different larger
host cells that were surrounded by neutrophils. New-
born and young children are highly susceptible to infec-
tion by S. typhimurium. BLI was used to study the effect
of age on the susceptibility to this pathogen in BALB/c
mice, by monitoring the progression of infection in dif-
ferent age groups: neonatal (1-wk-old), suckling (2-wk-
old), juvenile (4-wk-old), and adult (6-wk-old). Mice
were infected orally with various numbers of CFU of a
bioluminescent S. typhimurium strain, and the infection
was followed for 2 weeks. They showed that susceptibil-
ity to infection with S. typhimurium decreased with
age.60 In 2007 the same group61 used BLI to analyze vac-
cine strains of S. typhimurium in a neonatal mouse
model, and found that neonatal mice were not suscepti-
ble to infection even with high doses of the aroA-knock-
out mutant of S. typhimurium. In addition, the aroA–
mutant survived for a prolonged time and stimulated
both adaptive and protective immune responses, and
therefore was considered a good candidate to be a vac-
cine strain for children.

Recently, Ozkaya et al.62 compared tissue biolumines-
cence with standard clinical scores as markers of Salmo-
nella disease progression of BALB/c mice. Clinical scores

comprised visual examination for motility, ruffled fur,
hunched position, feeding, ataxia, tremors, and they
were correlated with the bioluminescence images. The
bioluminescence signal moved from the abdominal
region (initial site) to distant tissue sites, demonstrating
systemic infection. As the infection progressed the biolu-
minescence signal became stronger as well as more
anatomically disseminated.

Rhee et al.63 developed a novel murine model to study
diarrhea caused by infection with enteropathogenic
E. coli (EPEC) and enterohemorrhagic E. coli (EHEC)
using BLI and bioluminescent bacteria. EPEC and EHEC
bacteria were transformed with a lux plasmid that
includes constitutively expressed OmpC promoter.
C57BL/6 mice were inoculated orally with biolumines-
cent EPEC or EHEC, and the bacteria in the intestines
were detected using BLI in both ex-vivo and in-vivo.
3 days after infection, both strains were observed in the
cecum and colon and there was no difference between
bioluminescent non-bioluminescent EPEC strains.
Although EPEC peaked on days 2–3, and was undetect-
able by day 7, when EPEC infected mice were anesthe-
tized with xylazine/ketamine for imaging, the
bioluminescence persisted strongly for up to 31 days.
This surprising result was attributed to the possible anti-
inflammatory effects of ketamine.64,65

La Rosa and coworkers investigated the pathogenesis
of different Enterococcus faecalis (E. faecalis) strains.66

E. faecalis is generally considered to be part of the indige-
nous flora that inhabits the mammalian gastrointestinal
tract (GIT), but has recently emerged as an important
nocosomial pathogen producing hospital-acquired infec-
tions in the urinary tract, bloodstream, endocardial, and
surgical sites. Cytolysin and gelatinase have been impli-
cated as virulence factors in highly pathogenic strains. La
Rosa used E. faecalis strains expressing the luxABCDE
cassette under the control of either the P16S, cytolysin,
or gelatinase promoters in an invertebrate infection
model using Galleria mellonella caterpillars, and also in
mice.67 Systemic infection of G. mellonella with biolumi-
nescent E. faecalis MMH594 showed the activity of both
the gelatinase and cytolysin promoters and the authors
suggested that these virulence traits were host environ-
ment dependent. After pre-administration of oral
antibiotics, efficient but strain dependent gut coloniza-
tion was achieved. Bioluminescence signal obtained from
the murine gut was found to be well correlated with the
CFU counts.

Urinary tract infection (UTI) models

UTI are particularly difficult to treat with antibiotics
at the best of times, but now with the rise in
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antibiotic resistance, have become even more prob-
lematic.68 They are especially common in patients
with spinal cord injury who need repeated catheteri-
zation.69 Patrick Seed’s group70 has created a model
of UTI using a uropathogenic E. coli (UPEC) strain
originally derived from a clinical cystitis isolate
(UTI89)71 that had been engineered with the lux-
CDABE operon. They used a model of female
Sprague-Dawley rats inoculated in the bladder with
3.5 £ 10(6) CFU. Rats with spinal cord injury (T10
complete transection) were much more susceptible to
infection (3.5 £ 10(3) CFU). In our laboratory we
repeated this model of rat UTI monitored with BLI
in order to test intravesical aPDT as a potential ther-
apy for bacterial cystitis (see Fig. 5, unpublished data)

Mycobacterial infection models

Due to the emergence of multidrug-resistant and
extremely drug-resistant strains, the mortality caused by
Mycobacterium tuberculosis infection has increased over
time. The slow in vitro growth and highly infectious
nature of Mycobacterium spp. present difficulties in
models used in the laboratory for drug discovery, vac-
cines or treatment approaches against this highly viru-
lent pathogen. To overcome these difficulties, the use of
optical reporter systems has been considered.72 It has
been demonstrated thatM. aurum can act as a non-path-
ogenic, non-hazardous and predictive surrogate micro-
organism instead of Mycobacterium tuberculosis (M.
tuberculosis) itself, allowing BLI to be used in anti-myco-
bacterial drug discovery.73 Anti-tuberculosis drug
screening has been reported using bioluminescent M.
tuberculosis reporter strains both in-vitro and inside
macrophages,74,75 and also in in-vivomouse models.76

BLI has been used to monitor animal models of pul-
monary tuberculosis. Using integrating vectors, the in-
vivo detection of bioluminescence in the lungs of mice
infected with either Fluc-expressing M. smegmatis or
M. tuberculosis, or lux-expressing M. smegmatis was
assessed. However, the group reported the need to use a
very high bacterial inoculum in comparison with the
usual levels inoculated in mouse studies of infection by
M. tuberculosis. The obtained signal was stronger when
using the intraperitoneal rather than the intranasal route
to administer the luciferin.77

M. ulcerans is the causative agent for an ulcerative
skin disease so called Buruli ulcer. Using a mouse foot-
pad model, Zhang et al. investigated the use of recombi-
nant M. ulcerans strain expressing the luxAB gene from
Vibrio harveyi for in-vivo real-time BLI monitoring of
potential anti-mycobacterial treatments.22 While the
recombinant M.ulcerans strain and the wild-type strain

were both found to be similar in terms of virulence and
drug susceptibility and BLI shortened the time needed
for the assessment of new drugs, the proposed system
still had limitations such as the requirement of repeated
injections of the exogenous substrate needed for the
luciferase reaction and the substrate’s poor diffusion,
which possibly reduced sensitivity. The same group also
demonstrated a potential high-throughput method for
rapid, serial, real-time in-vitro, and in-vivo assessment of
anti-tuberculosis drug and vaccine efficacy, via employ-
ing autoluminescent M. tuberculosis reporter strains
expressing luxCDABE.78 While minimum of 4 weeks is
generally required to distinguish active from inactive
tuberculosis drugs, BLI was able to reduce this process to
less than 5 days. Moreover, vaccine efficacy could be
demonstrated only within 3 weeks. Nevertheless, the
authors mentioned that the integrated luxCDABE was
not fully stable and non-luminescent revertants existed
even upon application of an exogenous substrate. An
additional limitation of this method was the need for
high bacterial burden required for detection.

Endodontic infection models

Endodontic infections are polymicrobial, and are made
up of predominantly anaerobic bacteria with some facul-
tative bacteria. Endodontic therapy is designed to eradi-
cate the pathogenic bacteria from the root canal system
during chemical and mechanical endodontic treatment.
The bacterial infection has a significant role in dental
pulp necrosis and periapical lesion development.79 Stud-
ies using in-vitro and in-vivo models commonly
employed microbiological culture methods, which posses
several limitations such as inability to get complete bac-
terial density from the sample of root canal, and the
need to monitor sequential procedures using CFU
counting.80

Sedgley et al. used a bioluminescent reporter
strain Pseudomonas fluorescens 5RL containing a lux
CDABE plasmid to study the mechanical efficacy of
irrigation to reduce bacterial load in the root canal
and whether the depth of placement of the irriga-
tion needle made a difference.81 In another study
Sedgley et al. used in-vitro live BLI with the biolu-
minescent reporter strain, P. fluorescens 5RL to
quantify root-canal bacteria after sequential treat-
ment.82 The same P. fluorescens strain was used to
determine whether the root canal curvature made a
difference on the efficacy of root canal irrigation in-
vitro using BLI.

Researchers have studied a combination treatment
applying PDT togther with mechanical removal for effec-
tive treatment of endodontic infection. Garcez et al. used
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bioluminescent P. aeruginosa (XEN5) due to its high bio-
luminescence signal and its ability to form biofilms in the
root canal. Antimicrobial-PDT combined with endodon-
tic therapy improved the ability to eliminate bacterial
biofilms. Endodontic therapy decreased bioluminescence
signal by 90%, PDT reduced it by 95% and combination
therapy resulted in more than 98% reduction. Fig. 6
shows the representative bioluminescence images cap-
tured from teeth infected with 3-day P. aeruginosa bio-
films.31 Sabino et al. used an in vitro model with
bioluminescent C. albicans biofilms formed inside
curved root canals to investigate different light delivery
methods for antimicrobial PDT (using methylene blue
and red laser light). They found that light distribution in
the root canal was markedly dependent on the light
delivery system, with an optical diffusing fiber, giving
100 times better reduction in microbial burden than a
flat tip fiber.83

Lung infection models

BLI has been used by many researchers for the study of
lung infections. Given the limitations of BLI when
applied to organs that are far from the surface, there are
a number of studies addressing the optimal conditions to
take advantage of this technique in the context of this
organ system. The depth and opacity of the tissues com-
plicates the signal acquisition from the lungs84 so that
the photon counts obtained in-vivo from the lungs of
mice are 100- to 1000-fold lower compared to the
ex-vivo analysis. Likewise, in-vivo analysis of the lungs of

BALB/c mice gives higher bioluminescence signals than
those from C57BL/6 mice. This is in agreement with the
10-fold reduction of light transmission due to the dark
fur and pigmented skin of C57BL/6 mice in comparison
with hairless mice or albino mice.21 Thus, obtaining rele-
vant results about the infectious process in the lungs can
be highly dependent on the chosen model. Biolumines-
cent strains of S. Pneumoniae allowed the modeling of
bacterial pneumonia in mice. A study conducted using a
pneumococcal lung infection model demonstrated the
effectiveness of integrating the lux genes into the chro-
mosome of Gram-positive bacteria using the Tn4001lux-
ABCDEKmr transposon cassette. This achievement
improved the in-vivo monitoring of viable bacterial cells
compared with the previously generated S. pneumoniae
strain carrying a modified version of the operon in a
plasmid, that tended to lose plasmid expression in the
absence of antibiotic selection.13 The aforementioned lux
transposon cassette allowed modeling of the course of
pneumococcal infection in mice infected with specific
strains of S. pneumoniae.85 Henken et al. used BLI to
compare invasive and non-invasive bacterial infections
in the lungs of mice. They infected two different mouse
strains with either the less virulent serotype-19 S. pneu-
moniae or the invasive serotype-2 S. pneumoniae, both
expressing the luxABCDE operon. The analysis revealed
the highest correlation between in-vivo bioluminescent
signal and CFU counts were observed on the third day
post-infection with serotype-2 S. pneumoniae delivery
via the intratracheal route.86 S. pneumoniae is also con-
sidered to be the major pathogenic agent involved in the

Figure 6. BLI of explanted intact third molar human teeth with C. albicans endodontic infection and treated with PDT. Figure adapted
from data in83
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development of lung complications after influenza virus
infection. Since this problem has been reported in both
adults and in children, researchers have carried out the
sequential imaging of this infection using the above men-
tioned bioluminescent pneumococcal serotypes in both
infant and adult mice.85 Short et al. developed a mouse
model to investigate the mechanisms involved in the
synergistic relationship between S. pneumoniae and the
influenza A virus. Utilization of BLI enabled monitoring
of infection progression as well as the kinetics of pneu-
mococcal transmission.21 Lastly, the use of a biolumines-
cent P. aeruginosa bacterial strain highlighted the ability
of bacteriophages to combat and prevent bacterial lung
infections.87

Otitis media infection models

Middle ear or otitis media infections (OMI) are frequently
observed in children, and can be caused by S. pneumo-
niae88 P. aeruginosa,89 non-typeable Haemophilus influ-
enza,90 or Moraxella catarrhalis.91 OMI is seen in 70% of
the children making it one of the leading pediatric diagno-
ses. Increased insight into the biofilm forming bacteria
elucidated the pathophysiology of OMI.92 Various animal
models have been utilized such as infant/ adult mice, rats,
infant rhesus monkey, gerbils, however, adolescent/ adult
chinchillas are still preferred for acute OMI, since the
model was first developed in 1975 at the University of
Minnesota.93

Current mouse models have some limitations as the
infection is initiated through an invasive procedure while
larger animals like chinchillas and ferrets have natural
routes of infection. Chaney et al. reported induction of a
non-invasive middle-ear biofilm infection in rats through
repeated bacterial inoculation combined with pressure
changes in the ear.94 Novotny et al. transformed a non-
typeable H. influenzae clinical isolate with a plasmid con-
taining the luxCDABE operon. Authors studied the ability
to detect bioluminescence and infection progression in
eustachin tubes and middle ears of chinchillas via inoculat-
ing through intranasal transbullar routes.95 S. Pneumoniae
OMI can occur as a secondary bacterial infection following
an initial influenza virus infection. Peltola et al.96 demon-
strated that, when challenged with a bioluminescent S.
Pneumoniae, ninety percent of ferrets infected with the
H3N2 virus developed OMI while this rate was only ten
percent for the ferrets that were infected with H1N1 or
influenza B virus. Ninety percent of ferrets infected with
the H3N2 virus developed OMI while only 10 percent of
the ferrets developed OMI that were infected either with
H1N1 or influenza B virus. Successful results achieved by
this model suggest that it can be further utilized to study

pathophysiology of otitis media and sinusitis infections
especially those that stem from viral-bacterial synergism.

Meningitis infection models

Meningitis is an inflammation of the membranes cover-
ing brain and spinal cord, which are called as meninges.
Various microorganisms such as virus, bacteria, fungi
and parasites can cause meningitis, and when not treated
it is often times life-threatening.97

Sj€olinde et al. investigated how the meningococci bac-
teria localized in CD46 transgenic mice using in-vivo BLI
to observe the disease dynamics during meningococcal
infection.98 In another study BLI was used in a mouse
model of Neisseria meningitides infection, to test treat-
ments that could improve outcomes in patients suffering
from meningitis.99 Mook-Kanamori et al. tested the anti-
biotic daptomycin (a lipopeptide) in a murine model of
pneumococcal meningitis caused by S. pneumoniae. Mice
were inoculated intracisternally (into a brain cavity) with
serotype 3 S. pneumoniae possessing an integrated lux
operon. Caspase-3 staining was used to detect apoptosis
in brain histopathological slices, and they also measured
bioluminescence and numbers of bacterial CFUs in the
cerebrospinal fluid (CSF).100 Different light emission
spectra and substrates required for lux and Fuc, enabled
the separate monitoring of two different bioluminescence
reporters which in turn made it possible to evaluate dis-
ease progression and the therapy response.101 Based on
the different spectral light emission and substrate require-
ments for lux and Fuc, the group was able to separately
monitor the two bioluminescence reporters using a highly
sensitive BLI system and thereby evaluate the disease pro-
gression as well as the response to therapy.101

Biofilm infection models

Biofilm contains complex group of adharent microor-
ganisms within a polymeric matrix which is made of
exopolysaccharides (EPS) produced by the microbial
cells.102,103 Pathogenesis of several infections such as gin-
givitis, caries, periodontitis, middle-ear infections, uri-
nary tract and catheter infections involve biofilms.104

Several studies have described in-vivo models that allow
a real-time monitoring of the biofilm infections using
BLI. Implanted devices or internal prostheses are highly
prone to infection, and BLI can be used to study these
infections that have points of high clinical relevance. It
enables to investigate the role of immune system in bio-
film infections and also facilitates monitoring of response
to treatments.

L€onn-Stensrud et al.105 showed the action of different
furanones could decrease biofilm formation of the
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bioluminescent Staphylococcus epidermidis (S. epidermi-
dis), without anti-microbial, irritative or genotoxic
effects. They concluded that two candidate furanones
(out of the 11 screened) could inhibit biofilm formation
by interfering with quorum sensing, and thus could be
promising agents for preventing surface colonization by
S. epidermidis. Recently, Pribaz et al106 developed a
model of a chronic S. aureus biofilm infection which
commonly arises post-arthroplasty (knee joint replace-
ment). A stainless steel implant placed into the knee
joints of mice was inoculated with one of the 4 different
strains of S. aureus and infection progression was moni-
tored for 42 days via BLI. One strain had the biolumines-
cent construct (luxABSCDE) in an antibiotic selection
plasmid (ALC2906), the other two strains had lux gene
integrated into the bacterial chromosome (Xen29 and
Xen40), while the fourth strain had the lux genes in a sta-
ble plasmid (Xen36). The authors concluded that in all
strains biofilm formation was comparable; Xen29, Xen40
and especially Xen36 (which had the stable biolumines-
cent construct) were useful for long-term in-vivo moni-
toring of chronic post-arthroplasty infections and the
effectiveness of potential therapeutic interventions.
Engelsman et al.107 studied a model using surgical
meshes cultured with pre-adherent bioluminescent S.
aureus Xen29, which were subsequently implanted in
mice. Bacterial growth as well as invasion into the sur-
rounding tissue was longitudinally monitored via BLI.
Bioluminescence values obtained prior to sacrifice were
correlated with the number of organisms isolated from
the removed implants. Based on the results, the authors
concluded that BLI is a potential alternative to in vitro
studies, as it enables long-term in vivo evaluation of anti-
microbial coatings without the need to obtain explanted
meshes and entails a major factor lacking in vitro studies
– the host immune system.

Niska et al.108 investigated the effectiveness of sev-
eral antibiotics (vancomycin, daptomycin and tigecy-
cline) in prophylaxis of surgical implant infections. In
a mouse model of biofilm-infection, the knee joints
of mice were fitted with a surgically placed medical-
gradee metal implant, and bioluminescent strains of
MRSA (USA300 LAC:lux) or methicillin-sensitive S.
aureus (MSSA) (Xen36) were then inoculated into the
joint cavity. Both bioluminescent strains enabled eval-
uation of prophylactic therapy efficacy at different
doses.

Chauhan et al.109 studied infections that occur on a
pediatric implantable venous access port (PIVAP). They
used an in-vivo bioluminescence model of chronic bacte-
rial biofilm infections in a surgically placed PIVAP in
both immunocompetent and immunosuppressed rats.
They showed that 70% of immunocompetent rats were

able to prevent the infection from becoming established
and clear the bacteria from the bloodstream, while none
of the immunosuppressed rats survived the infection.
This model is expected to allow assessment of anti-bio-
film and anti-thrombosis therapeutic interventions, as
well as the optimization of long-term management of
access ports.

Xiong et al110 studied a rat model of infective endocar-
ditis (IE) in the aortic valve caused by a bioluminescent
biofilm-producing S. aureus strain that was vancomycin
and cefazolin susceptible but gentamicin resistant. Per-
sistent and increasing bioluminescence signals were
obtained from the untreated animals. Three days of van-
comycin therapy led to significant reductions in both
cardiac bioluminescence signals and the numbers of
CFU in the cardiac vegetations. Cefazolin was less effec-
tive while gentamycin had no effect. However, 3 days
after discontinuation of vancomycin therapy, the cardiac
BLI and CFU recurred indicating that the IE had
relapsed.

BLI monitoring of animal models of infections
induced by pathogenic fungi

Limitations in the current diagnostic methods for fungal
infections, as well as the frequent development of resis-
tance to antifungal drugs has led to an increased search
for new therapeutics. BLI enables to understand and
monitor the fungal infection processes, for drug discov-
ery. The life cycle of most strains of C. albicans involves
two developmental programs, that involve differential
gene expression; bud-hypha transition111 and high-fre-
quency phenotypic switching.112 In order to understand
the regulation of differentially expressed genes, it is nec-
essary to functionally characterize the promoters of
genes that are expressed in a phase-specific manner and
a bioluminescent reporter system can facilitate this pro-
cess.113 Several methods have been developed for moni-
toring C. albicans, Aspergillus spp and Neurospora crassa
infections, some of which are shown in Table 4.114

The two principal luciferase systems used in fungi are
Fluc from Photinus pyralis and Gluc from Gaussia
princeps. The presence of O2 and exogenous luciferase
substrates; D-luciferin and coelenterazine (depending on
the source of luciferase) are essential for the light-pro-
ducing reactions. Their deficiency and/or their nonho-
mogenous distribution are considered to cause obstacles
in BLI of disseminated candidiasis. Possible prevention
of luciferin uptake by the less permeable cell wall in C.
albicans hyphae, auto-oxidation and/or rapid clearance
of substrates from the blood115,116 as well as light absorp-
tion of hemoglobin and tissue should also be taken into
account while monitoring systemic candidiasis via BLI.
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Light emission intensity decreases approximately by a
factor of 10 for each cm of tissue depth.17 Thus, FLuc
with emission in the red to infrared (>600 nm) might be
preferable due to diminished light absorption by tissue
and hemoglobin at these wavelengths.117 Lastly, FLuc
oxidizes its substrate in an ATP-dependent manner gen-
erating oxyluciferin, AMP, CO2, and light.118 Therefore
Block suggested that, apart from the cell wall structure,
and the number of peroxisomes (where FLuc is local-
ized), the ATP content may also be different in hyphae,
which in turn would reduce substrate availability for the
luciferase reaction.119

Bioluminescent reporter systems in fungi

The first enzymatically active FLuc was produced in Sac-
charomyces cerevisiae (S. Cerevisiae) in 1988.120 How-
ever, the promoter used in this study led to a low level of
expression. In an attempt to increase the level of expres-
sion, stronger promoters were utilized and the assay con-
ditions were optimized.121 Nevertheless, the sensitivity
was still too low. It was assumed that peroxisomal locali-
zation of native FLuc that was controlled by the C-termi-
nal SKL sequence, might have limited the access to the
exogenously administered enzyme substrate (luciferin)
resulting in low levels of light emission.119,122 Indeed
when Leskinen and colleagues removed the peroxisomal
targeting codons, high levels of light emission were
obtained.122 Moreover, cells with modified luciferase
happened to grow at a much faster rate compared to
those with the wild type luciferase.122

Similar to S. cerevisiae, initial methods to use FLuc for
BLI of C. albicans also had several limitations. First of
all, C. albicans has a different codon strategy, such that
tRNA carries a CAG anticodon, to encode codon CUG
as serine instead of leucine.123 On the other hand, FLuc
contains 9 in-frame CUG motifs within its open reading
frame.124 This phenomenon created a dysfunctional or
unstable FLuc gene product causing low biolumines-
cence intensity. In order to overcome this obstacle, a bio-
luminescent C. albicans strain was developed by
replacing CUG codons with UUG to enable functional
expression.125 As a second alternative, FLuc was replaced
with Renilla luciferase, as luciferase gene from Renilla
reniformis does not contain CUGs.113 One of the major
challenges faced in BLI of systemic candidiasis was the
potential hampered diffusion of luciferin during the
yeast-to-hyphae transition – a major virulence factor in
this species.126 This limitation was tried to be eliminated
via developing a novel reporter gene, GLuc59 which was
constructed by fusion of a naturally secreted synthetic G.
princeps luciferase gene with the C. albicans PGA-59
gene that codes for a glycosyl-phosphatidyl-inositol-

linked cell wall protein.33 Although the cell-wall-bound
GLuc59 system was hundreds of fold more sensitive than
the Renilla luciferase system and GLuc59 expression
could also be detected during the hyphal development,
no satisfactory results were obtained in monitoring pro-
gression of systemic infections.33 As discussed by Brock,
this may be attributed to the limited distribution of
GLuc59 substrate coelenterazine after intraperitoneal
injection and to the sub-optimal emission wavelength of
480 nm that is probably absorbed well by hemoglobin.119

Bioluminescent reporters have also been constructed for
studying infections that involve filamentous fungi.127,128,129

Brock et al. tested a new system in which the FLuc was
codon optimized for mammalian cell expression, peroxi-
somal-targeting sequence was removed and the promoter
region of the glyceraldehyde-3-phosphate dehydrogenase
gene (GpdA) was used119,127 Glyceraldehyde-3-phosphate
dehydrogenase plays a role in glycolysis and gluconeogene-
sis by reversibly catalyzing the oxidation and phosphoryla-
tion of glyceraldehyde-3-phosphate. Based on these facts,
GpdA was assumed to be necessary for the metabolism of
A. fumigatus.127 In contrast to the previous assumption, the
fact that sufficient bioluminescence signal was obtained
from filamentous cells indicated that the cell wall structure
of the hyphae may not necessarily alter luciferin availability
within the intracellular compartment. Nevertheless, in case
of invasive bronchopulmondary Aspergillosis, starting
from 24 h post-infection, despite the high fungal load, the
bioluminescence signal intensity decreased significantly.127

Dissolved O2 is essentially required by all luciferases, thus
the decline in bioluminescence intensity was mainly attrib-
uted to the hypoxic environment generated by the inflam-
matory process.126 Subsequently, Donat and colleagues
developed an A. fumigatus strain which expressed a cell-
surface exposed GLuc.129 This method allowed longitudinal
monitoring of cutaneous Aspergillosis, however due to the
low sensitivity, BLI monitoring of invasive pulmonary
Aspergillosis was again not possible. Moreover homoge-
nous distribution of the substrate, coelenterazine was still
difficult to achieve. These limitations were similar to the
ones observed with C. albicans expressing GLuc59.130

In order to investigate light induced activity and circa-
dian activity in the non-pathogenic fungus Neurospora
crassa using BLI, a fully codon-optimized FLuc gene was
constructed, and a strong bioluminescent signal was
obtained when fungal transformants were grown on
media supplemented with luciferin.131

BLI of candida albicans infections

In a vulvo-vaginal infection model of mice, BLI system
enabled visualization of the C. albicans within the vaginal
lumen via direct application of luciferin to the area.132
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High correlation between light emission and numbers of
CFU was achieved. Moreover, when a topical anti-fungal
drug, miconazole was applied to the infected area, clear-
ance of the infection could be validated by BLI. Despite
these satisfactory results, when BLI was used in mouse
models of systemic candidiasis, bioluminescence inten-
sity was too low.132

Enjalbert et al.33 suggested the use of cell-wall bound
GLuc system (GLuc59) for monitoring C. albicans infec-
tions. As earlier discussed, through construction of a
luciferase, exposed at the cell surface, easy access of
substrate to C. albicans was assured whether it was in the
yeast or hyphal form. Consistent with these assumptions,
no significant differences were observed in BLI between
yeast cells and hyphae. Following application of the sub-
strate, coelenterazine to the infected region, progression
of cutaneous, subcutaneous, and vaginal infections could
easily be monitored by BLI, and light intensities corre-
lated with the numbers of CFU.

The efficacy of a conjugate vaccine against b-glucan
that had been formulated with the human-compatible
MF59 adjuvant, was evaluated in a murine vaginal candi-
diasis model.133 Extent, duration as well as level of pro-
tection from vaginal infection were monitored using
GLuc59-expressing C. albicans strains. Based on the
results, it was concluded that BLI was a more reliable
method for assessment of vaginal infections than the
CFU assay performed by sampling the vaginal cavity.133

This conclusion probably stemmed from fact that
GLuc59 luciferase enabled more efficient detection of
hyphal cells that did not easily form CFU.

Jacobsen and collegues were able to image systemic
candidiasis by constructing a codon-optimized FLuc.23

To further enhance the bioluminescence signaling, the
peroxisomal targeting sequence was removed. BLI of
infected mice kidneys as well as the gall bladder provided
valuable insights about both the disseminated infection
process and also enabled to identify of sites of persis-
tence. Surprisingly, subsequent to succsesful fluconazole
and caspofungin treatments, viable C. albicans cells per-
sisted in the gall bladder.23 The presence of C. albicans in
the feces further indicated that gall bladder acts as a res-
ervoir for colonization after therapy.

There were reports from the laboratory of Vecchiarelli
looking at a mouse model of oropharyngeal candidiasis
monitored by BLI.25 Mice were rendered susceptible by
injection with cortisone acetate, and then a swab saturated
with gLUC59-expessing strain of C. albicans was applied
sublingually. They went on to show24 that corticosteroid-
treated IL17a(¡/¡) mice developed invasive candidiasis
following oropharyngeal infection, whereas wild-type mice
did not. IL17a(¡/¡) mice showed significant infiltration
of the fungal cells in the stomach. Increased permeability

and mucosal ulcerations of the intestinal barrier favored C.
albicans dissemination in the kidneys and liver. Neutro-
phils from IL17a(¡/¡) mice were as capable of phagocy-
tosing the C. albicans cells as those of wild-type mice, but
their candidacidal ability was less.

Fungal biofilms are highly resistant to most antifungal
drugs therefore they are difficult to treat in clinical set-
tings. Van Dijck and collegues for the first time used BLI
as a modality to study C. albicans biofilm infections in
vitro and in vivo.134 This method enabled to monitor
both the time-course of biofilm formation as well as the
changes in cell morphology during the process. By using
a bioluminescent BCR1 deletion strain, the group was
able to demonstrate the important role of BCR1 gene in
substrate adhesion and biofilm formation.134 Subse-
quently, the group also introduced a new method for BLI
of C. albicans biofilm formation on subcutaneously
implanted catheters in mice and extracellularly located
GLuc was used for this purpose.135

BLI for aspergillus fumigatus infections

A. fumigatus is the major cause of invasive aspergillosis, a
fungal disease that can occur in immunocompromised
patients, and limited number of drugs are currently
available for treatment. BLI was suggested as a potential
modality for use in the development of novel anti-fungal
agents and for providing new insights into the establish-
ment and manifestation of the infection. In order to
achieve this goal, Brock and collegues constructed a bio-
luminescent A. fumigatus strain by fusing the glyceralde-
hyde-3-phosphate dehydrogenase gene from A.
fumigatus with the FLuc gene.127 The results were ini-
tially promising, in that light emission correlated with
the number of conidia (non-motile spores) in vitro. In
the same study, deep tissue infection could be also moni-
tored by BLI but with some limitations. Corticosteroid-
treated immunosuppressed mice were intranasally
infected with A. fumigatus strain C3 and mice developed
invasive aspergillosis.127 In order to monitor the infec-
tion using BLI, D-luciferin was injected intraperitoneally.
The bioluminescence signal was only detected in lungs
indicating that invasive aspergillosis was confined to the
lower respiratory tract.127 However only early stages of
pulmonary infection could be monitored. Possible rea-
sons for failure to image late stages of pulmonary inva-
sive aspergillosis have been previously discussed.

Donat et al. used an alternative method via using a
bioluminescent A. fumigatus strain which expresses a
cell surface-exposed GLuc.129 Although highly sensitive
in longitudinal monitoring of cutaneous aspergillosis,
this method also failed to reliably detect pulmonary
aspergillosis.
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BLI monitoring of infections caused
by eukaryotic parasites

Recently, various studies have demonstrated that BLI can
also be used to study parasitic infections in livemammalian
hosts. The ability to monitor specific stages of the parasite
life cycle in-vivo is an important advancement for studying
its pathogenesis (see Table 5 for some examples).

Malaria infection models

For the first time, Franke-Fayard et al.136 described a
protocol for real-time in vivo BLI of blood stages of
malaria parasites in mice. For this purpose, a mutant
parasite was engineered by cloning the fusion gene GFP–
luciferase under the control of the ama1 gene promoter
of Plasmodium berghei. The localization of the schizont
stage of P. berghei in live mice or in dissected organs
could be quantitatively analyzed by BLI within a period
of 24–48 h after infection.136,137 In-vitro and in-vivo drug
activity luminescence assays (ITDL, IVDL) were
reported for drug screening against blood stages of P.
berghei. For the ITDL assay, luciferase activity of trans-
genic parasites with and without drugs was measured in
order to quantify in-vitro transformation of sporozoites
into mature schizonts. The IVDL assay was based on
measuring luciferase activity of circulating parasites in
samples of blood from the tail of mice which had been
treated with candidate anti-malarial drugs.138

The transgenic P. berghei parasite (PbGFP-Luccon)
that expressed luciferase was used to evaluate immunity
against malaria. The authors concluded PbGFP-Luccon
parasites could be useful for studying prophylaxis against
malaria and investigating the biological and immunolog-
ical principles underlying protection.139 A transgenic P.
yoelli strain was generated that expressed a luciferase
reporter at all stages of the parasite life cycle.140 In-vivo
BLI of these parasites made possible quantitative analysis
of P. yoelii burden in the liver, and the parasite develop-
ment could be compared with alternative assays using
quantitative RT-PCR analysis of liver samples. Finally,
the authors concluded that BLI was a rapid, simple and
non-invasive method for monitoring pre-erythrocytic
malaria infection that is useful for evaluation and screen-
ing the effects of anti-malarial drugs in vivo and in real-
time. Recently Li et al. used BLI to compare the suscepti-
bility of different mouse strains to liver infection using P.
berghei sporozoites expressing Fluc.141 After injection of
10,000 P. berghei sporozoites, the relative light units
(RLU) values were in the following order: C57BL/6
albino, > C3H/HeNCrL, > C57BL/6 WT, > BALB/c, >
ICR/CD-1 for different mouse strains. However culture
from mouse livers showed highest numbers in black

C57BL/6 WT suggesting the black skin significantly
reduced bioluminescence measurement.

Leishmania infection models

Leishmania species, a protozoan parasite of the family
Trypanosomatidae, causes different human diseases that
range from benign cutaneous leishmaniasis to fatal vis-
ceral leishmaniasis. BLI using transgenic bioluminescent
Leishmania cells can be used to investigate parasite viru-
lence factors, elucidate immune regulatory mechanisms
and can be used in the development of potentially new
anti-leishmanial drugs.142,143 Transgenic luciferase-
expressing Leishmania parasites introduced into small
animal models either intradermally or intravenously,
allow longitudinal monitoring of the parasitic load. Lang
et al.144 used bioluminescent reporter Leishmania cells to
monitor infection and response to therapy during high-
throughput screening of drugs in in-vitro, in excised
organs from infected mice, and in living mice. BLI with
luciferase-expressing Leishmania and RT-PCR were
combined to study the L. major or L. donovani intracel-
lular amastigote burden and tissue transcript fluctuations
to provide further insights on the complex interaction
between Leishmania parasites and the mammalian host
defense.145 Bioluminescence generated by recombinant
L. amazonensis promastigotes and intracellular amasti-
gotes has been shown to be responsive to the drug
amphotericin B.146 Recently, Rouault et al used BLI to
monitor leishmaniasis in real time in golden hamsters.147

They compared RLU signals from different organs with
RT-PCR to quantify transcripts from both Leishmania
and host cytokines. They found correlations between the
transcriptional cytokine signatures and fluctuations in
the amastigote burden in different tissues.

Trypanosomal infection models

Trypanosoma cruzi is the causing agent of Chagas dis-
ease, a debilitating illness for humans. Studies have
shown that the host cells of the reticuloendothelial and
nervous systems, the muscles and adipocytes are the
preferential targets not only in experimental animal
models, but also in T. cruzi-infected patients. The use of
BLI as a rapid and simple method for drug screening
against Trypanosoma is increasing rapidly148,149.150 The
pRIBOTEX expression vector (a derivative of pTEX) was
introduced by Martı�nez-Calvillo as an efficient expres-
sion vector for construction and rapid selection of stably
transfected T. cruzi.151 It was shown T. cruzi that had
been transfected by pTEX expressing tandem tomato
fluorescent protein genes (pTEX-Neo-tdTomato) could
express bright red fluorescence at all stages of the life
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cycle.152 Canavaci et al. showed that BLI was useful for
in-vitro and in-vivo high-throughput assays for the test-
ing of new drugs against T. cruzi.152 BLI has been used in
studies looking at drug screening, the mechanisms of cell
invasion, genetic exchange among parasites, the roles of
different factors in the outcome of infection and the dif-
ferential tissue distribution of parasites in Trypanosome
infected animal models. Myburgh et al.150 used BLI as a
rapid drug screening method for following parasite clear-
ance in the CNS stage of trypanosomiasis. The BLI
results showed that the drugs melarsoprol and DB829
permanently eliminated all bioluminescent T. brucei
from the mouse CNS. In another study on T. brucei, BLI
was used to look at dissemination of the parasite in the
animal model. The results demonstrated that T. brucei
has a preferential tropism for the testes in male animals,
and that clearance from testes was not as easy as clear-
ance from abdominal cavity after drug treatment.153 For
the first time, BLI was used as a non-invasive method to
follow the infection of Rhodinus prolixus (the Trypanso-
mal insect vector) by integrating the luciferase gene into
the genome of the Dm28c clone of T. cruzi. The sensitiv-
ity and accuracy of BLI of the Dm28c-luc-infected diges-
tive tract of the insects was demonstrated.154 Silva-Dos-
Santos et al. used the T. cruzi Dm28c strain to study
orally infected mice.155 They found that the nasomaxil-
lary region was the initial site of parasite invasion in the
host, while at later time points (7 and 21 days post-infec-
tion) the luminescent signal was more pronounced in
the thorax, abdomen and genital regions, showing the
parasites had disseminated to different organs

T. vivax is one of the most important parasites
responsible for African trypanosomosis (Nagana or
sleeping sickness), and is usually transmitted in a
cyclical manner by Glossina spp (tsetse flies). D’Arch-
ivo et al constructed a West African IL1392 T. vivax
strain stably expressing FLuc that was virulent in
immunocompetent mice.149 They compared infection
by the intraperitoneal and sub-cutaneous routes.
When administered by the subcutaneous route, the
parasite was retained for a few days in the skin fairly
close to the inoculation site, where it multiplied
before eventually passing into the bloodstream. When
administered by IP injection systemic spread was
much more rapid. Ex vivo bioluminescence analysis
of isolated organs showed that the parasites had infil-
trated into the spleen, liver and lungs, while brain
infection was found in the very late stages.

Toxoplasmosis infection models

In order to use BLI techniques for serial and non-lethal
quantification of Toxoplasma gondii (T. gondii) in-vivo,

type I and type II parasites expressing FLuc were devel-
oped.156,157,158 Light emission after intraperitoneal injec-
tion of D-Luciferin in mice, enabled investigation of the
kinetics of infection with Toxoplasma in real-time. It
was shown that there was a direct relationship between
photon flux levels and the parasite load that allowed in-
vivo quantification of the parasite burden.157

Saeij et al. used BLI for real-time monitoring of in-
vivo growth, dissemination, and reactivation of strains of
the protozoan parasite T. gondii. For this purpose, two T.
gondii strains S23 (highly virulent) and S22 (low viru-
lence) were engineered to stably express luciferase. While
both groups of mice that were infected with S23 and S22
had the same initial growth in luminescence signals
within a few days following infection, proliferation of
strain S23 continued and led to severe disease, while in
case of strain S22 the BLI signals become undetectable
after a few days.159 It was claimed that the BLI method
had advantages over other traditional methods such as
plaque assays and quantitative PCR. Among these
advantages, the first is that it includes the possibility of
monitoring the kinetics and extension of disease progres-
sion in the same animal over time; the second is that a
lower number of animals are needed; and thirdly that it
is easier to perform. In this study, remarkable differences
were observed in terms of organ dissemination between
the mentioned strains, and high BLI signals in mice
made it possible to monitor the progression of the infec-
tion non-invasively. The study also demonstrated the
efficiency of BLI for monitoring anti-toxoplasma therapy
and reactivation.159

Hitziger et al.160 used live-BLI to analyze the virulence
of bioluminescent T. gondii. The results in a mouse
model showed that the virulent RH T. gondii strain and
the non-virulent ME49/PTG strain had the same initial
dissemination, but in the case of virulent strain, a higher
proliferation of parasites was observed. The study also
demonstrated that there was a good correlation between
light intensity and parasite numbers in spleen and testes.
Furthermore, they did not observe any effect on suscepti-
bility of mice to infection with these strains after disrup-
tion of various Toll-like receptors (TLR1, 2, 4, 6, or 9). A
recent study161 investigated the effect of sequential expo-
sure to single wall carbon nanotubes (SWCNT) via pha-
ryngeal aspiration on the immune response of the
infected mice against the T. gondii. BLI was used in this
study to monitor the dissemination of T. gondii, and no
differences were observed in terms of parasite distribu-
tion between infected mice and those pre-exposed to
SWCNT before infection by T. gondii.

The first study to investigate the organ localization of
acute Toxoplasma encephalitis infection in a mouse
model was performed by Dellacasa-Lindberg et al.156
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They used BLI to monitor the spatio-temporal localiza-
tion of acute and reactivated T. encephalitis in mice. For
this purpose, mice were inoculated i.p. with freshly pre-
pared tachyzoites of the luciferase-expressing Toxo-
plasma strain and then followed daily by BLI. Ten days
after inoculation when the bioluminescence signals had
faded, asymptomatic mice were subjected to immuno-
suppression in order to reactivate Toxoplasma. Recru-
descence mostly occurred in the CNS, and BLI enabled
early detection and assessment of parasite reactivation.

Viral infection models

BLI technology can be used to detect and monitor sites of
viral infection and quantify viral replication in living ani-
mals.162 Some examples are given in Table 6. For this
purpose, the recombinant viruses have been designed to
express the luciferase enzyme. However this strategy is
not very easy for RNA viruses, since stable insertion of
an imaging reporter gene into the RNA virus genome is
not feasible. The first report using viruses encoding lucif-
erase together with BLI was published in 1988 by Rodri-
guez et al.163 These researchers introduced the Fluc gene
into the vaccinia virus (VCAV) genome (under a VACV
promoter) without affecting viral replication or patho-
genesis in an animal model. The limits of detection were
about one infected cell in a background of a million non-
infected cells.164 Luker et al165 showed that replication of
VACV was significantly faster in mice lacking receptors
for type I interferons (IFN1R¡/¡) compared with wild-
type mice, although both these mice eventually devel-
oped focal infections in the lungs and brain post intrana-
sal inoculation. IFN1R¡/¡ mice had more virus in the
liver and spleen than wild-type mice, although death
occurred at the same time point post-infection. They
reported that the protective effects of type I interferons
were mediated mainly via parenchymal cells rather than
by hematopoietic cells as demonstrated by bone-marrow
transplant studies.

In another early report Lipshutz et al, created a lucif-
erase expressing adeno-associated virus which was used
with BLI in a mouse model.166

In another study, the role of interferons (IFN) in sys-
temic herpes simplex infection (HSV-1) infection in
mice model was investigated by BLI. This group showed
that type I IFN receptors had a more important role in
spread of HSV-1, and the absence of these receptors per-
mitted the spread of this virus to parenchymal organs,
lymph nodes and to neurons. However knockout of type
II IFN receptors did not have the same effect and did not
allow the systemic spread of HSV-1. Moreover the com-
bined deletion of both type I and type II IFN receptors
had a greater effect on encouraging the spread of virus to

visceral organs, the nervous system and invariably led to
death. In the last case, bioluminescence signals could be
detected in the brain by 3 days post-infection.167

BLI has been used to monitor HSV-1 infection in liv-
ing mice via luciferase expressing viruses, and the results
showed that HSV-1 was disseminated throughout the
mouse peritoneal cavity, footpads, eyes and brain. The
infected mice were treated with valacyclovir, a potent
HSV-1 inhibitor, and dose-dependent inhibition of the
HSV-1 was demonstrated by both BLI data and viral
titers.168 BLI was also used by Murphy et al169 to test the
effect of interferon regulatory factors 3 and 7 (IRF-3 and
IRF-7) on HSV-1 infection in IRF-3¡/¡, IRF-7¡/¡ and
double-knockout IRF3/7¡/¡ (DKO) mice.

BLI was used in a murine model for monitoring the
extent and dissemination of Sindbis virus (SV) replica-
tion over time without need to scarify infected mice. The
BLI signals showed that the infection could spread from
the olfactory epithelium to the CNS via retrograde axo-
nal transport, or by direct penetration to the spinal
cord.170,171 Sun et al172 constructed new expression vec-
tors for two Old World alphaviruses (Sindbis and Chi-
kungunya viruses) and two New World alphaviruses
(Eastern and Venezuelan equine encephalitis viruses).
These vectors contained either a large luciferase (FLuc;
1,650 nucleotides), or a small luciferase (NLuc; 513
nucleotides). The NLuc was more stable than FLuc dur-
ing repeated rounds of infection and performed better
for BLI in CD-1 mice infected with 1,000 PFU of SV
injected subcutaneously in the ventral thorax region.

Variola major is an orthopoxvirus, which causes
smallpox, and has attracted a high interest since it was
declared to be a bioterrorist threat.173,174 The search for
new vaccines against this agent needs accurate experi-
mental models to predict lethality. In this sense, the
estimation of viral burden based on BLI of several inter-
nal organs including the lungs resulted as the most
accurate model to predict lethality, compared with the
predictive power of animal weight reduction. Earl
et al.175 studied monkeypox virus (an orthopoxvirus
producing a smallpox-like zoonotic disease in humans).
They compared the dissemination of monkeypox virus
by BLI in inbred CAST/EiJ mice, and in the natural
host (African dormice). In CAST/EiJ mice, a strong BLI
signal was observed at the intranasal site of inoculation,
and the virus disseminated rapidly to the lungs and
abdominal organs, although these organs had less viral
load. Compared to CAST/EiJ mice, African dormice
showed a greater variability in the spread of the virus, a
slower time course, less replication in the head and
chest, with more replication in abdominal organs.

BLI mostly relies on construction of recombinant
reporter viruses that can express firefly luciferase, in
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order to monitor viral replication and dissemination in
live animals. The disadvantages of this approach such as
limitations in analyzing multiple strains of the virus,
need for further engineering of existing viral mutants,
and possible attenuation of engineered reporter viruses
in comparison to the parental viruses, has limited its
applications. Luker et al developed a transgenic reporter
mouse, which expressed firefly luciferase under control
of the HSV-1 thymidine kinase (TK) promoter to facili-
tate BLI of HSV-1 infection. Infection with three differ-
ent strains of HSV-1 (McKrae,17, and KOS) could be
detected by BLI.176 Compared to other HSV-1 promoters
such as ICP6 and ICP8, despite the lower basal activity, a
higher induction of luminescence could be achieved in
response to viral infection.

For determination of viral distribution and viral titers
in traditional murine models, the animals need to be sac-
rificed, so new methods are needed in order to overcome
this limitation.177 BLI and real-time PCR were used for
monitoring the replication and tropism of HSV-1 virus
in hematogenously infected mice. Both methods detected
high viral loads in the ovaries and adrenal glands, how-
ever viral titers in nervous system were low. A good cor-
relation was observed between the real-time PCR and
BLI results. The results showed that BLI could be used to
monitor HSV-1 hematogenous infection in living mice,
by eliminating the need for sacrifice.177

Wang et al.,178 used BLI to monitor the activity of
hepatitis C virus (HCV) that had been engineered to
respond to the NS3/4A serine protease by a “split firefly
luciferase complementation strategy”. The interacting
peptides A and B were fused with the separated N-ter-
minus and C-terminus amino acids of firefly luciferase,
respectively, with cleavage sites for NS3/4A serine pro-
tease. It was shown that co-injection of a reporter plas-
mid containing a HCV NS3/4A serine protease with the
engineered luciferase plasmid into mice, increased bio-
luminescence signals in comparison to control plas-
mids. Moreover, the results demonstrated the ability of
this approach to screen NS3/4A inhibitors in mouse
models.178,179 For real-time monitoring of two short
hairpin (shRNAs) targeting the HCV core protein in
living mice, the plasmid pGL3-attB-CoreFluc was con-
structed which encoded firefly luciferase fused down-
stream of the HCV core protein. BLI gave satisfactory
results for real-time monitoring of HCV shRNA in liv-
ing mice.180 Recently, in-vivo BLI of firefly luciferase-
expressing NS3adenovirus was applied to investigate
the clearance of HCV from the liver of transgenic
humanized-HLA mice.181

BLI and hydrodynamic gene transfer technology were
used to assess the activity of different hepatitis B virus
(HBV) promoters (C, S1, S2, X) and enhancers.182 Results

of this study indicated that, HBV enhancers had more
prominent effects on three of the promoters (X, S1 and
S2) in-vivo (mouse liver) than in-vitro (Hepa 1-6 cells)
however these enhancers had no cooperative role in stim-
ulating the HBV promoters. In another study, the persis-
tence of transgene expression using HBV enhancers I and
II combined with HBV core and X promoters was
assessed by BLI. The HBV core and X promoter activity
in hepatic cell lines could be stimulated by both HBV
enhancers, and a constant high-level of gene expression
was observed in mice, when either the HBV core pro-
moter or the X promoter was linked to enhancer I and
II.183 Recently, a new assay system for detection of HBV
clearance in the liver was developed using BLI of a
reporter gene (Fluc) after transferring linear HBV DNA
and the Fluc gene into hepatocytes.184 The results showed
a good correlation between viral clearance and control of
luciferase expression in the infected hepatocytes. In one
investigation, a non-invasive bioluminescence assay was
applied in order to investigate the route of infectious hem-
atopietic necrosis virus (IHNV) entry during natural
infection of live fish. The results showed that the fin bases
were the portal of entry of IHNV into fish.185

Li et al. used BLI to study neurotropic flaviviruses
which can cause severe damages in the central and
peripheral nerve systems. They constructed a recom-
binant Japanese encephalitis virus (JEV) expressing.
They constructed a recombinant JEV virus expressing
RLuc-JEV and inoculated mice either intraperitoneally
or intracranially.186 In mice inoculated intraperitone-
ally, BLI signals could be detected not only from the
brain but also from the abdominal organs. In addi-
tion, in mice inoculated intracranially, viral RNA
measured by qRT-PCR directly correlated with the
bioluminescence signal intensity. Mice deficient in
IFN-1 receptors showed robust and prolonged viral
replication in the abdominal organs.

Karlsson et al. studied influenza infection and
transmission in ferrets using an engineered H1N1
influenza virus strain A/California/04/2009 encoding
NanoLuc (NLuc).187 The group was able to detect
bioluminescence signals from the respiratory tract
and in less well-characterized extra-pulmonary sites.
They could monitor intra-host dissemination, inter-
host transmission, and quantify viral load which are
highly relevant parameters for assessing the pandemic
potential of this virus.

All these approaches using luciferase reporter viruses
and longitudinal real-time monitoring, and quantitative
analyses of viral infection using BLI have been
immensely helpful for both pathogenesis studies, and for
high-throughput screening for new anti-viral drugs
which could be translated into clinical trials.188
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Food safety and plant infections

There are an increasing number of studies in the fields of
biotechnology, environmental science and food safety
that use BLI to detect and trace contamination by various
microorganisms.

Karsi et al. developed Salmonella strains which
contain pAKlux1 plasmid and constitutively express
the luxCDABE operon.189 They studied the adherence
of different strains to chicken skin and the effect of
different washing protocols in removing the
contamination.

Kassem et al studied Campylobacter contamination of
chicken litter.190 They used shuttle plasmids that
encoded luxCDABE into C. jejuni and C. coli to con-
struct bioluminescent strains, that were then added to
samples of litter-washings and dry litter collected from
different cages for broiler chickens. They found that C.
jejuni and C. coli survived for at least 20 days in reused
(old) chicken litter while growth did not occur in clean
(new) litter.

Rajeshekara and coworkers have used BLI to study the
pathogenesis of “tomato canker”.191,192 Clavibacter
michiganensis subsp. michiganensis (Cmm) is a rod-
shaped, Gram-positive, aerobic actinomycete that causes
bacterial canker in tomato plants. The canker causes
impaired water transport and results in plant wilting,
stunting, and death. The group used the modified
transposon Tn1409 to chromosomally integrate the
P. luminescens lux operon into Cmm191 and were able to
study many aspects of the bacterial invasion process in
tomato plants using BLI.

Maoz et al.32 used bioluminescent strains of Yersinia
enterocolitica generated by transposon mutagenesis using
a promoter-less, complete lux operon (luxCDABE) to
allow direct BLI monitoring of Y. enterocolitica growth
on cheeses stored at 10� C. The detection limit on cheese
was 200 CFU/cm2. The bioluminescence signal from the
B94 reporter strain was affected by the environment
(NaCl concentration, temperature, and cheese type), as
well as by its growth phase.

Conclusions and future directions

BLI typically produces a single two-dimensional
image of the entire animal, which can make it diffi-
cult to precisely localize sites of bioluminescence.
Moreover BLI typically has only 1–3 mm spatial reso-
lution, making it somewhat difficult to distinguish
discrete sources of light arising from adjacent ana-
tomical sites. There are ongoing efforts to develop
3D-hyperspectral BLI systems that will provide a

tomographic approach and allow improvement in the
spatial resolution of this modality.193

In the future it may be possible to generate cross-sec-
tional BLI images with resolution, similar to X-ray, CT
or MRI. Multi-modality small animal imaging systems
that incorporate BLI with modalities that can be selected
from a range including fluorescence, CT, MRI, PET,
high resolution ultrasound and photoacoustic imaging
are becoming increasingly available. While these systems
have been developed mainly to carry out research in can-
cer therapy, their application to infectious disease models
will undoubtedly soon follow.

For instance Collins et al.194 monitored the time
course of a bioluminescent bacterial infection using
composite 3D diffuse light imaging tomography with
integrated mCT (DLIT-mCT) and generated a four
dimensional (4D) movie of the infection cycle. They
used bioluminescent Citrobacter rodentium, which
causes self-limiting colitis in mice and non-invasive
daily sessions of DLIT-mCT imaging was combined
with bacterial CFU enumeration from feces over an
8 day period.

Since a lot of work in the area of microbial pathogene-
sis is concerned with investigating the host response to
infectious disease, the ability to independently image the
pathogens with BLI, and the host immune cells with
fluorescence, PET or indeed with another color of biolu-
minescence would be extremely useful. For instance, lux-
expressing bacteria emitting light at 480 nm can be com-
bined with firefly or Renilla luciferase in the host cells
emitting light at around 600 nm after application of the
relevant substrate.

Despite the many advantages of BLI for monitor-
ing of infectious disease, there are also some disad-
vantages and limitations. The genes encoding the
luciferase enzymes may not be completely stable, and
the signal may be lost with time especially when it is
encoded by a plasmid. The requirement for sufficient
O2 in the tissue to allow the light to be efficiently
produced, may also be a limitation. Not only was this
shown in the intestines, which are typically hypoxic,
but other organs may also become hypoxic especially
when a bacterial infection develops. The last limita-
tion may occur when testing antimicrobial therapies.
It is possible that the luciferase enzyme system is
damaged by the therapy, but the bacterial ability to
form colonies has not been abolished. Conversely the
opposite is possible, where the bacterial ability to
form colonies has been abolished, but residual lucifer-
ase activity is still able to produce some BLI signal.

It can be confidently predicted that the fast-growing
field of BLI monitoring of infections will continue, and
even accelerate as the imaging technology and the
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availability of bioluminescent organisms increases. Many
commentators have remarked on the lack of development
by the pharmaceutical industry of new antibiotics and
innovative anti-microbial drugs.195,196,197 With the growth
of antibiotic resistance predicted to become the single-big-
gest threat to global health198 this lack of research efforts
on a big industrial scale will have to change, or the future
of humanity will be in peril. Undoubtedly, the ability to
screen libraries of compounds in vivo by non-invasive
technologies like BLI will play an important role in this
resurgence of antimicrobial research.
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