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Summary: This study was carried out to obtain more
information about the assembly of hydroxyapatite

bundles formed in the presence of Leucine-Rich

Amelogenin Peptide (LRAP) and to evaluate its effect
on the remineralization of enamel defects through a

biomimetic approach. One or 2mg/mL LRAP solutions

containing 2.5mM of Caþ2 and 1.5mM phosphate were
prepared (pH¼ 7.2) and stored at 37 ˚C for 24 h. The

products of the reaction were studied using atomic force

microscopy (AFM), transmission electron microscopy
(TEM), and selected area electron diffraction (SAED).

Vickers surface microhardness recovery (SMR%) of
acid-etched bovine enamel, with or without LRAP

surface treatment, were calculated to evaluate the

influence of peptide on the lesion remineralization.
Distilled water and 1 or 2mg/mL LRAP solution

(pH¼ 7.2) were applied on the lesions and the speci-

mens were incubated in mineralization solution (2.5mM
Caþ2, 1.5mM PO4

�3, pH¼ 7.2) for 24 h. One-way

ANOVA and Tukey’s multi-comparison tests were used

for statistical analysis. The pattern of enamel surface
repair was studied using FE-SEM. AFM showed the

formation of highly organized hierarchical structures,

composed of hydroxyapatite (HA) crystals, similar to
the dental enamel microstructure. ANOVA procedure

showed significant effect of peptide treatment on the

calculated SMR% (p< 0.001). Tukey’s test revealed
that peptide treated groups had significantly higher

values of SMR%. In conclusion, LRAP is able to
regulate the formation of HA and enhances the

remineralization of acid-etched enamel as a surface

treatment agent. SCANNING 37:179–185, 2015.
© 2015 Wiley Periodicals, Inc.
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Introduction

Dental Enamel is the most mineralized structure in

the vertebrates, which is composed of at least 95%

minerals. The microstructure of enamel is made up of
well-organized carbonated hydroxyl apatite with some

substitutions. The main portion of human enamel is

nanorod-like calcium hydroxyapatite crystals, with the
cross section of 25–100 nm and an undetermined length

of about 100 nm to 100mm or longer along the c-axis
(Chen et al., 2006). Since the constituting units of the
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enamel crystal, consisting of ameloblasts and extrac-
ellular matrix, are removed after the enamel maturation,

regeneration of damaged enamel is impossible. There-

fore, biomimetic approaches were employed for syn-
thesis of enamel-like structures (Du et al., 2005, Palmer

et al., 2008, Chen et al., 2013, Li et al., 2014).
The hierarchical structure of enamel strongly affects

its mechanical properties (Cui and Ge, 2007, Eimar

et al., 2012). It is suggested that the formation of enamel

crystals undergoes two stages. At the first stage, the
crystals elongate along their c-axes and parallel to each

other. At the second stage, the crystals grow inwidth and

become thicker into the nanofibrils (Boyde, ’97). It is
well known that the extracellular organic matrix plays

an important role in the control of crystal growth, during

the enamel mineralization (Robinson et al., ’89). The
regulating effect of the organic matrix during the enamel

formation is the consequence of the function of

amelogenins, which formmore than 90% of this organic
matrix (Iijima and Moradian-Olda, 2004). Previous

studies showed that the assembly of amelogenin, as

nanospheres and chain-like structures (Aichmayer et al.,
2005), is essential for the regulatory role of amelogenin

during enamel formation to affect the shape and

arrangement of apatite crystals (Beniash et al., 2005).
However, some recent studies have brought up the

probable importance of monomeric amelogenin pep-

tides (Masica et al., 2011; Tarasevich et al., 2013).
There is an interest to produce remineralization

systems for repairing enamel lesions via biomimetic

approaches (Fan et al., 2009; Tian et al., 2012; Chen
et al., 2013; Li et al., 2014). Among these attempts, the

application of biologic peptides such as amelogenin is

highly considered due to their biocompatibility (Kirk-
ham et al., 2007). Leucine-rich amelogenin peptide

(LRAP) is the smallest of the amelogenin splice

products, and is recognized as a signaling molecule
which affects hard tissue mineralization (Boabaid et al.,
2004, Warotayanont et al., 2009). Moreover, it has been

shown to affect tooth germ development (Veis et al.,
2000). The presence of LRAP leads to changes in

enamel appearance, compared to enamel from amelo-

genin null mice (Gibson et al., 2009). Although some
studies have shown that LRAP, which consists of N-

terminal and C-terminal sequences of full-length

amelogenin amino-acids (Fincham and Moradian-
Oldak, ’93; Habelitz et al., 2006), cannot perform as

structural peptides to regulate the apatite formation, but

there are evidences for the regulation of the mineraliza-
tion by LRAP (Le Norcy et al., 2011).

The regulating role of LRAP on the hydroxyapatite

mineralization is well described by Le Norcy et al.
(2011). They have described the formation hydroxya-

patite bundles in the presence of 2mg/mL LRAP at

physiologic conditions. The aim of this study was to
investigate the assembly of these bundles by atomic

force microscopy (AFM) and the influence of LRAP on

the remineralization of artificial enamel defects. The
null hypothesis was that the surface treatment of acid-

etched enamel surface with LRAP would not affect the

magnitude of surface microhardness recovery after
immersing in remineralization solution.

Materials and Methods

Preparation of Peptide Solution

Porcine LRAP was synthesized commercially (GL
Biochem Ltd., Shanghai, China) with the purity of 98%

and free N- and C-terminal amino acids. The peptide

was not phosphorylated on Ser-16, according to the
previous findings (Le Norcy et al., 2011). Peptide

solution prepared as described by Le Norcy et al. (2011)
in brief, 5mg/mL stock solutions of lyophilized peptide
were prepared using distilled de-ionized water (DDW)

at room temperature (pH¼ 3.2). Peptide stock solutions

were centrifuged (11000g, 4 ˚C, 20min) prior to use.

Mineralization Experiments

Stock solutions of anhydrous calcium chloride (1M)

(Merck, Germany) and sodium di-hydrogen phosphate

(1M) (Merck, Germany) were prepared in deionized
distilled water and filtered using 0.22-mm filters (JET

BIOFIL, Guangzhou, China) prior to further use.

Aliquots of peptide and calcium chloride solution
were used to prepare solutions (pH¼ 7.2), with final

concentrations of 1 or 2mg/mL LRAP and 2.5mM

Caþ2, using a micropipette. Aliquot of phosphate stock
solution used to obtain final Ca/P molar ratio of 1.67.

Potassium hydroxide (0.1M) was used to adjust the

final pH of each solution at pH¼ 7.2 immediately. The
solutions were incubated at 37 ˚C for 24 h in sealed

microtubes.

Transmission Electron Microscopy (TEM) and
Selected Area Electron Diffraction (SAED)

TEM and SAED were used to confirm the formation
of hydroxyapatite bundles as described before (Le

Norcy et al., 2011). After 24 h of incubation at 37 ˚C,

5mL of the mineralization solution placed on Cu-grids
after ultrasonic dispersion for 10min. TEM analysis

(Philips-CM30) was conducted at 250 kV for selected

mineralization samples after 24 h.
To characterize the crystallization of the experiment

products, Selected Area Electron Diffraction (SAED)

was conducted using the above-described TEM device
at 250 kV and diffraction patterns were captured by a

CCD camera (AMT, Danvers, M.A., U.S.A.). Images
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were analyzed using ImageJ 1.43 u software (NIH,
Bethesda, M.D., U.S.A.).

Atomic Force Microscopy (AFM)

Five microliter of mineralization solution were

placed on glass slides and dried at 37 ˚C. Atomic force

micrographs were obtained using a NanoWizard II
BioAFM (JPK Instrument AG, Berlin, Germany) in the

intermittent-contact mode. Imageswere processed using

JPK Data processing software version spm-3.4.15

Study the Surface Microhardness Recovery

Eighteen fresh bovine incisors were cut about 2mm

below the cementoenamel junction (CEJ) and embedded

in poly methyl methacrylate resin, so that the buccal
surface was exposed. The exposed surface of each

specimen was polished using 600, 800, 1000, 1500, and

2000-grit sandpaper consequently to produce a polished
flattened surface. The surface was painted with nail

varnish, except for a working zone of 3� 3mm2.

Vickers microhardness (VMH) of the exposed area
was measured (V-Test II Basic, Baresiss, Germany)

before demineralization on the sound enamel (S-VMH),

after demineralization (D-VMH) and after reminerali-
zation (R-VMH). Each measurement was included three

indentations, using a 20 g load for 10 s. The working

zone on each specimen was demineralized by acid
etching, using 37% phosphoric acid solution for 30 s and

washed thoroughly by deionized distilled water (DDW)

(Cao et al., 2014; Ruan and Moradian-Oldak, 2014).
Before remineralization, one drop of 1 or 2mg/mL

(n¼ 6 for each concentration) of peptide solution was

applied on the working surface and incubated for 30min
at 37 ˚C. Then, the specimens were immersed in

remineralization solution, containing 2.5mM Caþ2

and 1.5mM PO4
�3 at 37 ˚C for 24 h. R-VMH numbers

were measured after cleaning the working surface for

20min in ultrasonic to remove any precipitations on the

surface. Six samples were prepared and studied without
application of peptide solution as control groups.

The surface microhardness recovery (SMR%) was

calculated for each specimen as follows:

SMR% ¼ RVMH� DVMH

SVMH� DVMH
� 100

Field Emission Scanning Electron Microscopy
(FE-SEM)

Bovine incisors were embedded in PMMA resin with
the buccal surface exposed to the surface. Each surface

was divided into three zones in the incisal–gingival

direction. The first zone was painted using nail varnish
as the sound enamel (SEn). The second zone was etched

as described above and coated by nail varnish as the

demineralized zone (DemEn) and the middle part was
remained unpainted for remineralization. The prepared

samples were immersed in remineralization solution

with or without application of 2mg/mL peptide primer
(n¼ 3 for each). One sample of each experiment was

selected randomly and prepared for FE-SEM study. A

notch was created at the back of each block and the
remained thickness was fractured using a chisel and

cleaned in an ultrasonic bath for 15min.The prepared

cross sections of samples were gold sputtered and
studied using Hitachi SE-4160 FE-SEM unit.

A one-way analysis of variance was used to study the

effect of peptide concentration on the SMR%. Tukey’s
post hoc test was conducted for multiple comparisons

consequently.

Results

TEM showed the formation of bundles (primary

bundles) with the width of about 30 nm and the length of
about 200 nm at 37 ˚C after 24 h in the presence of 1 and

2mg/mL LRAP, which joined together to make

secondary bundles (Fig. 1(A and B)). The white arrow

Fig 1. Transmission electron microscopy results of mineralization solution using 1mg/mL (A), 2mg/mL (B) LRAP solution and no
peptide treatment (C). The crystals are organized in bundles, in the presence of LRAP. (A, B). SAED analysis shows crystalline pattern of
HA in all solutions. Mineralization without LRAP shows no organization in HA crystals (C).
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in Figure 1(B) indicates primary bundles of about 30 nm

wide, which join to form secondary structures. The
primary bundles were composed of highly aligned nano

fibers with the thickness of 2.21� 0.47nm (n¼ 10)

(Fig. 2). SAED showed diffraction pattern, relating to
the hydroxyapatite crystalline structure. Mineralization

experiment in the absence of LRAP showed no

organization and certain alignment of HA crystals
(Fig. 1(C))

AFM revealed parallel arrays of about 50–80 nm

thick and about 200 nm long which joined to compose
higher structures with the diameter of about 400 nm after

deposition on the glass surface (Fig. 2(A)). 3D

processing of AFM images showed aligned structural
units (primary and secondary bundles), which are

composed of 2–4 nm crystal fibers (Fig. 2(B)). Similar

to TEM, AFM showed that the crystal fibers were highly
aligned in a parallel manner (Fig. 2(B)).

Effect of LRAP on the Surface Microhardness
Recovery

The mean values for S-VMH, D-VMH, R-VMH,

and SMR% are presented in Table I. Maximum SMR%

was observed after using 2mg/mL LRAP, while the
specimens without peptide treatment showed the least

SMR%. One-way ANOVA showed that peptide

concentration had significant effect on SMR%
(p< 0.001). Therefore, the null hypothesis must be

rejected. Tukey’s multi-comparison analysis showed

that there was no significant difference in SMR%
between 1 and 2mg/mL LRAP. However, compared to

the control group, the increase in the SMR% using 1 or

2mg/mL LRAP was statistically significant (p< 0.001

for both).
When the specimens were not impregnated with the

peptide solution, FE-SEM imaging showed an irregular

precipitation of minerals on the surface (Fig. 3(C and
E)). However, application of peptide solution on the

etched enamel surface led to a regular crystal growth

(Fig. 3(B and D)).

Discussion

In the present study, the ability of LRAP to form

apatite assemblies and its effect on the remineralization
of dental enamel were evaluated. There is an incon-

sistency in the literature about the LRAP assembly. Some

studies have shown that LRAP exists as monomer in
physiologic conditions (Tarasevich et al., 2010, 2013),
while there are some direct evidences for the formation of

nano-spherical (Habelitz et al., 2006; Le Norcy et al.,
2011) and chain-like LRAP assemblies(Le Norcy et al.,
2011). In the present study, the assembly ofLRAPhas not

Fig 2. Height-measured mode of AFM imaging shows the hierarchical structure of dried material on the glass slide. (A) A coherent
arrangement of secondary bundles composed of primary bundles (white arrows) is shown. Parallel secondary bundles with the length of
about 400 nm are arranged longitudinally to form higher structures. 3D view of AFM imaging shows the hierarchical alignment of HA nano
crystals in primary bundles (B).

TABLE I Mean (SD) values for sound, demineralized and
remineralized enamel, as well as SMR% are reported for different
groups

Peptide concentration

Control 1mg/mL 2mg/mL

Sound VMH 321.62 (15.50) 332.58 (21.25) 332.54 (13.71)

DEM VMH 124.13 (11.25) 119.07 (15.65) 129.98 (6.27)

REM VMH 141.73 (8.08) 179.75 (17.69) 197.17 (10.78)

VMH Recovery 9.00 (4.26) 28.42 (7.16) 33.17 (11.97)
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been studied; however, it has notably altered the pattern
of crystal growth in super-saturated calcium phosphate

solution. Both theories about the form of LRAP assembly

can justify the regulation of HA formation as it was
observed in the present TEM and SAED experiments

(Fig. 1). If LRAP assembles as nanospheres and forms

chain-like structures, these chains can perform like a
scaffold for crystal growth (Le et al., 2006, Fan et al.,
2011).Moreover, calcium ionsmay influence the peptide

assembly, since itwas reported thatCaþ2 ionsmay lead to
the aggregationof acidic proteins to forma crystal growth

template in dentin (He et al., 2003). On the other hand, if
the dominant form of LRAP is considered as monomers,
the formation of elongated crystals can be relevant to the

selective adhesion of LRAP on the certain HA faces, in a

suchmanner that it allows the crystal growth in the c-axis
direction(Habelitz et al., 2006; Le Norcy et al., 2011;
Masica et al., 2011). The electron diffraction pattern in

this study, having distinguished diffraction pattern
relating to the (002) and (004) plans, indicated that the

HA fibers are aligned along their c-axis (Heet al., 2003;
Le Norcy et al., 2011).

AFM showed repeating structures, having the

dimensions of bundles in TEM images, which can

propose that these structures may be the HA bundles.
Regarding the human enamel hierarchical structure, the

primary bundles in the present study are comparable

with the enamel nanofibrils in their width (about 30 nm),
or enamel nanorods as described previously (Kerebel

et al., 1979; Cui and Ge, 2007). The nanofibrils (or

nanorods) are the basic structural units of the human
enamel. In agreement with previous studies (Kerebel

et al., 1979; Cui andGe, 2007), the major components of

nanofibrils (or primary bundles in this study) are
hydroxyapatite crystals, while their c-axes are prefer-

entially oriented along the long axis of the nanofibrils.

Furthermore, the aggregation behavior of the primary
bundles to form “secondary bundles“ are similar to these

nanofibrils which bind together to form fibrils of about

80–130 nm thick (Cui and Ge, 2007). In the present
study, while the solution is being dried, Brownian

motion will help the bundles to join together preferen-

tially in a parallel orientation, to achieve a low-energy
configuration (Banfield et al., 2000). In earlier studies

(Jiang and Liu, 2004; Wang et al., 2008), it has been

suggested that amelogenin-calcium phosphate nano-
particles aggregate via oriented attachment to make

parallel orientations and consequently form nanorods

(primary bundles in this study). Finally, these nanorods
self-assemble into higher microstructures as described

in the present study. However, as the fibrils and

nanofibrils are nearly perpendicular to the surface,
they appear as particle in AFM images (Cui and Ge,

2007).

Some previous studies have shown that the treatment
of demineralized enamel by Asp-Ser-Ser (Chung and

Huang, 2013; Chung and Li, 2013a,b; Yang et al., 2014)
or amelogenin (Fan et al., 2011) promotes enamel
remineralization. Moreover, the ability of casein

phosphopeptides to improve enamel remineralization

Fig 3. FE-SEM imaging of enamel samples after demineralization (A) and remineralization using 2mg/mL LRAP surface primer (B and
D) and without peptide treatment (C and E). Application of LRAP caused well-guided crystal growth (B). Without peptide treatment, the
crystal growth occurred, lacking any pattern. (C) (L, Labial surface; C.S., Cross sectional plan).
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is well proven (Reynolds, ’97; Mehta et al., 2014; Zhou
et al., 2014). Proteins can bind to crystal faces to

accelerate or inhibit crystal growth(Shiraga et al., ’92).
In the present study, the recovery of surface micro-
hardness was increased after peptide treatment. In the

literature, there are decisive evidences for the adsorption

of LRAP onto the HA crystal surface (Tarasevich et al.,
2010; Masica et al., 2011). It has been shown that LRAP
adsorbs from physiologic solution as monomer (Tar-

asevich et al., 2010, 2013). The ability of a peptide
segment to bind to the HA surfaces depends on the

number and position of the charges. Those segments,

with several negative charges, show high affinity for
binding to calcium, probably by chelating the calcium

ions on the surface, whereas positive or neutral parts

bind less strongly to HA (Meyer and Nancollas, ’73).
Therefore, it would not be so surprising, if LRAP binds

to HA surface, since it has plenitude of acidic amino

acids (i.e., aspartic acid and glutamic acid) in its
sequence. Similarly, Kirkham et al. (2007) reported the

increased calcium and phosphate uptake of peptide-

treated enamel samples. Furthermore, thermodynamic
study showed that the LRAP has about 6.4 times more

affinity for bonding to Caþ2 ions in comparison with the

amelogenin (Le et al., 2006). Therefore, the LRAP can
also act as a reservoir for calcium ions more effectively

than amelogenin and may be more effective to be used

for a biomimetic remineralization system.
According to what discussed above, by peptide

treatment, LRAP binds to specific faces of hydroxya-

patite crystals (Tarasevich et al., 2013) and covers the
enamel prisms. Acid-etching using phosphoric acid is a

simple and convenience method to create erosion-like

lesions in enamel (Ruan and Moradian-Oldak, 2014). It
dissolves the superficial enamel as-well as underlying

enamel prisms selectively, creating a superficial lesion

with the depth of about 20mm (M _anson-Rahemtulla
et al., ’84), which reduces the enamel hardness. After

soaking in the remineralization solution, as the exposed

crystals are coated by peptide, adsorption of calcium
ions onto the enamel crystals will be promoted and the

crystal growth will occur in the c-axis direction. This

can lead to enhanced, as well as, guided regrowth and
reconstruction of enamel prismatic structure, as repre-

sented in this study by SEM and SMR%. SEM showed

the effect of LRAP on the pattern of remineralization
(Fig. 3). Treatment of etched enamel surface by LRAP

led to an orchestrated regrowth of enamel crystals.

Conclusion

This study shows that LRAP surface treatment can be

used to promote biomimetic remineralization of enamel

for probable preventive and non-invasive therapeutic
applications. Since the production of LRAP is less

complicated, with lower expense in comparison with the

full-length amelogenin, these results may be promising
for the clinical use in the future.
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