Le Infezioni in Medicina, n. 4, 326-330, 2016

ORIGINAL ARTICLE

Comparison of quinolone and β -lactam resistance among Escherichia coli strains isolated from urinary tract infections

Zahra Tayebi¹, Hamid Heidari², Hossein Kazemian^{3,4}, Seyed Mohammad Ghafoori¹, Shahram Boroumandi^{1,5}, Hamidreza Houri⁶

¹Microbiology Department, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; ²Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; ³Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ⁴Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran:

⁵Pars Advance and Minimally Invasive Research Center, Pars hospital, Iran University of Medical Sciences, Tehran, Iran;

⁶Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

SUMMARY

The growing frequency of antibiotic resistances is now a universal problem. Increasing resistance to new generations of β-lactam and quinolone antibiotics in multidrug-resistant Enterobacteriaceae isolates is considered an emergency health issue worldwide. The aim of this study was to evaluate plasmid-mediated quinolone resistance genes in ESBL-producing Escherichia coli isolated from urinary tract infections (UTIs). In our study ES-BL-producing isolates were assessed by screening methods. After determination of antimicrobial susceptibility, detection of ESBLs and quinolone resistance genes was performed. A total of 97 ESBL-producing E. coli were determined. The *bla*_{TEM}, *bla*_{SHV} and *bla*_{CTX-M} genes were detected in 90 isolates. The *bla*_{TEM} was the most frequently detected gene (46.4%), followed by *bla*_{SHV} (31.9%) and bla_{CTX-M} (14.4%). The most prevalent quinolone resistance gene among ESBL-producing isolates was oqxAB which found in 67 isolates (69.1%). The frequencies of the aac(6')-Ib-cr, qnr and qepA were 65 (67%), 8 (8.2%) and 6 (6.2%), respectively. Our data indicate that the prevalence of plasmid-mediated quinolone resistance genes in ESBL-positive isolates is increasing. The co-dissemination of PMQR and ESBL genes among E. coli isolates can be considered a threat to public health. Therefore, prescription of antibiotics against infectious disease should be managed carefully.

Keywords: quinolone, ESBL, E. coli, UTI, Iran.

INTRODUCTION

The growing frequency of antibiotic resistances is now a universal problem [1]. Antimicrobial resistance occurs through various mechanisms such as biofilm formation, enzyme modification and efflux pump [2-5]. Increasing resistance to new generations of β -lactam and quinolone an-

Corresponding author Hamidreza Houri E-mail: hr.houri@sbmu.ac.ir tibiotics in multidrug-resistant Enterobacteriaceae isolates has been considered as an emergency health issues worldwide [6, 7]. It is believed that plasmids act as efficient transporters for the spread of antibiotic resistance genes [8, 9].

In the recent decades, due to widespread prescribing of fluoroquinolones, resistance of the Enterobacteriaceae to these agents has become prevalent. The emergence of plasmid-mediated quinolone resistance (PMQR) first was discovered in a multi resistant urinary Klebsiella pneumoniae isolate, which demonstrated that quinolone resistance can also be acquired through horizontal

gene transmission. The responsible quinolone resistance gene was named *qnr* [10, 11]. Two additional mechanisms of PMQR have been described including drug modification by acetyltransferase *AAC(6')-Ib-cr* and active efflux by *QepA* and *Oqx-AB* [12].

Escherichia coli is a major cause of nosocomial infections and represent a serious public health burden [13]. Treatment of *E. coli* infections has been progressively complicated by the emergence of co-resistance to β -lactams and fluoroquinolones [14]. PMQR have been recognized worldwide with a quite high prevalence among extended spectrum β -lactamases (ESBLs) producing *E. coli* but there is limited comparative information regarding quinolone and β -lactam co-resistance in Iran [15].

In the present study, we aimed to assess the incidence of quinolone resistance genes in ESBL-producing *E. coli* isolated from patients with urinary tract infections (UTIs).

MATERIALS AND METHODS

Bacterial isolates

In this cross-sectional study, from January 2013 to January 2014, 1896 midstream urine specimens were collected from inpatients and outpatients, suspected of having a bacterial urinary-tract infection (UTI), who had not received antibiotic therapy 5-7 days before sampling and referred to hospitals of Sari, Iran. Primary isolation of uropathogens was performed by a streak plate technique on MacConkey agar (Merck Co., Germany) and incubation for 24 hours at 37°C. In order to identify E. coli, biochemical tests (oxidase, citrate, fermentation of glucose, lactose, motility, urease, gas and SH2 production) were performed. All identified isolates were stored at -80°C in Luria-Bertani broth (Merck Co., Germany) with 20% glycerol.

Antimicrobial susceptibility testing

Antibiotic susceptibility testing was carried out by disc diffusion method on Mueller Hinton Agar (Merck Co., Germany) according to the Clinical Laboratory Standards Institute (CLSI) guidelines 2015 [16]. The tested antibiotics (Mast Group Ltd., Merseyside, UK.) were gentamicin (10 µg), amikacin (30 µg), tobramycin (10 µg), ceftriaxone (30 µg) piperacillin/tazobactam (100/10 µg), nitrofurantoin (300 μ g), cotrimoxazole (1.25/23.75), chloramphenicol (30 μ g), doxycycline (30 μ g), meropenem (10 μ g) and ciprofloxacin (5 μ g).

ESBL-producing isolates were phenotypically screened by double-disk synergy test using cefotaxime (30 μ g) and ceftazidime (30 μ g) (Mast Co., UK) in the presence and absence of clavulanic acid (10 μ g). The *E. coli* ATCC 25922 was used as the standard strain.

DNA extraction & gene detection

The colonies of isolates were suspended in TE buffer and their DNA were extracted by boiling method. To detection of ESBL responsible genes (bla_{SHV} , bla_{CTX-M} and bla_{TEM}), PCR was performed as described previously [17].

The ESBL-producing isolates were investigated for the presence of oqxAB, qnr, aac(6')-Ib-cr and *qepA* genes according to previous studies [18,19]. Briefly, the PCR mixture was prepared containing 10 pmol of each primers, 1 µl DNA template (3 μ g/ μ l), 1.5 mM MgCl2, 0.2 mM each dNTP, and 5 u Taq DNA polymerase (Cinagen, Iran) in a total number of 25 µl of PCR reaction. Amplification of oqxAB, qnr, aac(6')-Ib-cr and qepA genes was performed by this protocol: A predenaturation step at 95°C for 5 min, followed by 35 cycles of 60 s at 95°C, 40 s at 53°C, and 60 s at 72°C. A final extension step was performed at 72°C for 5 min. PCR products electrophoresis was done in 1% agarose gels with 0.5X TBE (Tris/Boric acid/EDTA) buffer. DNA bands were seen by staining with KBC power load dye (Kawsar Biotech Co. Iran) under UV (ultraviolet) illumination.

Statistical analysis

Presence of quinolone resistance genes among ESBL positive isolates was calculated by Fisher's exact test for each gene. A p-value of 0.05 was considered as statistically significant.

RESULTS

A total of 225 *E. coli* strains were isolated from patients with UTI during 13 months.

Antimicrobial resistance pattern

ESBL production was detected by the screening method in 97 of the 225 clinical isolates, representing 43.1% of the *E. coli* isolates. Only 2% of

Genes	TEM	SHV	CTX-M	TEM	TEM	CTX-M	TEM & SHV
	only	only	only	& SHV	& CTX-M	& SHV	& CTX-M
No. (%)	34 (35%)	21 (21.6%)	10 (10.03%)	7 (7.2%)	1 (1.03%)	0	3 (3.1%)

Table 1 - Frequency of ESBL genes among 97 E. coli isolates.

Table 2 - Frequency of quinolone resistance genes among ESBL-producing E. coli.

Genes	oqxAB	aac(6′)-Ib-cr	qnr	qep-A	oqxAB & aac(6')-	oqxAB & aac(6')-	oqxAB & aac(6')-Ib-
	only	only	only	only	Ib-cr	Ib-cr & qnr	cr & qnr & qep-A
No. (%)	19 (19.5%)	18 (18.5%)	0	0	35 (36%)	4 (4.1%)	0

 Table 3 - Co-presence of quinolone and ESBL resistance genes among ESBL-producing E. coli.

ESBL gene PMQR gene	TEM positive	SHV positive	CTX-M positive
oqxAB positive	32 (33%)	20 (20.6%)	10 (10.3%)
aac(6')-Ib-cr positive	26 (26.8%)	23 (23.7%)	9 (9.3%)
qnr positive	7 (7.2%)	1 (1.03%)	2 (2.06%)
qepA positive	4 (4.1%)	1 (1.03%)	1 (1.03%)

the ESBL-producing *E. coli* isolates showed resistance to meropenem. The antimicrobial resistance rates to other antibiotics were as follows: gentamicin (76%), amikacin (17%), tobramycin (88%), ceftriaxone (96%) piperacillin/tazobactam (4%), nitrofurantoin (9%), cotrimoxazole (80%), chloramphenicol (89.6%) and doxycycline (73%). Resistance rate to ciprofloxacin was determined about 77%.

Distribution of resistance genes

Of 97 ESBL producer strains, bla_{TEM} , bla_{SHV} and $bla_{\text{CTX-M}}$ genes were detected in 90 isolates. The frequencies of bla_{TEM} , bla_{SHV} and $bla_{\text{CTX-M}}$ were 45(46.4%), 31(31.9%) and 14(14.4%), respectively (Table 1).

The most prevalent PMQR gene among ES-BL-producing isolates was oqxAB which found in 67 isolates (69.1%). The number of strains harboring aac(6')-Ib-cr, qnr and qepA were 65 (67%), 8 (8.2%) and 6 (6.2%), respectively. Frequency and co-presence of quinolone resistance genes are shown in Table 2.

The *qnr* gene was higher in bla_{TEM} positive isolates compared to other isolates significantly (*P*=0.02). Also, co-presence of quinolone and ESBL resistance genes among isolates is mentioned in Table 3.

DISCUSSION

ESBL-producing E. coli strains have been emerged worldwide as an important cause of both community and hospital acquired UTI [20]. Since ciprofloxacin is available in oral and intravenous preparations, it is ranked as one of the highest priority critically important antibiotics against UTI caused by E. coli, especially ESBL-producing E. coli [21]. However, during the last decade, the resistance rate to fluoroquinolones such as ciprofloxacin has increased and the continuation of this trend can have serious clinical consequences [22]. In the present study, a high prevalence of PMQR determinants was found in the 97 ESBL- producing *E. coli* isolates. Over the past ten years, PMQR determinants have emerged as an important concern, because they can easily spread among susceptible bacterial populations [23].

In our study, the prevalence of PMQR genes (*oqx*-*AB*, *aac*(6')-*lb-cr*, *qepA*, and *qnr*) among clinical isolates of ESBL-producing *E.coli* from patients with UTI was investigated. Our findings showed that 67 clinical isolates of *E.coli* harbored both of ESBL and PMQR genes simultaneously. Surveys on the coexistence of PMQR (especially *oqxAB*) and ESBL genes among Enterobacteriaceae have been reported in several studies [24-26].

Frequency of ESBL-producing strains of *E. coli* vary in different countries. They have been reported at an incidence rate of 43% in Bangladesh, while less than 1% of *E. coli* isolates produce ESBL in the European countries [27, 28]. In our evaluations, the combined disc method confirmed ESBL production in 97 (43.1%) *E. coli* isolates, which is in agreement with the results of other investigation in some developing counties [29]. In current study, *bla* genes were not detected in some of iso-

lates. It seems that their ESBLs production had been related to other β -lactamase encoding genes. OqxAB is an efflux pump that has a wide substrate specificity including chloramphenicol, trimethoprim, and quinolones such as nalidixic acid, ciprofloxacin and norfloxacin [11]. The oqx-AB gene was the most frequent PMQR determinant (69.1%) among ESBL-producing E. coli. This result contrasts with reports showing that *oqxAB* gene was found in 0.4% of clinical isolates of E. *coli* in Korea, and 6.6% in China [30, 31]. The high levels of prevalence and dissemination of *oqxAB* among UTI isolates may be due to the overuse of ciprofloxacin in patients suspected with UTI in Iran. Previously, high levels of prevalence of oqxAB (60.2%) detected among ESBL-producing Klebsiella pneumoniae in Iran [32]. These findings suggest that *oqxAB* genes are conjugative genes among ESBL-producing members of Enterobacteriaceae family.

The frequencies of the aac(6')-*Ib-cr*, *qnr* and *qepA* genes in urinary tract *E. coli* isolates in present investigation were a similar magnitude to global epidemic [33]. aac(6')-*Ib-cr* was the second common PMQR gene in this study. AAC(6')-Ib-cr, an aminoglycoside acetyl- transferase enzyme, which is accountable for reduced susceptibility to ciprofloxacin by modifying this antibiotic. In addition, the aac(6')-*Ib-cr* positive clinical isolates can indicate resistance to co-trimoxazole [34]. Our results indicated that in all of ciprofloxacin and co-trimoxazole resistant isolates the aac(6')-*Ib-cr* gene was found.

We detected 8.2% and 6.1% of isolates harboring *qepA* and *qnr*, respectively, in accordance with another study in West of Iran [35]. The results of Sedighi *et al.* indicated that only 1-2% of uropathogenic ESBL-producing *E. coli* carried *qnr genes* [17]. This difference can be due to the number of samples. However, a noticeable increase in strains harboring the resistance genes seems possible.

Presence of *qnr* gene among isolates carrying bla_{TEM} was significant and this may be due to co-existence of the *qnr* and bla_{TEM} genes in a common transmissible plasmid. The co-dissemination of PMQR and ESBL genes among *E. coli* isolates can be considered a threat to public health. Therefore, antimicrobial susceptibility testing is crucial in management of UTI cases and antibiotic drugs must be prescribed judiciously.

In conclusion, our study indicated that 43.1% of

isolates were ESBL positive. The bla_{TEM} was the most frequently detected ESBL responsible gene. The most prevalent plasmid mediated quinolone resistance genes among ESBL-producing isolates was oqxAB followed by aac(6')-Ib-cr, qnr and qepA. Our data indicated that prevalence of plasmid mediated quinolone resistance genes in ESBL positive isolates is increasing.

Conflicts of interest.

All authors declare no conflicts of interest.

REFERENCES

[1] Sharma R., Sharma C.L., Kapoor B. Antibacterial resistance: current problems and possible solutions. *Indian J. Med. Sci.* 59, 120-129, 2005.

[2] Heidari H., Emaneini M., Dabiri H., Jabalameli F. Virulence factors, antimicrobial resistance pattern and molecular analysis of Enterococcal strains isolated from burn patients. *Microb. Pathog.* 90, 93-97, 2016.

[3] Seifi K., Kazemian H., Heidari H., et al. Evaluation of biofilm formation among *Klebsiella pneumoniae* isolates and molecular characterization by ERIC-PCR. *Jundishapur J. Microbiol.* 9, e30682, 2016.

[4] Shafaati M., Boroumand M., Nowroozi J., Amiri P., Kazemian H. Correlation between qacE and qacEΔ1 efflux pump genes, antibiotic and disinfectant Resistant Among Clinical Isolates of *E. coli. Recent Pat. Antiinfect. Drug Discov.* 2016. [Epub ahead of print].
[5] Kazemian H., Ghafourian S., Heidari H., et al. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. *Rev. Soc. Bras. Med. Trop.* 48, 432-436, 2015.

[6] Han J.H., Bilker W.B., Nachamkin I., et al. Impact of antibiotic use during hospitalization on the development of gastrointestinal colonization with Escherichia coli with reduced fluoroquinolone susceptibility. *Infect. Control Hosp. Epidemiol.* 34, 1070-1076, 2013.

[7] Murray T.S., Peaper D.R. The contribution of extended-spectrum beta-lactamases to multidrug-resistant infections in children. *Curr. Opin. Pediatr.* 27, 124-131, 2015.

[8] Carattoli A. Plasmids and the spread of resistance. *Int. J. Med. Microbiol.* 303, 298-304, 2013.

[9] Accogli M., Fortini D., Giufre M., et al. Incl1 plasmids associated with the spread of CMY-2, CTX-M-1 and SHV-12 in *Escherichia coli* of animal and human origin. *Clin. Microbiol. Infect.* 19, 238-240, 2013.

[10] Martinez-Martinez L., Pascual A., Jacoby G.A. Quinolone resistance from a transferable plasmid. *Lancet* 351, 797-799, 1998.

[11] Jacoby G.A., Strahilevitz J., Hooper D.C. Plasmid-mediated quinolone resistance. *Microbiol. Spectr.* 2, 2014. [12] Yang H.Y., Nam Y.S., Lee H.J. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible *Escherichia coli* and *Klebsiella pneumoniae* isolated from blood cultures in Korea. *Can. J. Infect. Dis. Med. Microbiol.* 25, 163-169, 2014.

[13] Cooke N.M., Smith S.G., Kelleher M., Rogers T.R. Major differences exist in frequencies of virulence factors and multidrug resistance between community and nosocomial *Escherichia coli* bloodstream isolates. *J. Clin. Microbiol.* 48, 1099-1104, 2010.

[14] Zhang Y., Yang J., Ye L., et al. Characterization of clinical multidrug-resistant *Escherichia coli* and *Klebsiella pneumoniae* isolates, 2007-2009, China. *Microb. Drug. Resist.* 18, 465-470, 2012.

[15] Strahilevitz J., Jacoby G.A., Hooper D.C., Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. *Clin. Microbiol. Rev.* 22, 664-689, 2009.

[16] Wayne, P. Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Supplement. (m100-s25), 2015.

[17] Sedighi I., Arabestani M.R., Rahimbakhsh A., Karimitabar Z., Alikhani M.Y. Dissemination of extended-spectrum beta-lactamases and quinolone resistance genes among clinical isolates of uropathogenic *Escherichia coli* in children. *Jundishapur J. Microbiol.* 8, e19184, 2015. [18] Liu B.T., Wang X.M., Liao X.P., et al. Plasmid-mediated quinolone resistance determinants oqxAB and aac(6')-Ib-cr and extended-spectrum beta-lactamase gene blaCTX-M-24 co-located on the same plasmid in one *Escherichia coli* strain from China. *J. Antimicrob. Chemother.* 66, 1638-1639, 2011.

[19] Ma J., Zeng Z., Chen Z., et al. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. *Antimicrob. Agents Chemother.* 53, 519-524, 2009.

[20] Yadav K.K., Adhikari N., Khadka R., Pant A.D., Shah B. Multidrug resistant Enterobacteriaceae and extended spectrum beta-lactamase producing Escherichia coli: a cross-sectional study in National Kidney Center, Nepal. *Antimicrob. Resist. Infect. Control.* 4, 42, 2015.

[21] Schaeffer A.J. The expanding role of fluoroquinolones. *Am. J. Med.* 113, 45-54, 2002.

[22] McQuiston Haslund J., Rosborg Dinesen M., Sternhagen Nielsen A.B., Llor C., Bjerrum L. Different recommendations for empiric first-choice antibiotic treatment of uncomplicated urinary tract infections in Europe. *Scand. J. Prim. Health Care.* 31, 235-240, 2013.

[23] Ferjani S., Saidani M., Amine F.S., Boutiba-Ben Boubaker I. Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum β-lactamase-producing Enterobacteriaceae in a Tunisian hospital. Microb. Drug. Resist. 21, 158-166, 2015.

[24] Liu B.T., Yang Q.E., Li L., et al. Dissemination and characterization of plasmids carrying oqxAB-bla CTX-M genes in *Escherichia coli* isolates from food-producing animals. *PloS one*. 8, e73947, 2013.

[25] Wang Y., He T., Han J., et al. Prevalence of ESBLs and PMQR genes in fecal *Escherichia coli* isolated from the non-human primates in six zoos in China. *Vet Microbiol*. 159, 53-59, 2012.

[26] Liu B.T., Liao X.P., Yue L., et al. Prevalence of beta-lactamase and 16S rRNA methylase genes among clinical *Escherichia coli* isolates carrying plasmid-mediated quinolone resistance genes from animals. *Microb. Drug. Resist.* 19, 237-245, 2013.

[27] Rahman M.M., Haq J.A., Hossain M.A., Sultana R., Islam F., Islam A.H. Prevalence of extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in an urban hospital in Dhaka, Bangladesh. Int J Antimicrob Agents. 24, 508-510, 2004.

[28] Kjerulf A., Hansen D.S., Sandvang D., Hansen F., Frimodt-Moller N. The prevalence of ESBL-producing *E. coli* and *Klebsiella* strains in the Copenhagen area of Denmark. *APMIS*. 116, 118-124, 2008.

[29] Hassan W.M., Hashim A., Domany R. Plasmid mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qep in ESBL-producing *Escherichia coli* clinical isolates from Egypt. *Indian J. Med. Microbiol.* 30, 442-447, 2012.

[30] Kim H.B., Wang M., Park C.H., Kim E.C., Jacoby G.A., Hooper D.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. *Antimicrob. Agents Chemother.* 53, 3582-3584, 2009.

[31] Yuan J., Xu X., Guo Q., et al. Prevalence of the oqx-AB gene complex in *Klebsiella pneumoniae* and *Escherichia coli* clinical isolates. *J. Antimicrob. Chemother.* 67, 1655-1659, 2012.

[32] Taherpour A., Hashemi A. Detection of OqxAB efflux pumps, OmpK35 and OmpK36 porins in extended-spectrum-β-lactamase-producing *Klebsiella pneumoniae* isolates from Iran. *Hippokratia* 17, 355, 2013.

[33] Zhao L., Zhang J., Zheng B., et al. Molecular epidemiology and genetic diversity of fluoroquinolone-resistant *Escherichia coli* isolates from patients with community-onset infections in 30 Chinese county hospitals. *J. Clin. Microbiol.* 53, 766-770, 2015.

[34] Park C.H., Robicsek A., Jacoby G.A., Sahm D., Hooper D.C. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. *Antimicrob. Agents Chemother.* 50, 3953-3955, 2006.

[35] Firoozeh F., Zibaei M., Soleimani-Asl Y. Detection of plasmid-mediated qnr genes among the quino-lone-resistant *Escherichia coli* isolates in Iran. *J. Infect. Dev. Ctries.* 8, 818-822, 2014.