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Hypothesis
Abstract Radiation induced injury is a limiting factor in radiation related approaches from earth

to space. Inductions of a wide spectrum of damages in radiotherapy patients due to unwanted nor-

mal tissues irradiation and space radiation related diseases in astronauts have been caused many

limitations in cancer treatment and space missions. There are many radiation protection/mitigation

approaches including: physical, chemical, biological and physiological methods. Radiation protec-

tion using these methods is expensive and also has many problems including acute toxicities and

difficulties in their targeting to normal tissues. Based on experimental and hypothetical data, show-

ing that medical/biological gases have many protective effects such as antioxidant, anti-inflamma-

tory, anti-apoptotic, and induction of radioresistance, we hypothesize that similar gases which have

been produced by microorganisms (biogases) have those properties and may be used as radiation

mitigators/protectors in radiation related approaches such as radiotherapy, radiation accidents

and in space missions. Isolation microorganism in safe laboratory conditions in enough amounts,

finding non-toxic dose of microorganisms that provide highest radioprotection percent, dose reduc-

tion factor (DRF) calculation to compare the radioprotective efficacy of the microorganisms, find-

ing the best targeting techniques to deliver those microorganisms into normal tissues, genetically

manipulations of microorganism to achieve the highest amount of biogases with lowest side effects

can be done for testing the hypothesis.
ª 2015 Tehran University of Medical Sciences. Published by Elsevier Ltd. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Radiation injuries and radioprotectors

Radiation induced injury is a limiting factor in radiation
related approaches from earth to space. Inductions of a wide

spectrum of damages in radiotherapy patients due to
unwanted normal tissues irradiation and space radiation
related diseases in astronauts have been caused many limita-

tions in cancer treatment and space missions [1–4].
Developments of radiation related damages have led to the
conclusion that radiation can result in diminished quality of
life and carries the potential for severe debilitating disease.

In radiotherapy, the mechanism of normal tissues injury is
very complex and based on dose, manifestation time, volume
of irradiated tissue and radiosensitivity can be categorized as

acute and late injuries. Speaking generally, interaction of low
LET ionizing radiation with normal tissues results in forma-
tion of free radicals such as reactive oxygen/nitrogen species

(ROS/RNS) that cause oxidative stress and activation of some
transcription factors, pro-inflammatory molecules and cyto-
toxicity by inducing DNA damage, alteration of cell func-
tion/phenotype, resulting in chronic inflammation, organ

dysfunction, and ultimate fibrosis and/or necrosis [5,6] (Fig. 1).
In the other hand, radiation environment in space is very

unique and complex and has three components including:

galactic cosmic radiation (GCR), solar particle events (SPE)
and trapped energetic particles (TEP). The high LET/charge/
energy particles such as protons and Helium from GCR can

cause more complex biological effects. In addition to cardio-
vascular, CNS, hematopoietic and many other diseases, recent
evidence show, GCR leads to cognitive impairment and

increased Ab plaque accumulation and so Alzheimer’s disease
[7–9].

There are different radiation protection/mitigation
approaches including: physical, chemical, biological and phys-

iological based methods. The physical approaches such as
Fig. 1 Putative pathways of chronic oxidative stress resulting in

the radiation-induced late effects. Adapted from Zhao et al. with

permission (Ref [5]).
shielding and technological enhanced radiation delivery is
more prominent and new radiotherapy devices and techniques
have been developed to have less normal tissue injuries, but

those techniques are expensive and have their own problems.
In space also, GCR and SPE can penetrate into the shielding
material of planet and produce secondary radiation, including

neutrons, gamma rays and other radiations. So, additional
shielding is required.

In the other hand, many biological and chemical radiation

protection/mitigation were suggested. Radioadaptive response
by ionizing and non-ionizing radiofrequency radiation [10–12],
natural radioprotector agents [13,14], antioxidants materials
[15,16], immunomodulatory agents [17,18] and many others

were tested and hypothesized as useful radiation counterbal-
ancing tricks [19–23].

In recent years, there has been a hypothetical focus on med-

ical gases as radiation protection agents. In an interesting
paper, Schoenfeld et al hypothesized that ‘‘hydrogen adminis-
tration to the astronauts by either inhalation or drinking

hydrogen-rich water may potentially yield a novel and feasible
preventative/therapeutic strategy to prevent radiation-induced
adverse events’’ [24]. Liu et al also hypothesized that hydrogen

therapy may be an effective and specific novel treatment for
acute radiation syndrome [25]. The main proposed mecha-
nisms of hydrogen are increase in antioxidant enzymes and
reducing free radicals.

In continuing to their hypothetical works, Schoenfeld et al,
by reviewing the radiolysis properties of water, biological
effects of gas, and radiobiological mechanisms, suggested a

systems biology approach that proposed medical gases includ-
ing CO, H2, NO, and H2S as chemical radioprotectors for
radical scavenging and as biological signaling molecules for

management of the body’s response to exposure [26].
According to this paper, medical gases have many beneficial
properties such as: radical scavenging, anti-apoptotic, anti-in-

flammatory and they also can decrease radiosensitivity. We
showed the main radiation protection mechanisms of these
gases in Fig. 2 briefly.
Medical 
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Fig. 2 The main radiation protection mechanisms of medical

gases.
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Biological gases (Biogases)

It is well established that many microorganisms such as bacte-
ria and archaea produce various gases (biogases) by different
mechanisms [27–30]. There are different biogases including:

Oxygen (O2), hydrogen (H2), nitric oxide (NO), carbon
monoxide (CO), and hydrogen sulfide (H2S). Biogases have
complex roles in signal transduction and modulating physio-
logical function based on their rate of production, concentra-

tion, chemical reactivity, and availability of target proteins
[31].

Biological mechanisms of biogases (here we called them

BIONO, BIOH2, BIOCO & BIOH2S) production are not yet
fully understood but they occur via a variety of microbial
metabolisms, reductive and oxidative processes, biophotolysis,

photofermentation, dark fermentation and different unproved
mechanisms.
The hypothesis

Based on experimental and hypothetical data, showing that
medical/biological gases have many protective effects such as

antioxidant, anti-inflammatory, anti-apoptotic, and induction
of radioresistance, we hypothesize that similar gases which
have been produced by microorganisms (biogases) have those
properties and may be used as radiation mitigators/protectors

in radiation related approaches such as radiotherapy, radiation
accidents and in space missions.

This hypothesis is based on the following items: 1) finding

the main microorganisms that produce biogas, 2) production
of biogas in well enough amounts, 3) biosafety of microorgan-
isms and their products, 4) finding the best route of adminis-

tration 5) targeting the microorganisms in normal tissues in
radiotherapy and 6) genetic manipulation of those microor-
ganisms for high efficiency.

In regard to item four, route of administration is dependent

on sites that biogas should be used. For example, if the treat-
ment site is GI tract, oral, buccal, and rectal administration
may be feasible approaches. Also for other sites, targeting

microorganisms can be done. The other remedial approach is
to earn and separate bacteria from different sites of human
body and do an individualized care. For example, we can sep-

arate a specific bacteria from a person GI tract and did any
required modification on bacteria and again sent into the GI
tract.

Also we suggest the following methods to deliver and
administrate of bacteria into human body with low
immunogenicity:

� Bioengineered bacterial outer membrane vesicles (OMVs)
with low immunogenicity [32] that can produce biogas
and also deliver biogas to the target. In regard to OMVs,

the size of biogas producing bacteria should be smaller than
OMVs.
� PEGylation: PEGylation defines the modification of a

molecule by the linking of one or more polyethylene glycol
(PEG) chains [33]. By PEGylation, we can delivered many
biogas producing bacteria via IV route.
� Transdermal delivery using laser, ultrasound, radiofre-

quency radiation and electroporation [34]. Bacteria can be
delivered via these approaches by loading them in a coating
material.

� Exosomes: Exosomes are a class of secreted membrane vesi-
cles that carry proteins and RNAs for intercellular commu-
nication [35]. They are increasingly seen as drug delivery
vehicles that deliver their cargo across the plasma mem-

brane and provide a barrier against premature transforma-
tion and elimination. For example human mesenchymal
stem cells as the ideal and immunologically inert source of

exosomes for drug delivery.

Evaluation of the hypothesis

We recommend the following research directions to test the
hypothesis:

1. Isolation and preparation of microorganism in safe labora-
tory conditions in enough amounts. Irradiation of microor-

ganisms can be used as a powerful approach for enriching
biogas-producing bacteria.

2. Performing different invivo and animal studies for finding
non-toxic dose of microorganisms that provide highest

radioprotection.
3. Injection and targeting of microorganisms into animal bod-

ies, then irradiation of animals by a lethal dose (e.g. LD50/

30; the dose of radiation expected to cause death to 50% of
an exposed population within 30 days), comparing survival
fraction (%) of irradiated groups to control groups. Dose

reduction factor (DRF) can be calculated to compare the
radioprotective efficacy of the microorganisms.

4. Performing further molecular and cellular investigations to
find the best pathways and mechanisms of radiation protec-

tion of biogases.
5. Finding the best targeting techniques to deliver those

microorganisms into normal tissues. Nanotechnology or

cell based drug delivery may be applied.
6. Genetically manipulations of microorganism to achieve the

highest amount of biogases with lowest side effects.

Discussion

Radiation protection using different radioprotectors has sev-
eral problems such as toxicity and targeting. Also, develop-
ment of new radioprotectors is dependent on enhanced

understanding of the molecular mechanisms associated with
the development of radiation induced injuries. In this paper
we introduced new classes of radioprotectors as ‘‘gas produc-
ing microorganism’’. A complex microbiological process by

many different microorganisms can result to production of
biogas, so, knowledge of the microbiology behind the biogas
process and microorganisms’ functions are required. It is indi-

cated that gas producing organisms have to work closely
together and disturbances of this teamwork results in reduced
production and breakdown of the biogases [36].
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The main properties of biogas as radioprotector are:
anti-apoptosis, antioxidants, and anti-inflammation and
radioresistance reductions. There are several reports indicating

gas producing bacteria in human bodies act as anti-cancer
agents [37–39]. For example Murata et al. showed H2S, a com-
mon metabolite of anaerobic oral bacteria, is an anticancer

compound that may contribute to the low incidence of oral
cancer [40]. Therefore these microorganisms can act as radio-
protectors and also as primary and secondary cancer preven-

tion agents. Targeting these agents into normal tissues
during radiotherapy may enhance the outcome of treatment
and lower normal tissue damages.

One of the main issues regarding this hypothesis is the

biosafety of gas producing microorganisms. It is should
emphasized that there are many microorganisms such that
are available in the human body, but it is important to ensure

that those microorganisms not contain pathogens that can
damage human tissues. Pretreatment of these living systems
with technological techniques is required to have lowest

pathology during and after consumption or injection of these
organisms.

Most of the gas producing bacteria are best fit for

anaerobic conditions. But, human body have sufficient
amount of oxygen, in this aerobic environment, we
recommend to use of aerobic bacteria or bacteria which
are live in both environment (presence or absence of oxygen)

to produce biogas. There are many aerobic bacteria that are
able to produce biogas such as H2S, NO and CO2. We can
use these bacteria for radiation protection. For example,

Escherichia coli is a bacterium that can grow in the absence
and presence of oxygen [41]. Also reprogramming of
anaerobic bacteria to grow, live and do their action in

aerobic condition. This can be done by bioengineering and
genetically modification.

It should be mentioned that the suggested microorgan-

isms (e.g. bacteria) for biogas production, are in adaptation
with immune system and their residence in the body don’t
threat the human health. But, microorganism’s lifetime var-
ies by type and is dependent to many factors such as repro-

ductive capacity, environment, nutrients and conditions they
needs. Also, we can do genetically modification of microor-
ganisms to do their acts in a well-established behavior such

as the well enough biogas production, suitable residence
time and best generation (cell cycle) time. Another way is
to use antibiotics.

The interesting part of this therapy is genetically manipula-
tion of those microorganisms. Biotechno-Microbiological
(BIOMIC) studies associated to genetic knowledge can help
researchers to find best microorganisms with highest gas effi-

ciency and lowest side effects and also their targeting to place
of treatment.
Conclusion

In conclusion, biological gases which produced by microor-
ganism can be used as radioprotectors and also anticancer

agents. Further invivo studies are warranted to apply this ther-
apy in radiation related approaches.
Overview Box
First Question: What do we already know about the

subject?

Radiation exposure can induce wide spectrum of dis-
eases in radiation related approaches from earth to space.

Radiation protection using different radioprotectors has
many problems including acute toxicities and difficulties
in their targeting to normal tissues.

Second Question: What does your proposed theory add

to the current knowledge available, and what benefits does

it have?

This hypothesis introduces gas producing microorgan-

isms that might be able to improve radiotherapy outcome
and also save astronauts in space missions. The biogases
can act as antioxidants, anti-inflammation, anti-apoptosis

agents. They also can decrease radiosensitivity.
Third Question: Among numerous available studies,

what special further study is proposed for testing the idea?

Isolation microorganism in safe laboratory conditions

in enough amounts, finding the best non-toxic dose of
microorganisms, finding the best targeting techniques to
deliver those microorganisms into normal tissues, geneti-

cally manipulations of microorganism to achieve the high-
est amount of biogases with lowest side effects can be
done for testing the hypothesis.
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