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Abstract- Autosomal dominant congenital cataract (ADCC) is the most common form of inherited cataracts 

and accounts for one-third of congenital cataracts. Heterozygous null mutations in the crystallin genes are the 

major cause of the ADCC. This study aims to detect the mutational spectrum of four crystallin genes, 

CRYBA1/A3, CRYBB1, CRYBB2 and CRYGD in an Iranian family. Genomic DNA was isolated from whole 

blood cells from theproband and other family members. The coding regions and flanking intronicsequences of 

crystalline genes were analyzed by Sanger sequencing in aproband with ADCC. The identified mutation was 

further evaluated in available family members. To predict the potential protein partners of CRYBA1/A3, we 

also used an in-silico analysis. A de novo heterozygous deletion (c.272-274delGAG, p.G91del) in exon 4 of 

CRYBA1/A3 gene, leading to a deletion of Glycine at codon 91 was found. This genetic variation did not 

change the reading frame of CRYBA1 protein. In conclusion, we identified a de novo in-frame 3-bp deletion 

in the proband with an autosomal dominant congenital cataract, but not in her parents, in an Iranian family. 

This mutation has occurred de novo on a paternal gamete during spermatogenesis. The in-silico results 

predicted the interaction of CRYBA1 protein with the other CRY as well as proteins responsible for eye cell 

signaling. 
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Introduction 
 

Congenital cataracts are a major abnormality of the 
eye and are the most common cause of childhood 
blindness in developing countries (1). These groups of 
ocular problems cover a wide spectrum of symptoms; 
while some lens opacities do not progress and are 
visually irrelevant, others can create profound visual 
impairment. In infants with cataract, vision can only be 
restored by surgery. Studies estimated a significant 
reduction might occur in the global prevalence of 
childhood blindness from the current level of 0.75/1000 
to 0.4/1000 children by the year 2020 (2,3). It has been 
well-documented that congenital cataracts are 
genetically and clinically heterogeneous. These diseases 
can occur isolated or be associated with other ocular 

and/or systemic abnormalities and are thus known as 
“nonsyndromic” or “syndromic” forms (4,5). 
Approximately one-third of congenital cataracts show a 
positive family history and genetic alteration is a main 
cause of the disease. In spite of the fact that autosomal 
dominant is the most common mode of inheritance, it 
can be transmitted as autosomal recessive, autosomal 
dominant and X-linked traits (6-8). 

So far, mutations in more than 35 genes associated 
with isolated cataracts have been mapped to different 
chromosomes (Cat-Map; http://cat-map.wustl.edu/) (9). 
The most recent studies determined that mutations in 
genes encoding crystallins, connexins, and NHS are 
responsible for about 60% of families with cataract (8). 
Crystallins are a diverse group of proteins that constitute 
more than 95% of the water-soluble cytoplasmic 
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proteins in the lens. CRYBA1/A3 is a member of the β-
crystallin family and encodes two proteins 
(crystallinbeta A3 and crystallin beta A1) from a single 
mRNA. Although crystallin beta A1 and beta A3 are 
identical, the beta A1 is 17 a shorter than other (8,9). 
Studies reported that these biomolecules are crucial for 
conferring and maintaining lens transparency (7-9). 

In the present work, we performed mutation 
screening of coding sequences of crystallin genes 
including CRYBA1/A3, CRYBB1, CRYBB2 and CRYGD 
in an Iranian family with congenital autosomal dominant 
cataracts (CADC). 

 
Materials and Methods 
 
Patients and clinical investigations 

A 10-year-old girl was admitted to our center (Farabi 
Eye Hospital, Tehran, Iran). A written informed consent 
was obtained from her parents before mutation analyses 
were conducted. In this study, ADCC was diagnosed 

based on the following criteria: (1) bilateral congenital 
cataracts that have been approved by detailed 
ophthalmologist’s examination; (2) no other ocular or 
systemic disease; (3) no other congenital and syndrome-
related malformation; (4) no history of any teratogenic 
drug usage during pregnancy; (5) compatible family 
pedigree with autosomal dominant pattern of the 
disease. Ocular examination using Slit-lamp 
photographs of the proband eyes was also utilized 
forthecharacterizing disease. 
 
Mutation screening and DNA sequencing  

Genomic DNA was isolated from peripheral blood 
cells oftheproband and her parents using QIAamp DNA 
Mini Kit (Qiagen, USA) according to manufacturer’s 
instructions. PCR amplification was conducted (10,11) 
using specific primers (Table 1) corresponding to coding 
regions and exon-intron boundaries of four candidate 
genes (CRYBA1/A3, CRYBB1, CRYBB2, and CRYGD). 

 
Table 1. Primer sequences used in this study

 Specific primers PCR product (bp) Sequence (5’-3’) 

Crystallin alpha A (CRYAA) 

AA1 F 441 bp 
AGCAGCCTTCTTCATGAGC 

AA1 R CAAGACCAGAGTCCATCG 
AA2 F 338 bp 

GGCAGGTGACCGAAGCATC 
AA2 R GAAGCCATGGTGCAGGTG 
AA3 F 376 bp 

GCAGCTTCTCTGGCATGG 
AA3 R GGGAAGCAAAGGAAGACAGA 
A8-1 F 399 bp 

CCGCGTTAGCAAAAACAGAT 
A8-1 R CCTCCATGCGGACGTAGT 
A8-2 F 400 bp 

GCAGATCATCTTCGTCTCCA 
A8-2 R TCGAGGAGAAGATCAGCACA 
A8-3 F 378 bp 

CCACGGAGAAAACCATCTTC 
A8-3 R GAGCGTAGGAAGGCAGTGTC 
A8-4 F 375 pb 

TCGAGGAGAAGATCAGCACA 
A8-4 R GGCTGCTGGCTTTGCTTAG 

Crystallin beta A1 (CRYBA1) 

BA1-1 F 207 bp 
GGCAGAGGGAGAGCAGAGTG 

BA1-1 R CACTAGGCAGGAGAACTGGG 
BA1-2 F 293 bp 

AGTGAGCAGCAGAGCCAGAA 
BA1-2 R GGTCAGTCACTGCCTTATGG 
BA1-3 F 269 bp 

AAGCACAGAGTCAGACTGAAGT 
BA1-3 R CCCCTGTCTGAAGGGACCTG 
BA1-4 F

358 bp 
GTACAGCTCTACTGGGATTG 

BA1-4 R ACTGATGATAAATAGCATGAACG 

BA1-5 F
291 bp 

CAATGATAGCCATAGCACTAG 

BA1-5 R TACCGATACGTATGAAATCTGA 

BA1-6 F 295 bp 
CATCTCATACCATTGTGTTGAG 

BA1-6 R GCAAGGTCTCATGCTTGAGG 

Crystallin gamma D (CRYGD) 

GC-1 F 556 bp 
TGCATAAAATCCCCTTACCG 

GC-1 R CCTCCCTGTAACCCACATTG 
GC-2 F 491 bp 

TGGTGTGACAAATTCTGGAAG 
GC-2 R CCCACCCCATTCACTTCTTA 
GD-1 F 
GD-1 R

484 bp 
CAGCAGCCCTCCTGCTAT 

GGGTCCTGACTTGAGGATGT 
GD-2 F 395 bp 

GCTTTTCTTCTCTTTTTATTTCTGG 
GD-2 R AAGAAAGACACAAGCAAATCAGT 

Crystallin alpha B (CRYAB) 

AB-1 F 352 bp 
AACCCCTGACATCACCATTC 

AB-1 R AAGGACTCTCCCGTCCTAGC 
AB-2 F 237 bp 

CCATCCCATTCCCTTACCTT 
AB-2 R GCCTCCAAAGCTGATAGCAC 
AB-3 F 477 bp 

TCTCTCTGCCTCTTTCCTCA 
AB-3 R CCTTGGAGCCCTCTAAATCA 
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This was done in a 25 µl reaction volume using 100 

ng of genomic DNA as template, 10 pmol of each 
primer, 2.5 µl of 10X PCR buffer (Roche, Germany), 
1.5 mM MgCl2, 0.2 mMdNTPs and 0.2 U Taq 
polymerase (Roche, Germany). The samples were 
heated at 95° C for 5 min followed by 32 cycles (45 s at 
94° C, 45 s at 55° C, and 50 s at 72° C) and a final 
extension period of 5 min at 72° C. PCR products were 
separated by electrophoresis. Subsequently, to determine 
any mutation the PCR product was subjected to direct 
sequencing (Gene Fanavaran, Iran). Sequence data 
searches were performed in non-redundant nucleotide 
and protein databases BLAST 
(http://www.ncbi.nlm.nih.gov/BLAST). 
 
In-silico analysis 

The hydrophobic change between the mutant and 
wild type was evaluated by the ExPASy-ProtScale tool 
(www.expasy.org/cgi-bin/pro- tscale.pl). In order to 
predict protein-protein interaction network of 
CRYBA1/A3, we used STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins) 
(http://string.embl.de). 

 
Results 

 
Ophthalmological evaluation 

The proband was a 10-year-old girl who had a 
bilateral nuclear cataract. She and her parents were 
clinically examined by an ophthalmologist to diagnosis 
the ADCC. The opacification in both eyes was 
symmetrical and homogeneous and with a radial 
diameter of 4.35 mm and a depth of 1.9 mm. 
Pathological records of one affected family member 
with earlier surgery confirmed that the cataract was 
present at the first decade of life. Nystagmus and other 
ocular anomalies were not observed in the family 
members (Figure 1). 

 
CRYBA1/A3 analysis 

The whole coding sequence and splicing junctions of 
the crystallin genes were systematically sequenced. An 
independent DNA sample evaluated and controlled the 
mutations after a computer analysis using the Chromas 
software. Direct PCR sequencing revealed a novel de 
novo mutation duplication (c.272-274 delGAG, 
p.(G91del) in exon 4 of the CRYBA1/A3 gene, resulting 
in a deletion of Glycine of codon91, which presumably 
occurred in the paternal gamete. This heterozygous 

mutation was found in the proband, but not in any of the 
unaffected family members including the parents 
(Figure 1C). 

 

 
Figure 1. Pedigree, clinical feature and molecular study of 

affected patients with ADCC. A: Ocular examination using Slit-lamp 

photographs of the eyes oftheproband. Slit lamp examination revealed 

the opacity of nuclear cataracts. B: Two generation pedigree of the 

family affected with congenital cataract. The arrow indicates the 

proband. C: Chromatogram has shown 3-bp duplication in exon 4 of 

CRYBA1 gene, which is marked on the sequence. Vertical arrow 

corresponds to the mutation point, andthe horizontal arrow shows the 

frame shift. The topology of CRYBA1 deletion mutation showing the 

novel in-frame 3-bp deletion (p.G91del) identified in the Iranian 

family with ADCC. 

 
In-silico analysis 

To further investigatethe role of the Glycine amino 
acid, an online tool ExPASy-ProtScale was employed. 
This strategy was determined by a score value assigned 
to predict the hydrophobicity or hydrophilicity scales 
based on different chemical and physical properties of 
the amino acids. The hydropathicity of the Glycine 
residue at the position 91 in the wild type was slightly 
different from the mutant type, and the deletion may, in 
turn, results in modification of the protein structure 
(Figure 2). 

Finally, to predict the CRYBA1/A3-protein 
interaction networks, we used the STRING online tool 
to identify a core network of interacting proteins by 
submitting the CRYBA1. The in-silico findings showed 
some members of crystallinfamily, as well as other 
functional proteins including GJA3, GJA8, GALK1, 
NT5C and LIM2, might be associated with CRYBA1/A3 
(Figure 3). 
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Figure 2. Changed hydrophobicity in CRYBA1/A3 protein. The hydrophobicity of wild-type and mutant CRYBA1/A3 were predicted using the 

ProtScale program on the Expasy. (A) Hydrophobicity of wild-type CRYBA1/A3. (B) Hydrophobicity of mutant-type CRYBA1/A3. The mutant 

exhibits increased hydrophobicity, which is shown by the rectangles. 

 
 

 
Figure 3. The figure shows CRYBA1/A3 interaction with other proteins with evidence score ranging (medium to high confidence) predicted by 

STRING tool 

 
Discussion 

 
In the present study, we first reported a de novo 

heterozygous deletion mutation (c.272-274delGAG, in 
exon 4 of the CRYBA1 gene, in an Iranian family. 
Deletion of the GAG codon removes the Glycine amino 
acid, but does not change the reading frame, and the 
other amino acids remain unchanged. However, whilst 
the reading frame is maintained, in-frame deletions give 
risk to a protein that lacks one amino acid. This could 
disturb the tertiary structure and affect the normal 
biological function of the protein. Therefore, the clinical 

features we observed, in this case, confirm the relevance 
of CRYBA1/3 haploinsufficiency in human for normal 
lens developmental perturbations. It is well-known that 
haploinsufficiency of CRYBA1/3 genes is not 
uncommon in human eye normal function and structure. 
The clinical relevance of the mutation described in this 
study that leads to a Glycine deletion in codon 91 in a 
premature termination of a truncated protein of 
CRYBA1/3 has not been described so far (8).  

The CRYBA1/3 gene contains sixexons separated by 
five introns. Exon 1 and 2 encode the N-terminal arm, 
while the subsequent four exons encode the Greek key 
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motifs (8). This type of structure forms easily during the 
protein folding. Two polypeptides encoded by this gene, 
βA1-crystallin, and βA3-crystallin, most have been 
reported to have diverse cellular functions and roles as 
structural elements in the lens (8,9). Various studies 
have reported a number of eye diseases-
relatedCRYBA1mutationsin multiple families and 
ethnic backgrounds (12-14). 

A previous study analyzed the crystallin composition 
of rat’s lens and showed that βA1-crystallin and βA3-
crystallin, inthe aggregate, constitute 25-30% of the total 
crystalline complement. Furthermore, by using a 
genetically engineered mouse model it has shown that 
βA3-and βA1-crystallins are expressed in retinal 
astrocytes and retinal pigment epithelial (RPE) cells. It 
has been hypothesized that accumulation of these 
proteins could result in some damages and suggested an 
imperative regulatory function of βA1/A3-crystallin in 
these cells (12). Ferrini W and colleagues using 
sequencing of CRYBA1/A3 gene identified an in-frame 
3-bp deletion in exon 4 (279delGAG). They revealed 
CRYBA1/A3 gene mutation is associated with suture-
sparing autosomal dominant congenital nuclear cataract. 
Data showed mutation responsible for the deletion of 
Glycine-91 co-segregated in all affected individuals by 
same ethnic background (13). Qi and colleagues using 
haplotype analysis for a dominant congenital nuclear 
cataract locus characterized a specific gene harboring 
the gene coding for CRYBA1/A3. Mutation analysis by 
others, in agreement with our findings, revealed a de 
novo 3-bp deletion in exon 4 in cataract patients (14-16). 
This mutation results in the deletion of a Glycine at 
codon 91 (DeltaG91) and could be related to an 
incorrect folding of βA1/A3 crystallin. These evidences  
emphasize the physiological significance of crystalline 
and confirm the role of CRYBA1/A3 in cataract 
development (18,19). 

Taken together, these findings indicate phenotypic 
heterogeneity related to mutations in this gene. Despite 
the fact that our study did not focus on the biological 
function of the observed duplication, we believe that the 
reported mutation here is possible to possess a 
significant biological impact on the normal function of 
CRYBA1/3 protein. According to our findings as well as 
those have published so far (14-17), two main questions 
needed to be addressed, namely: (1) which parts of this 
protein are implicated in the cellular function? And (2) 
how can we functionally define the cellular and 
molecular characterization of the CRYBA1/A3 protein?  

The first question was somewhat addressed by 
distinct studies on the nature of crystalline protein 

properties, suggesting that crystallin family is crucial for 
conferring and maintaining lens transparency. In order 
to address the second question, we performed anin-silico 
study to predict CRYBA1/A3 protein interaction network. 
The in-silico findings showed some members of 
crystallinfamily, as well as other functional proteins, 
including GJA3, GJA8, GALK1, NT5C and LIM2, 
might be associated with CRYBA1/A3. Mutations in 
some of these genes includingLIM2 (18) GJA (21,22) 
and GALK1 (21) have been associated with the 
autosomal recessive cataracts. Here, we would like to 
discuss a key protein that its functions could potentially 
affect the cell signaling pathways in eye cells. GALK1 
or galactokinase play critical roles in chemical signaling, 
cellular structures and transporting molecules. 
Deficiency of this protein was first recognized in a 
cataract patient. Mutations of GALK1 have been 
identified in families with cataracts and cause 
autosomal-recessive as well as age-related cataracts as a 
result of galactitol accumulation (23,24). Altogether, 
CRYBA1/A3 cell signaling as a part of this signaling 
network could indirectly involve in cataract 
development.  

We also used an online tool ExPASy-ProtScale to 
predict the hydrophobicity or hydrophilicity scales for 
Glycine. Our findings showed that the hydropathicity of 
Glycine residue at the position 91 in the wild type was 
slightly different from the mutant type and this deletion 
may, in turn, result in modification of the protein 
structure. On the other hand, the pathogenic mutation 
identified in exon 4 of CRYBA1/A3 gene is associated 
with Glycine hydropathicity which finally results in 
cataract. However, further studies are required for better 
understanding of the molecular pathogenesis of this 
mutation and can provide insights into the structure-
function relationships of the CRYBA1/3 protein. For 
example, the examinations such as phase behavior and 
X-ray structure analysis could resolve the 
physicochemical properties and conformational changes 
resulting from CRYBA1/3 mutation and mutant proteins. 
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