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Abstract. In order to improve the photocatalytic efficiency of titanium dioxide, doping it with metals has 
been suggested; however, toxicity studies of metal-doped nanoparticles on aquatic organisms are not 
completely known. Therefore, the purpose of this study was to evaluate the short term effect of exposure 
to Cr and Ba doped TiO2 nanoparticles (NPs) using gill histopathology of zebrafish (Danio rerio) under 
laboratory condition. In this study, four concentration levels, 1, 10, 32, and 100 mg L-1 of each Cr and Ba 
doped TiO2 NPs as well as a control group were used. After 4 days of exposure, from each experimental 
group, three samples of fish gill prepared to study the classic histology (haematoxylin – eosin). The 
results of this study showed that the Cr and Ba doped TiO2 NPs can cause gill alterations including 
aneurism, dilated and clubbed tips, hyperplasia, oedema, curvature, fusion of lamellae, increase of 
mucous secretion, and proliferation in the erythrocytes of cartilaginous core. The extent of tissue 
damages increased by concentration levels of NPs; however, the severity of injouries caused by Cr was 
more notable than that of observed by Ba. 
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Introduction. Nanotechnology is known as the engineering of a system from its 
molecular scale to fabricate nanomaterials. It is also refer to manipulation of atoms for 
manufacturing macro-materials. With a broad application across various science fields, it 
also used in household textile manufacturing, electronics, medical products, and 
technologies to extract biological contaminants (Ates et al 2013). In 2010, the annual 
consumption of nanomaterials was estimated 118,768 metric tons with an economical 
value over $800 million (BCC Research 2010). Nanotechnology consumer product 
inventory showed increasing use of nanoparticles incorporated into consumer products 
across the globe; while it comprised only 54 products in 2005, this figure jumped to 
1,628 products by 2013 (Maynard & Michelson 2006; Woodrow Wilson Database 2014). 
Moreover, European commission (2015) estimates the global value of nanotechnology 
applicants to grow from 200 bn € in 2009 to 2 trn € by 2015. Nanoparticles can be toxic 
and they may release hazardous components into our aquatic ecosystem through 
industrial discharges, sewages, mining wastes, agricultural wastewater effluents, and 
accidental spillages (Rana & Kalaichelvan 2013; Jiss et al 2014). Thus, a raising concern 
about the potential threads of using nanoparticles for environment has recently emerged 
among scientists.  

Barium (Ba) is a metal that naturally exist in environment. The concentration of 
Ba in sea and fresh water is approximated to be 13 and 2.6mg/L respectively (Pais & 
Jones 1998). Paper and textile industries, pesticides, paints, fuel additives, steel/metal 
alloys, and waste disposal sites are main users of barium compounds (Purdey 2004). 
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Barium can react with other materials to produce toxic compounds. Its salt can be 
extremely toxic to humans, animals, and plants (Jacobs et al 2002; Llugany et al 2000; 
Kuperman et al 2006). Barium exposure is known for multiple biological defects by 
affecting the life span, development, reproduction, and locomotion behaviors of 
nematode Caenorhabditis elegans (Wang & Wang 2008).  

Chromium (Cr) is another nonessential metal for humans, which may cause health 
problems. Excessive uptake of Cr can result in various health issues as well (Jaishankar 
et al 2014). Chromium can enter air, soil, and water through human activities such as 
effluent discharged from tannery, paint, and textile manufacturing, electro painting, 
welding, grinding, photographic and pharmaceutical industries (Rajaei et al 2012; Ahmed 
et al 2013; Fernando et al 2015). In an aquatic organism such as fish, chromium has the 
tendency to accumulate in tissues through gill surfaces and gut tract wall (Chevreuil et al 
1995) with various toxicity effects such as acute toxicity and genotoxicity (Ahmed et al 
2013), oxidative stress and DNA Damage (Kumar et al 2013), and hematological and 
histopathological changes (Wepener et al 1992; Mishra & Mohanty 2009). Several reports 
are available on histopathological responses of fish gills to the toxic effects of chromium 
(Nath et al 1997; Parvathi te al 2011; Fernando et al 2015). Mishra & Mohanty (2008) 
claimed histopathological alterations such as epithelial hyperplasia, lamellar fusion, 
oedema, epithelial lifting, and epithelial necrosis in the gill of Channa punctatus following 
exposure to Cr. Begum et al (2006) found necrosis, hypertrophy and hyperplasia in 
secondary lamellae of Gambusia affinis gills as after contacting with Cr. 

Titanium dioxide (TiO2) nanoparticles are used widely in cosmetic and skin care 
products. It is also used in industry (color, glossy poster paper, and catalytic activity), 
and biomedical products such as orthodontics, dental implants, and drug systems. TiO2 
NPs are photocatalytic and this property of TiO2 is particularly useful for environmental 
degradation studies, i.e. PCBs, pesticides, and other complex organic contaminant 
studies in water (Muneer et al 2002; Lhomme et al 2005). In order to improve the 
photocatalytic efficiency of titanium dioxide, doping it with transition metals such as Cr, 
Ni, and Ba has been suggested (Zhang 2011; Tian et al 2012; Wang et al 2015a). 
However, the toxicity of such transition on aquatic organisms is not completely known. 
Some studies have reported the toxicity of TiO2 NPs when combined with other metals; 
for example, Wang et al (2011) found that the combination of As with TiO2 NPs can 
escalate toxicity. Fan et al (2012) found development of oxidative stress and 
physiological damages in Daphnia magna after doping Cu with TiO2 NPs.  

The appropriateness of fish as a biological indicator to assess the acute and 
chronic toxicity of non-doping TiO2 nanoparticles has been suggested by several authors 
(Federici et al 2007; Hao et al 2009; Ates et al 2013); Some of these studies suggest 
histopathological alterations in the fish liver, gill, and intestine (Federici et al 2007; Hao 
et al 2009). In other hand, toxicity studies of metal-doped nanoparticles using fish are 
much rarer. In a comparative study, Yeo & Park (2012) showed mitochondria damages 
and embryonic development of zebrafish (Danio rerio) for pure TiO2 exposed group and a 
group treated with Cu-doped TiO2. Yeo & Kang (2010) studied the biological toxicity of 
pure TiO2 and Zn-doped TiO2 NPs on freshwater Hydra magnipapillata and observed no 
cytotoxic effect such as apoptosis and necrosis. To our knowledge, the primary focus of 
existing studies is the biological effects of metal-doped TiO2 nanoparticles whereas the 
histopathological effects of these nano-scale particles have been less discovered. Thus, 
as an attempt to provide the toxicity evidence, our main goal was to investigate the 
effects of Cr and Ba-doped TiO2NPs on gill histopathology of D. rerio under controlled 
experimental condition.  
 
Material and Method. We acquired titanium dioxide nanoparticles (TiO2 NPs) from Nano 
Sani Co. (Mashhad, Iran). Reagent grade Cr (as CrO) and Ba (as BaO), triethylamine and 
HCl were purchased from Merck, Germany. Nanoparticle synthesis initiated by using 2.0 
moles of TiO2. Under a mild hydrothermal condition (T = 100°C, P = autogenous, t = 8 
h), the surface modified Cr and Ba-doped TiO2 were added at 1% Wt rate. As mineralizer, 
1.0 mole of triethylamine was applied to the mixture. After adding 1.0 mL of 
triethylamine and stirring vigorously for a few minutes, the final compound transferred to 
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the Teflon liner (Vfill = 10 mL) to be placed later inside a general purpose autoclave. The 
assembled autoclave was kept in an oven with 100°C for 8 h and then cooled down to the 
room temperature. The product in the Teflon liner shifted to a clean beaker, washed with 
double distilled water several times, and allowed to settle down. The surplus solution was 
removed using a syringe and the rest dried naturally at room temperature. The dried 
particles were subjected to systematic characterization and photocatalytic studies. Figure 
1 shows the scanning electron microscopy (SEM) image of Cr and Ba doped TiO2 NPs. 

D. rerio samples used in this study were obtained from a local aquaculture shop in 
Sanandaj city. The length of fish samples (male) varied from 2 to 4 cm with their weights 
varying from 2 to 4 g. The subjects were acclimatized under laboratory conditions for one 
week before running experimentation. Fish was not feed 2 4h before or during the 
experiment. The experiment composed of nine experimental groups; a control group and 
eight predefined concentrations of Cr/Ba, doped TiO2 (1.0, 10, 32, and 100 mg L-1). Ten 
fish randomly assigned to each group; first group was the control and second to fifth 
groups were Cr doped TiO2 NPs; sixth to ninth groups were Ba doped TiO2 NPs. 
Experimentation period took four days. Of each group, three fish selected randomly and 
transferred to an aquarium holding 12 L water with three replicates. To preserve the level 
of metal doped TiO2 NPs, the water of aquariums was renewed every 48 hours. The 
specification of water was: pH 7.2±0.4, temperature 28.0±2ºC, and dissolved oxygen 
content (DO) 6.3±0.3 mg/L. The aquariums were inspected after 24, 48, 72 and 96 
hours for casualties. No casualty was observed during the experimental period either in 
control or treatment groups.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. SEM of Cr (left) and Ba (right) doped TiO2 NPs. 

 
 
 
 
Figure 1. SEM of Cr (left) and Ba (right) doped TiO2 NPs (source: University of Kurdistan). 

 
For histological study purpose, the gill tissue was removed by surgery and placed into 
10% buffered formalin solution immediately. After one hour, sample was dehydrated and 
then inserted into paraffin wax. Using a microtome, a 5 µm slice was obtained from 
resulting sample and stained with haematoxylin and eosin (Mansouri et al 2015). The 
diameter and length of secondary gill lamellas as well as diameter of gill filaments were 
measured using Axio Vision (Release 4.8.2). Axio Vision, a modular image-processing 
and analysis system, is microscope software for different applications in the field of 
biological and medical routine research. Moreover, Axio Vision allows visualizing and 
presenting images in several dimensions. 

Since the goal of this study was to investigate whether exposure to pre-defined 
levels of Ba/Cr doped TiO2 NPs affect the gills structure of D. rerio (that is, the length of 
secondary lamella [L1], diameter of secondary lamellae [D2], and primary diameter of 
lamellae [D1]) a two-way ANOVA with two between subject factors was used. Data were 
log transformed to obtain normal distributions that satisfied the homogeneity of variance 
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as well as normality assumption required by ANOVA. To explore the mean differences of 
each parameter at different concentration levels, the post-hoc Tukey's HSD test was 
performed.  
 
Results and Discussion. The results of performing three independent two-way ANOVAs 
with two between subject factors and their interactions are given in Table 1. The effect of 
concentration was highly significant on the length of secondary lamella (L1), primary 
diameter of lamellae (D1), and diameter of secondary lamellae (D2), (FL1 [4, 180] = 
12.56; p<0.001, FD1 [4, 180] = 14.31; p<0.001, and FD2 [4, 180] = 17.70; p<0.001). In 
order to inspect the mean differences between groups for each parameter in greater 
details, the 95% pairwise confidence intervals (CIs) of gill parameters are presented by 
Figure 2. In this Figure, for L1, there are four CIs crossing the dotted vertical line 
representing no difference between means. Majority of CIs are in the right side of zero 
line (vertical line) indicating significant decreasing in the length of gill. Of comparison 
between CIs for L1, we can conclude that increasing NP concentration up to 10 mg L-1 
makes no significant changes in the length of secondary lamella. At 32 and 100 mg L-1 
concentration levels the length began to decay so that at 100 mg L-1 highest reduction in 
L1 happened.   
 

Table 1 
The results of two-way ANOVA analysis for gill parameters* 

 
  Sum of squared DF F-ratio P-value 

Doped metal 109 1 0.561 0.45 
Concentration 9779 4 12.57 <0.001 

Interaction 3489 4 4.48 0.002 Primary 
length 
(L1) 

Residuals 35020 180   

 

 Sum of squared DF F-ratio P-value 
Doped metal 363 1 5.32 0.02 
Concentration 3905 4 14.31 <0.001 

Interaction 3747 4 13.73 <0.001 Primary 
diameter 

(D1) 
Residuals 12280 180     Sum of squared DF F-ratio P-value 

Doped metal 2.07 1 24.06 < 0.001 
Concentration 6.11 4 17.70 < 0.001 

Interaction 1.66 4 4.18 0.001 

Secondary 
diameter 

(D2) Residuals 15.54 180   
* For each parameter, the analysis compares the main effect of types of metal doped with TiO2, concentration 
levels of nanoparticles, and their interaction effect. 

 
Compare to the control group, it appears that increasing the concentration level of doped 
TiO2NPs to 32 or 100 mg L-1, has inflated the secondary lamellae diameter, D2, 
significantly. This is in contrary with our conclusion about length of primary gill length 
where increasing concentration levels resulted in shorter lengths. The broad conclusion of 
Figure 2 is that by increasing concentration levels one should expect shorter length of 
primary lamella but larger diameter of secondary lamellas. Again, differences are notable 
at 100 mg L-1 concentration of Cr and Ba doped TiO2 NPs. 

Another important question is to know whether the type of metals makes a 
significant difference in the gills parameters when doping with TiO2. Back to results, Table 
1 suggests no significant effect on L1 (FL1 [1, 180]=0.56; p=0.45), significant effect on 
D1 (FD1 [1, 180]=0.56; p=0.02), and a highly significant effect on D2 (FD2 [1, 180]=0.56; 
p<0.001). Furthermore, type of metal affects the gill parameters in another way; it 
interacts with concentration levels and can result in drastic modification in lamella length 
or diameter depending on which concentration level is used (FL1×M [4, 180]=4.48; 
p=0.002; FD1×M [4, 180]=4.48; p<0.001; FD2×M [4, 180]=4.48; p=0.001). 
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Figure 2. The 95% Tukey HSD pair-wise confidence intervals of differences in the mean 
levels of gill parameters (L1, D1, and D2) between different concentration levels. Left 

panel: primary diameter of gill lamellas, middle panel: secondary diameter of gill 
lamellas, and right panel: the length of secondary lamellas. In this plot, Ctrl represents 

control group, G1; 1 mg L-1, G10; 10 mg L-1, G32; 32 mg L-1, and G100; 100 mg L-1 
concentration level. 

 
The nature of interactions between type of metals and gills parameters is given by Figure 
3. As it can be seen, regardless of which metal dopes with titanium oxide, at 0 mg L-1 
(control group) D. rerio have longer length (L1), but depending on doping metal, it 
begins to decrease in different manner as concentration level increases. For instance at 
10 mg L-1, reduction in primary length of lamella with Cr is much more intense than the 
length reduction with Ba (95% error bars do not overlap). The trend is inverse at 100 mg 
L-1 when Ba results in much shorter L1. As we outlined earlier, the primary and 
secondary diameter of lamellae, D1 and D2, tent to increase with raising concentration 
levels, but the rate of increase cover with types of doped metal. 
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Figure 3. Interaction plots with 95% error bars of Cr/Ba-doped TiO2 NPs and 

concentration levels for left panel: primary diameter of gill lamellas, middle panel: 
secondary diameter of gill lamellas, and right panel: the length of secondary lame. 

 
Figure 4 shows gill morphology with highlighting for histopathological alterations under 
experimental groups exposed to Cr doped TiO2 nanoparticles. Histopathological 
alterations resulted from Ba doped TiO2 NPs at experimental groups are given by Figure 
5. In control group, gill filaments and primary lamellae appeared to have normal 
histology (Figure 4 and 5, E). It turns out that four days exposure to Cr and Ba doped 
TiO2 nanoparticles caused injuries in the gill. Most injuries include vacuoles, aneurism, 
dilated and clubbed tips, hyperplasia, oedema, curvature, fusion of lamellae, increase of 
mucous secretion, hypertrophy, and proliferation in the erythrocytes of cartilaginous core 
(Figure 4 & 5). However, at concentration level 1.0 mg L-1 of NPs, minimum changes in 
primary and secondary lamellae were observed for both metals. By increasing the level of 
NPs concentration, the severity of damage increased, so that, sever injuries i.e. fusion 
and necrosis were observed at 100 mg L-1. Compare to the control group, the thickening 
of secondary lamellae has irregular pattern (Figure 4 and 5). Aneurism and fusion of the 
boundary of primary and secondary lamellae increased with concentration levels. Gills in contact 
with 32 and 100 mg L-1 concentrations, showed lamellar fusion in various areas of the secondary 
lamellae along with hyperplasia in chloride, pillar, pavement, and mucus secreting goblet cells.  

In aquatic organisms such as fish, gills are vital organs for their multifunctional 
roles including respiratory organs and participate in many physiological activities, 
including respiratory, metabolites excretion, body fluid permeability balance and acid–
base regulation balance; moreover, it used the first organs for contacting exogenous 
toxicants in aquatic environment (Nowrouzi et al 2012; Baramaki et al 2012; Majnoni et 
al 2013). Histopathological alterations in gill may lead to some functional impairments in 
fish, including respiration, osmoregulation, acid-base balance, and excretion of 
metabolite. Thus, gill histopathology appears to be a good biomarker for evaluation of 
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environmental stress (Pereira et al 2013; Hassaninezhad et al 2014; da Cruz et al 2015). 
In accordance with Nero et al (2006), we also found lamellar synechiae. The mucus 
secretion increased from the epithelium of the secondary lamellae and this condition 
resulted in the fusion of secondary gill lamellae resulting in impaired respiration. 
Moreover, it has been demonstrated that the increased mucous secretion and hyperplasia 
of lamellae may make a barrier for NPs accumulate by the gills and would increase the 
diffusion distance for gas exchange (Scown et al 2010; Wang et al 2015b). In this study, 
exposure to Cr/Ba doped TiO2 NPs caused lesion of lamellar fusion in gill of D. rerio. 
Lamellar fusion is defence mechanisms of fish gill that reduces the total respiratory area 
if it is in contact with the external environment. This alteration can cause a decrease in 
oxygen-uptake for total metabolic activities hence affecting the general health of fish 
(Pereira et al 2013; Subashkumar & Selvanayagam 2014). 

 

 
Figure 4. Gill morphology in Danio rerio exposed to Cr doped TiO2 nanoparticles for 4 days. The panels 
include (A) 1 mg L-1, (B) 10 mg L-1, (C) 32 mg L-1, (D) 100 mg/L, and (E) control group. The gills of 

control fish indicated normal histology, whilst all treatments showed injuries that include vacuoles (Va), 
aneurism (An), dilated and clubbed tips (DCt), hyperplasia (Hp), oedema (Oe), curvature (Cu), fusion 
of lamellae (F), increase of mucous secretion (Ms), dilated marginal channel (MC), lamellar synechiae 

(LS), hypertrophy and proliferation in the erythrocytes of cartilaginous core (HPC) (original). 
 

In this study, hyperplasia, fusion of lamellae and formation of aneurism were seen in gill. 
The lesions observed in lamellar aneurysm can be due to the disturbance of blood flow in 
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the blood channels. Aneurism is blood-filled and swelling blood vessel. This condition in 
the gill tissue may lead to disturbances in blood flow in the gill, increasing the risk of 
rupture, and bleeding or death (Flores-Lopes & Thomaz 2011; Rajkumar et al 2015). 
These types of lesion occur as a tissue reaction to diluted pollutants in water in order to 
increase the distance between the blood capillary and lamellae surface to reduce 
pollutant uptake (Liebel et al 2013). Rajkumar et al (2015) reported similar findings 
about aneurism lesions in the gill of fish after exposure to silver NPs. Al-bairuty (2013) 
indicated that presentation of copper NPs in water can increase the incidence of edema in 
the secondary lamellae, lamellar fusion, clubbed tips, hyperplasia, aneurisms, and 
necrosis in the secondary lamellae of the gills filaments in rainbow trout. 
 

 
Figure 5. Gill morphology in Danoi rerio exposed to Ba doped TiO2 nanoparticles for 4 

days. The panels include (A) 1 mg L-1, (B) 10 mg L-1, (C) 32 mg L-1, (D) 100 mg L-1, and 
(E) control group. The gills of control fish indicated normal histology, whilst all treatments 

showed injuries that include vacuoles (Va), aneurism (An), dilated and clubbed tips 
(DCt), hyperplasia (Hp), oedema (Oe), curvature (Cu), fusion of lamellae (F), lamellar 
synechiae (LS), increase of mucous secretion (Ms), hypertrophy and proliferation in the 

erythrocytes of cartilaginous core (HPC) (original). 
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Histopathological anomalies in the gill have been seen in other species. Federici et al 
(2007) and Linhua et al (2009) found that exposure to TiO2 NPs enhances the incidence 
of edema, and thickening of gill lamellae and filaments of rainbow trout and carp. 
Moreover, Griffitt et al. (2007) found filament and lamellar fusion in D. rerio gill after 
treating with Cu-NPs suspensions; edema of primary and secondary gill filaments of D. 
rerio was also identified. In another comparative study, Griffitt et al (2009) showed that 
compare to control group, gill filaments were threefold thicker in fish at Cu-NPs exposed 
group, but no significant changes at gill filaments in both TiO2 NPs and Ag NPs groups. A 
reaction to intake toxicants, an adaptation response to prevent the entry of the pollutants 
thorough the gill surface, and capillary permeability can be account for these pathological 
changes (Olurin et al 2006). In our study, we found injuries in gill lamella and filaments. 
The extent of damages on gill depended on concentration level of nanoparticles; more 
severe injuries were observed at 100 mg L-1 treatment group (Table 1). Duration 
exposure can be another factor causing damages in gill. However, in this study, we did 
not assess this effect. Generally speaking, gill pathological data suggest that 
degenerative changes were the most prevalent and sensitive changes observed following 
exposure of D. rerio to metal doped TiO2 NPs. The toxicity caused by Cr-doped TiO2 NPs 
on the gills of D. rerio has been more than Ba-doped TiO2 NPs. Hence the use of this 
compound in various sectors will need to manage properly and need to be included in the 
assessment of toxicological impacts in the aquatic environment. 
 
Conclusions. Our findings show that the extent of tissue damages increased by 
concentration levels of NPs; however, the severity of histopathological anomalies in gill of 
D. rerio caused by Cr-doped TiO2 NPs was more notable than that of observed by Ba-
doped TiO2 NPs.  
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