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Background: Gradual development of a useful vaccine can be the main point in the control and eradication of Hepatitis C virus (HCV) 
infection. Hepatitis C Virus envelope glycoproteins are considered as the main HCV vaccine candidate.
Objectives: In this study, the Pichia pastoris expression system was used to express a recombinant HCV CoreE1E2 protein, which consists of 
Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 nt-2506nt).
Materials and Methods: By a codon optimization technique based on the P. pastoris expression system, we could increase the rate of 
recombinant proteins. Moreover, the purified protein can efficiently induce anti-CoreE1E2 antibodies in rabbits, and also by developing a 
homemade Enzyme-Linked ELISA kit we can detect antibody of HCV Iranian patients with genotype 1a.
Results: In our study, the virus-like particle of rCoreE1E2 with 70 nm size, was shown by Electron microscopy and proved the self-assembly 
in vitro in a yeast expression system.
Conclusions: These findings of the present study indicate that the recombinant CoreE1E2 glycoprotein is effective in inducing neutralizing 
antibodies, and is an influential HCV vaccine candidate.
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1. Background
Hepatitis C virus (HCV) infection is a major health 

problem that affects almost 3% of the world's population 
with a morbidity and mortality rates. Hepatitis C virus 
is a member of the Hepacivirus genus of the Flaviviridae 
family and the viral products (core, E1, E2, NS2, NS3, NS4A, 
NS4B, NS5A, and NS5B) are processed from a 3000-amino 
acid (aa) polyprotein expressed from a single open read-
ing frame (1). The E1 and E2 are enveloped proteins, which 
can elicit neutralizing antibodies against HCV infection 
in the host and Core, E1 and E2 proteins are the major 
vaccine candidates and Enzyme-Linked Immunosorbent 
Assays (ELISA) is one of routine tests in clinical laborato-
ries and different studies to detect the rate of antibody 
in sera against HCV infection (2, 3). The combination of 
pegylated interferon α and ribavirin is a useful treatment 
depending on the viral or host factors but needs a pro-
longed therapy with different side effects (4).

Virus-like particles are self-assembled in the absence 
of DNA or RNA or genetic materials (2, 5). It has been 
shown that HCV antigens produced in Pichia pastoris in-
duce strong immune responses in animals (6-10). In this 
study, the HCV VLPs obtained from P. pastoris hoping the 
rCoreE1E2 can induce neutralizing antibodies. Post-trans-
lational modifications such as proteolytic processing, 
folding, disulfide bond formation and glycosylation can 
be done by P. pastoris (11). This system is also faster, easier, 

and less expensive than expression systems derived from 
higher eukaryotes, such as insect and mammalian tis-
sue cultures and usually gives higher expression levels 
(12-15). The expression systems can raise error rates in 
translation due to codon bias, that is, a preferential use of 
codons for the same amino acid (16, 17). As codon bias dif-
fers between the host organism and the organism from 
which the gene was extracted, substituting synonymous 
codons can improve translational fidelity and in this 
study codon optimization has been used for increasing 
the protein expression efficacy (18).

2. Objectives
In this study, the P. pastoris expression system was used 

to express a recombinant HCV CoreE1E2 protein, which 
consists of Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 
(1418 nt-2506nt).

3. Materials and Methods

3.1. Construction of Recombinant Expression 
Plasmid

The Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 
nt-2506nt) were amplified by Polymerase Chain Reaction 
(PCR) (94°C 5 minutes 1cycle, 94°C 30 seconds- 58°C 30 sec-
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onds- 72°C 100 seconds 30 cycles, 72°C 10 minutes 1 cycle 
) from infected Iranian patient’s blood by HCV (genotype 
1a) and primers were designed by Gene Runner software 
for Core forward [5- TT G A A T T C GTC A T G A G C A C G A A T 
C C T A A A C C T C -3], and E2 reverse [ 5- TT G C G G C C G C C G 
C C T C C G C T T G G G A T A T -3]. The amplified product was 
ligated into a pMD18-T vector (Takara, Japan) and cloned 
into the pPICZαA Vector (Invitrogen, Carlsbad, CA, USA) 
to produce pPICZαA-CoreE1E2. The clones in E. coli TOP 10 
were obtained by transformation with CaCl2 and selected 
on in low salt LB medium with Zeocin™ (Invitrogen, USA) 
(11). Recombinants were confirmed by PCR, restriction en-
zyme digestion and sequencing. Then, the recombinant 
plasmids were linearized and electro-transformed into 
the competent P. pastoris cells performing as described 
by the instruction manual of P. pastoris expression kit (In-
vitrogen, USA).

3.2. Expression of rCoreE1E2 in Pichia pastoris
Briefly, pPICZαA-CoreE1E2 was linearized by Pme I and 

electroporated into P. pastoris strain GS115; GS115 (His −, 
Mut +) transformants were selected on Minimal Dex-
trose (MD) medium plate and confirmed on Minimal 
Methanol (MM) medium plate. Multiple inserted recom-
binants were isolated on Yeast Extract Peptone Dextrose 
(YEPD) medium plate containing Zeocin™ (Invitrogen, 
USA) at final concentration of 2.0 mg/mL. The P. pastoris 
GS115 strain was also transformed with the empty vectors 
pPICZαA for negative control tests. Clones were detected 
by colony PCR using the conditions and primers were 
provided in the EasySelect™ Pichia pastoris expression kit.

The control strains of the intracellular (GS115/β-
galactosidase) and extracellular (GS115/albumin) expres-
sion provided by the EasySelect™ P. pastoris expression 
kit (Invitrogen, USA). After choosing the most resistant 
colon, a single colony of multiple inserted His −, Mut + 
GS115 recombinants was inoculated into 25 mL buffered 
glycerol complex medium (BMGY; 1% yeast extract, 2% 
peptone, 100 mM potassium phosphate (pH 6.0), 1.34% 
yeast nitrogen base (YNB), 4 × 10 - 5% biotin, 1% glycerol) 
and cultured at 250 rpm and 30°C until the culture me-
dium reached an OD600 of 2 - 6. The cells were harvested 
by centrifuging and re-suspended in buffered methanol 
complex medium (BMMY; 1% yeast extract, 2% peptone, 
100 mM potassium phosphate, pH 6.0, 1.34% YNB, 4 × 10 - 
5% biotin, and 0.5% methanol) to an OD600 of 1.0 and cul-
tured in a 250 mL flask at 250 rpm under 30°C. Inductive 
expression was carried out with the addition of metha-
nol (0.5%, v/v) per 24 hours at 30°C lasted for 3 days (1, 11).

The samples were analyzed by the Sodium Dodecyl 
Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 
and Western blotting. For extraction and purification of 
rCoreE1E2, the cells were disrupted by glass beads in a 
Tris/EDTA/NaCl (TEN) buffer and then centrifuged. The de-
posit was re-suspended in a TEN buffer with 8M urea and 
centrifuged again. The supernatant was dialyzed against 

5 mM Tris–HCl (pH 9.3) overnight at 4°C and then clarified 
by centrifugation. The supernatant was first loaded to a 
Q-Sepharose Fast Flow column with 20 mM Tris–HCl (pH 
9.3). After washing with 0.05 M NaCl and 20 mM Tris-HCl 
(pH 9.3), the rCoreE1E2 was eluted with 0.5 M NaCl and 
20 mM Tris–HCl (pH 9.3).Then the eluted was loaded to a 
Phenyl Sepharose Fast Flow column with 20 mM Tris–HCl 
(pH 9.3) and 0.1 M NaCl. The rCoreE1E2 was eluted with 20 
mM Tris–HCl (pH 9.3). The rCoreE1E2 was further purified 
with Sephadex G150 column for removing low molecu-
lar weight fractions. The purified rCoreE1E2 was dialyzed 
against 5 mM Tris–HCl (pH 9.3) and sterilized with 0.45 m 
filter, and then stored at 4°C.

3.3. Protein Purification
Briefly, the supernatant was loaded onto Ni-nitrilotriac-

etic acid (Ni-NTA) agarose (Qiagen, Germany) in the pres-
ence of 0.5% Tween 80 and 40 mM imidazole. The column 
was washed extensively, and the protein was eluted with 
1 M imidazole. The rCoreE1E2 was purified from the insol-
uble fraction by using 0.5% N-lauryl sarcosine (Sarkosyl). 
The protein was purified over Ni-NTA super flow and the 
Sarkosyl was replaced by 0.1% Tween 80. The protein was 
eluted in the presence of 200 mM imidazole and 0.1% 
Tween 80 in phosphate buffer (11).

3.4. SDS-PAGE and Western Blotting
Supernatant of culture harvested and the cells were har-

vested and washed twice in TEN buffer. Cell disruption 
was performed by vortexing with glass beads in TEN. The 
lysate was clarified by centrifugation and the supernatant 
and pellet used. The rCoreE1E2 was mixed with sample buf-
fer and boiled for 10 minutes in the presence of dithio-
threitol (DTT), and around 200 ng was loaded on a 4 - 12% 
Bis-Tris NuPAGE gel (Invitrogen, USA). The primary anti-
bodies against Core, E1 E2 were (Santa Cruse, USA); the sec-
ondary antibody was polyclonal rabbit anti-mouse horse 
radish peroxidase (HRP) labeled. Staining was done and 
the molecular weight marker was a mix of proteins from 
Sigma (USA): bovine serum albumin (A-7517), ovalbumin 
(A-7642), carbonic anhydrase (C-2273), beta lactoglobulin 
(L-4756) and alpha-lactalbumin (L-6385) or the Precision 
and Precision plus Protein Standards (Bio-Rad, USA).

3.5. Endoglycosidase Digestion Assay
Purified rCoreE1E2 was digested with N-glycosidase F 

(PNGase F) and the digested proteins were treated accord-
ing to the manufacturer’s instructions (New England 
Biolabs,UK) and then analyzed by Western blotting with 
mAb fore Core E1 E2.

3.6. Animals, Immunization and ELISA
Approximately rCoreE1E2 (300 µg) diluted in 2 mL steril-

ized 0.9% NaCl was used for immunization. A New Zealand 
rabbits was subcutaneously immunized in multiple sites 
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on the back with 0 g (negative control) or 300 µg puri-
fied rCoreE1E2, respectively. Booster injections were given 
with the same doses at 2, 3, 4, 5 and 13 weeks later. An indi-
rect ELISA was used to measure anti-rCoreE1E2 antibodies 
in rabbit’s serum. In brief, a recombinant protein (10 mg/
mL) diluted in 50 mM carbonate buffer (pH 9.6) was used 
to coat microtiter plates, overnight at 4°C. After blocking 
with 2% (w/v) skim milk powder (Oxoid Ltd,) in PBS with 
0.05% (v/v), Tween 20 (Sigma, USA) (PBST), pH 7.2 for 1 hour 
at room temperature. The serum samples were added in 
duplicate, either 1/20 in dilution buffer (PBST), contain-
ing 1% (w/v) skim milk powder, to test seroconversion or 
in a double serial starting at 1/50 dilution for titration. 
They were incubated at 37°C for 1 hour. A HRP-labeled an-
tirabbit IgG (Sigma, USA) was added to 1/10,000 in the di-
lution buffer. After 1 hour of incubation at room tempera-
ture (RT) and washing, tetramethylbenzidine substrate 
(Sigma, USA) reactions were stopped with 50 mL of 2.5 
M H2SO4. Absorbance was read at 450 nm in a SensIdent 
Scan (Merck, Germany). The cut-off value used to consider 
a positive antibody response was established as twice the 
mean of absorbance values of the preimmune sera (19).

3.7. Enzyme-Linked Immunosorbent Assays With 
Human Sera

HCV rCoreE1E2 particles were coated at 1 g/mL in car-
bonate buffer in microtiter plates and were incubated. 
The plates were washed and incubated with blocking buf-
fer (0.5% casein in PBS). Sera of chronically HCV-infected 
people or sera of healthy persons were added in a dilu-
tion of 1/20. The plates were washed and incubated with 
horse radish peroxidase labelled rabbit anti-human im-
munoglobulins. The tetramethylbenzidine substrate 
(Sigma, USA) reaction was stopped by addition of 2 N 
H2SO4 and the absorbance was measured at 450 nm. The 
cut-off value to consider a positive antibody response was 
established as twice the mean OD 450 nm of the negative 
control sera (19-21).

3.8. Transcriptional Analysis of the CoreE1E2 Gene
Total RNA was extracted and cDNA was synthesized us-

ing the IMPROM-II™ Reverse Transcription System (Pro-
mega, USA). The presence of a heterologous gene mRNA 
in Pichia was detected by the Real Time-Polymerase Chain 
Reaction (RT-PCR) and Real-time PCR with Forward prim-
er 5′- TTGGGACATGATGATGAATTGG -3′ and Reverse primer 5′- 
TGCCTGTGGGATTCTAAGC -3′ and probe 5′- ACAGCCGCATTG-
GTTGTCGCC -3′ that anneal in the internal sequence of the 
CoreE1E2 genes (21, 22).

3.9. Codon Optimization
The codon-optimized gene was designed based on the 

protein sequence of CoreE1E2 according to the codon 
bias of P. pastoris (http://www.kazusa.or.jp/codon). Codon 
optimization was performed by using the GenScript pro-

gram. The entire CoreE1E2 gene with Xho I and Not I re-
striction sites at each end was designed and was in frame 
with α-factor of a pPICZαA vector. The designed rCoreE1E2 
was synthesized by (GenScript, USA). Our supernatant 
collected and recombinant CoreE1E2 was purified and 
fixed in glutaraldehyde and negatively stained with the 
uranyl acetate prior to analysis by the transmission elec-
tron microscopy.

4. Results
The continuous coding regions of Core (269 nt-841nt) 

E1 (842 nt-1417nt) and E2 (1418 nt-2506nt) were amplified 
by PCR from infected blood by HCV (genotype 1a) and the 
product (2237 bp) was cloned in a vector. The colony PCR 
was done to verify the insertion of target gene in vector 
(Figure 1). After that target gene and pPICZαA digested by 
XhoI and NotI enzymes and ligated into recombinant ex-
pression vector The pPICZαA-CoreE1E2 was linearized and 
electroporated into P. pastoris strain GS115; GS115 and dif-
ferent colonies in different concentrations of Zeocin were 
evaluated and the most resistant colons, which tolerated 
800 and 1600 mic/mL were chosen for a huge expression 
phase. The rCoreE1E2 protein was purified and proteins 
were studied by SDS-PAGE and Western blotting (Figure 
2 and 3). Core protein with 20 kDa and E1 protein with 40 
kDa and E2 with 60 kDa were shown. The codon optimi-
zation was designed based on the protein sequence of 
CoreE1E2 according to the codon bias of P. pastoris (http://
www.kazusa.or.jp/codon). 

The virus like particle is shown in our supernatant with 
electron microscopy (EM) negative staining image with 
70 nm particles in our sample. The value of Codon Adap-
tation Index (CAI) of 1.0 is considered to be ideal and per-
fect while a CAI of > 0.80 is rated as good for expression 
in the desired P. pastoris. The ideal percentage range of GC 
content is between 30 to 70%. The percentage distribution 
of Codon Frequency Distribution (CFD) of 100 is set for 
the codon with the highest usage frequency for a given 
amino acid in P. pastoris. Codons with values lower than 
30 are likely to hamper the expression efficiency and as it 
shows after codon optimization the value of Frequency 
of Optimal Codons (FOP) in our gene is acceptable and all 
cordon’s distributions are upper than 50%. Interestingly, 
60 percent of Codon Frequency Distribution is 91 - 100%, 
5 percent is 81 - 90%, 8 percent is 71 - 80%, 6 percent is 61 - 
70%, 14 percent is 51 - 60% and 3 percent is 41 - 50% and no 
distribution lower than 40% was detected. 

As in Figure 3 is clearly shown, the thickness of bands in 
an optimized sample comparing with a not-optimized 
sample shows that most codons are expressed better in 
P. pastoris. The presence of target mRNA in P. pastoris was 
detected by RT-PCR and Real-time PCR to detect Core-E1-E2 
and housekeeping genes (data not shown). To digest carbo-
hydrate residues from a recombinant Core-E1-E2, PNGase F 
was used to remove unnecessary N-glycan bands (Figure 4). 
As it is clear, before digestion the presence of smear in lane 
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1 is present but after digestion in lane 2 and also in positive 
control, all bands are sharp and Core with 20 kDa and E1 
with 40 kDa and E2 with 60 kDa are illustrated. For evalua-
tion rCoreE1E2 particles against patient sera, we compared 
our homemade kit with international QuickTiter™ HCV 
Core Antigen ELISA Kit (Catalog Numbers VPK-151) against 
the sera of some patients (Figure 5). From those patients, 8 
samples were shown and interestingly in case number 4, 5, 
6, 7 the result of our kit is better than a standard kit. 

Our data were repeated 3 times and all results were the 
same. Number 7 has the highest titer of antibody and in 
our kit it is 118 ng/mL but in QuickTiter™ kit it is 90 ng/
mL and in case 4 the lowest titer was detected and anti-
body level by our kit shows 38 ng/mL and QuickTiter™ kit 
shows 22 ng/mL. For in vivo immunization, the New Zea-
land rabbit was subcutaneously immunized in multiple 
sites and after a last booster injection the titer of antibody 
was checked. The first serum was collected before immu-
nization and no anti HCV antibody was detected by ELISA 
and this sample was kept as zero in the data chart. After 
the last injection, every week sample showed the raise 
of antibody; for example in week 5 the rate of antibody 

Figure 1. Colony Polymerase Chain Reaction on 3 Different Colonies to 
Verify the Presence of Core-E1-E2 Cloned Gene

(1, 2) Do not have the gene and in (3) colony 2237 bp target gene amplified; 
(4) ladder 1000 bp.

is 49 ng/mL in week 8 is 100 ng/mL and surprisingly in the 
week of 10 the antibody titer is 120 ng/mL (Figure 6).

5. Discussion
One of the aims of HCV research is to develop an effec-

tive vaccine to produce acceptable immunity in human 
sera against HCV glycoproteins (2, 6). In our study, the 
Iranian sample of HCV virus (genotype 1a) diagnosed 
and used as a temple for amplification. Although some 
research showed that it was difficult to express HCV en-
velope proteins by yeast P. pastoris (11), we could express 
HCV rCoreE1E2 by P. pastoris expression system. The ex-
pression vector, which was used in our study is a pPICZαA 
vector and this vector has α-factor to help us to express 
and secret recombinant protein in high volume. There-
fore, Western blotting using anti-Core/E1/E2 mAbs dem-
onstrated a different bands for Core 20 kDa, E1 40 kDa, 
E 260 kDa in yeast-expressed system. Using a eukaryotic 
expression system for HCV envelope glycoproteins can 
help us to make native shape and function for our recom-
binant proteins. 

Figure 2. Silver Staining of Purified Recombinant Protein

(1) Molecular weight ladder (2) core (20 kDa), E1 (40 kDa), E2 (60 kDa) pro-
teins.



Fazlalipour M et al.

5Jundishapur J Microbiol. 2015;8(4):e17157

Figure 3. Western Blot of the Recombinant Core (20 kDa), E1(40 kDa), E2 
(60 kDa)

(1) Recombinant protein before optimization; (2) recombinant protein 
after optimization; (3) hepatitis C virus proteins as positive control; (4) 
Negative Control; MW is molecular weight markers.

Figure 4. Western Blot of Recombinant Core (20 kDa), E1 (40 kDa), E2 (60 
kDa)

(1) Recombinant protein before PNGase F and it is Smear like and heavy 
with N-glucan bands; (2) recombinant protein after PNGase F without ex-
tra N-glucan linkages and sharp bands; (3) HCV proteins as positive con-
trol; (4) negative control; MW is molecular weight markers.

Figure 5. Our ELISA kit With Recombinant Core-E1-E2 is Compared With 
Standard International kit
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The blue bar is the result of antibody of patients antigen ELISA Kit Quick-
Titer™ HCV core and another bar is antibody titers of patients with our 
ELISA kit; In this chart 8 samples are shown and in number 4, 5, 6, 7 the 
result of homemade kit is better than QuickTiter™ kit; data were repeated 
3 times and results were the same.

Figure 6. Antibody Titers in Rabbit After Last Injection of Recombinant 
Core-E1-E2 Protein
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10 Weeks after last injection the titer of 120 ng/mL was reported.

Pichia pastoris can synthesize and process rCoreE1E2 car-
rying glycans, which could be digested by PNGase F and 
this glycozilation is similar to some of original HCV enve-
lope glycoproteins. The truth is that glycans of rCoreE1E2 
should be different to native CoreE1E2 because of the dif-
ference between yeast and mammalian cells. The PNGase 
F removes all three types of amino-linked glycans, high 
mannose-type glycans, hybrid - type glycans, and com-
plex - type glycans. In P. pastoris cells, the N-glycosylation 
pathway is similar to the pathway in human cells except 
that P. pastoris cells have just high mannose structures. 
Enzymatic deglycosylation with PNGase F resulted that 
the glycosylated smeared band was disappeared and 
sharp band with less molecular weight, which corre-
sponds to nonglycosylated proteins was remained, indi-
cating that the multiple bands arise by different degrees 
of N-glycosylation. The yeast expressed rCoreE1E2 has 
all potential N-glycosylation sites occupied (11, 19). We 
reported that codon optimization leads to increase the 
expression of recombinant Core-E1-E2 in P. pastoris. We 
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designed the Core-E1-E2 gene by choosing the most pre-
ferred codons, while avoiding the formation of stable 
secondary structures and our data was similar with other 
optimization studies, which show an increase of efficacy 
by codon optimization (16-18).

The translational hypothesis related to translation ini-
tiation and elongation rates has been well- accepted for 
explaining the codon usage bias in eukaryotes. Although 
the mRNA levels were similar between the native and 
the optimized constructs, suggesting that the increased 
expression is attributable to the enhancement of post-
transcriptional processing (data not shown). As the 
genes were placed after the α-factor secretion peptide, we 
expect that the increased expression by codon optimiza-
tion should be mainly due to the enhanced translation 
elongation instead of translation initiation. It seems that 
other factors like protein folding within the endoplasmic 
reticulum and secretion signal processing may be impor-
tant in secretion ability. Moreover, in our study the native 
gene employs tandem rare codons that can reduce the 
efficiency of translation or even disengage the transla-
tional machinery. We changed the codon usage bias in P. 
pastoris by optimizing the CAI to 0.85. GC content and un-
favorable peaks have been optimized to prolong the half-
life of the mRNA. The Stem-Loop structures, which impact 
ribosomal binding and stability of mRNA, were broken. 
In addition, our optimization process has screened and 
successfully modified those negative cis-acting sites.

In other past researches, different parts of HCV gly-
coproteins were used for immunization in mice, goat, 
sheep and raising antibody detected (6, 9, 19, 23). In this 
study, the strategy of inducing broadly neutralizing 
antibodies is probably successful to produce anti HCV 
glycoprotein antibody as it succeeds in rabbit and our 
rCoreE1E2 can induce high humeral immune response 
and it can be one step forward for evaluation of HCV 
vaccine for in vivo research. The immune reactivity of 
rCoreE1E2 particles was tested by the international ELI-
SA Kit QuickTiter™ HCV and homemade ELISA kit, using 
sera from chronically HCV-infected persons. Indicating 
the epitopes presented by our particle’s conformation 
is very analogous with the original HCV particle. The 
evaluation of human sera, showing anti-HCV positive 
sera against rCoreE1E2 proteins demonstrated that anti-
HCV positive sera recognized our recombinant peptide 
by ELISA and even in some cases our results were better 
than the international kit. Moreover our data shows 
that human sera is anti-recombinant protein and can 
neutralize our protein in ELISA system which has better 
result than other researches and all immunogenic sites 
are in our recombinant protein, which has not been 
in other studies (20, 24). The virus like particles have a 
modal diameter centered about 70 nm and were shown 
with negative staining by Electron microscopy and also 
because CoreE1E2 assembled together, the size of par-
ticle increased which is similar to other studies base on 
HCV particles in vivo and in vitro (7, 8, 13).

In conclusion, the expression of the HCV structural 
proteins in P. pastoris would be useful for studying the 
mechanisms of HCV processing, morphogenesis, immu-
nity and assembly. Natural HCV structural proteins are 
not useful for developing vaccines or specific anti-sera be-
cause the virus concentrations in the infectious materials 
are very low. Therefore, recombinant HCV structural pro-
teins are useful as immunogens. For the development of 
preventive vaccines and therapeutic treatments against 
HCV, the rCoreE1E2 protein might be a crucial element 
and the results obtained in this work may therefore con-
tribute to this effort. These recombinant proteins may 
be useful targets for HCV vaccine candidates. Moreover, 
P. pastoris yeast expression system is an efficient eukary-
otic expression system and we believe that the P. pasto-
ris yeast-expressed rCoreE1E2 is a promising HCV vaccine 
candidate for industrial purpose.
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