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Fast-proliferating cancer cells in the hypoxic region face a shortage of oxygen and 
nutrients, undergo necrotic cell death, and release numerous signaling components. 
Hypoxia-induced chemo-attractants signal for macrophages/monocytes to clear debris 
and return the system to steady state. Accordingly, macrophages arrange into pre- 
necrotic positions, where they are continuously exposed to stress signals. It can thus 
be hypothesized that gradual alteration of gene expression in macrophages eventually 
turns off their phagocytic machinery. Uncleared cell corpses within the hypoxic region 
potentially provide a rich source of building blocks for anaerobic metabolism of cancer 
stem cells via macropinocytosis, and are conceivably implicated in tumor progression 
and invasion.

Keywords: necrotic zone, solid tumors, tumor-associated macrophages, macropinocytosis, cancer stem cells, 
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iNtrODUctiON

Chaotic cell death in the necrotic zone of solid tumors, occurring as a constituent of the stress 
response, results in the release of cytoplasmic cell contents (1, 2). The existence of such an area 
within the tumor evidences the inefficient clearance of cell debris by macrophages. Macrophages/
monocytes, which are recruited to this area following hypoxic induction of chemo-attractants and 
trails of necrotic debris, immobilize between non-necrotic and pre-necrotic zones (3). Following 
integration of stress signals in this microenvironment, macrophages undergo chromatin changes, 
such that the expression level of receptors safeguards tissue turn over and homeostasis (2, 4). 
As professional phagocytes, they have the opportunity to use any distinct mechanisms or a 
combination of receptors/co-receptors and bridging molecules to carry out this task, an example 
being the upregulation of “eat me” signals (5, 6). This process is not without end, however, and 
phagocytes most likely become desensitized after a few cycles of clearing debris due to activation 
of mechanisms, such as negative regulatory feedback loops (7). Following redundancy of this 
macrophage cohort, new blood monocytes are recruited by tumor tissue to deal with the task. 
This cycle continues and increasing numbers of monocytes recruited for clearing cell debris in this 
zone settle here and become redundant (8). Thus, it is a matter of course that an increased number 
of macrophages within the pre-necrotic zone is directly correlated with an elevated number of 
necrotic cell deaths and grade of carcinoma (9). Histopathology samples from patients of various 
carcinomas support this concept (10).

Recent clinical trials using blockers of immune checkpoints have been successful in improving 
patient conditions (11). This treatment strategy can be improved further by including molecules 
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involved in the equation of clearing dead cells (12, 13). However, 
there are critical questions that need to be answered, one of 
which regards the role and function of macrophages located in 
different topological positions of solid tumors: namely the pre-
necrotic zone, surrounding blood vessels, and within the stroma 
microenvironment (3). Our assumption is that desensitization 
of macrophages, which are overwhelmed with a variety of stress 
signals and an enormous amount of cell debris within the necrotic 
zone, leaves the region uncleared. In this unfavorable condition, 
tumor cells adopt survival metabolic pathways and constitu-
tively scavenge available building blocks from the extracellular 
environment (14). This is a point of crisis, providing necessary 
nutrients for the uncontrolled proliferation of cancer stem cells 
(CSCs), dispatching exosomes, cytokines, and other factors for 
paracrine activities, and generating the potential to make the 
tumor invasive. We propose a clinical benefit of interrupting the 
formation of such a microenvironment, or equally preventing 
the generation of a similar region during cancer treatments such 
as radiotherapy and chemotherapy (13).

DeveLOPMeNt OF cArciNOMAs

Carcinomas account for 90% of all human cancers and originate 
within the epithelium. Formation of carcinoma initiates with 
abnormal proliferation of a single or small group of mutated 
cells, followed by selection for rapidly growing populations. 
Cells become malignant in a multistep process incorporating a 
progressive series of alterations. Many internal or environmental 
factors may be involved in this development, including radiation 
and chemical carcinogens, which initiate the process by inducing 
DNA damage, or phorbol ester, which stimulates cell proliferation 
through activation of protein kinase C. Various human cancers, 
such as liver and cervical carcinomas, are induced by viruses (15).

Evolution of the tumor mass leads to formation of an organ-
like structure with a multilayer epithelium, various cell types, 
and an extracellular matrix. Distribution of these components 
and their complex interactions often resemble those associated 
with developing organs; this organization assists pathologists to 
classify the stage of malignancy (16). Phenotypic modifications 
of these cells occur under the influence of numerous factors 
within the tumor microenvironment (TME), such as IL-4, IL-13, 
TGFβ, and IL-10. Tumor-associated macrophages (TAMs) do 
not fit in any rigid classification of macrophages, but for the most 
part resemble the M2 class (17). These cells express a series of 
markers, including CD163, the Fc fragment of IgG, C-type lectin 
domains, and heat shock proteins (18–20), and secrete mito-
genic factors for neoplastic cells which potentiate tumor growth, 
promote angiogenesis, and enable metastatic spread (21). TAMs 
stimulate tumor distribution through interaction with the recep-
tor activator of the NF-κB ligand (EGF or RANKL) secreted by 
tumor cells (22).

HYPOXiA AND tHe NecrOtic ZONe

Solid tumors are highly heterogeneous, and often exhibit low 
oxygen tension which increases with size (23). Cell outgrowth 
and shortage of blood vessels results in the formation of hypoxic 

regions; specifically, 0.08  mmHg O2 in tumors larger than 
2 cm3 compared to 66 mmHg in normal tissue (24). Available 
oxygen within the tumor mass is consumed by cells close to 
vasculature, meaning that distant, proliferating cells face a lack 
of oxygen and nutrients; consequently, most of them undergo 
cell death and generate a necrotic zone. Cells that are clonally 
selected by this microenvironment are resistant to hypoxia, 
cell death, and therapeutic methods (25), and form the most 
invasive CSCs (26, 27).

Data from in  vivo models of carcinoma and 3D spheroid 
cultures strongly suggest that necrotic cell death occurs at a strik-
ingly constant distance from blood vessels (28–30). Development 
of cell death due to diffusion gradients follows a progressive 
course across three separate zones: proliferation at the outer zone, 
differentiation in the middle zone, and eventual, central cell death 
(Figure 1A). The central zone, which develops to a predictable 
radius of 300–400 µm, is initially necrotic, and apoptosis occurs 
as the spheroidal diameter increases (31).

The topography of necrosis is a major determinant of the 
rate of cell proliferation to angiogenesis, and is an independ-
ent prognostic factor for patients with renal, lung, thyroid, and 
colorectal carcinoma. A substantial proportion of necrosis in his-
topathology samples have been proposed as indicators of tumor 
aggressiveness, which generally leads to a poor clinical outcome 
(32–35). Clinical data show that TAMs immobilize between 
transient (avascular and non-necrotic) and pre-necrotic areas 
of human breast tumors (36, 37), and prostate (38), endometrial 
(39), ovarian (40), and lung carcinomas (41).

HYPOXic tMe DeFiNes csc-FAte

Emerging evidence suggests that hypoxic TME can potentially 
regulate cell fate and enrich the stem cell phenotype of cancer 
cells (42–44). Tumor cells located in the hypoxic region of clini-
cal samples express stem cell-associated genes and show strong 
nuclear accumulation of hypoxia-inducible factor-1α (HIF-1α) 
protein (45–47). Previous research has established that HIF pro-
teins activate-specific signaling pathways, such as Notch, as well 
as the expression of transcription factors such as Oct4 that dictate 
multipotency and stem cell self-renewal. Additionally, oxygen-
independent oncogenic signaling pathways, such as PI3K/Akt, 
IGF2/IGF1R, and TGFα/EGFR, can stabilize HIF proteins (48). 
In a systematic literature review, Keith and Simon suggest that 
“hypoxic tumor tissues could be a breeding ground for cancer 
stem cells” (49).

cLeArANce OF tHe NecrOtic ZONe

Clearance of dead cells and debris is an important regulatory 
mechanism that has been conserved throughout evolution to 
serve the regulation of normal tissue homeostasis. The turnover 
rate of removing dead cells has been estimated to be one million 
cells per second (50). This process is extremely high capacity and 
efficient, such that dead cells are rarely seen in healthy individu-
als. Several steps are involved in prompt cell clearance, including 
recruitment of macrophages, sensing apoptotic and necrotic 
cells via “find me” signals, recognition via “eat me” signals, the 
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FigUre 1 | (A) Schematic formation of a distinct necrotic zone in carcinoma and immobilization of macrophages in three distinct areas: the stroma, the vicinity  
of blood vessels, and the pre-necrotic zone. Tumor macrophages originate from tissue-resident cells or blood monocytes and adapt to perform a specific function 
depends on their local microenvironment. In hypoxia, they progressively change from M1 to M2-like phenotype with poor antigen presentation and increase in 
number as tumor grows. Their receptors in this zone are continuously engaged with necrotic debris and apoptotic cells. There is, therefore, a definite need to look  
at the prolonged changes in the phagocytic machinery of macrophages. (B) Selected macrophage receptors that potentially mediate recognition of damage-
associated molecular patterns (DAMPs), cytokines, and PS in the necrotic zone. DAMPs and cytokines can activate macrophages through the multiple surface 
receptors. Exposed PS on the surface of necrotic debris or apoptotic cells can be recognized directly by PS receptors (Bai-1, Tim4, etc.) or indirectly by bridging 
molecules (Gas6, protein S, and MFGE8).
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signaling pathways that regulate cytoskeletal rearrangements 
necessary for engulfment, and the immune response of phago-
cytes in the clearance event.

Development of the necrotic zone in carcinomas is an ongo-
ing, dynamic process. Necrotic cell death in the hypoxic micro-
environment is rapid and extensive, and secondary necrosis of 
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apoptotic cells is also common, such that macrophages can-
not clear debris in a timely and efficient manner. Confusion 
regarding the role of necrotic cells in the development of solid 
tumors is widespread, as it is associated with compensatory 
cell proliferation and inflammation. In fact, several reports 
suggest that inhibition of cell death is protective against cancer 
development (51–55).

Necrotic corpses, apoptotic cells, and CSCs in contact with 
pre-necrotic macrophages can trigger engulfment via interaction 
with phagocytic receptors capable of decoding their cognate 
ligands. Even subtle differences in the internalized ligands could 
have far-reaching consequences on antigen presentation to T, B, 
and NK cells and become the key determinant of immunogenic 
or tolerogenic responses. Here, we present a conceptual overview 
using selected studies to propose an active role for the necrotic 
zone in tumor progression and invasion.

Intolerable conditions within hypoxic lesions of tumors 
induce chaotic breakdown of cells, resulting in infiltration of 
increased macrophages/monocytes. The pattern of migration is 
partly due to hypoxic induction of chemo-attractants, such as 
VEGF, CCL2, and CCL5, as well as “find-me” and danger signals 
along a trail of necrotic debris (56, 57). This is likely important 
for maximizing their opportunity to clear cell debris. Cytosolic 
constituents pouring into the microenvironment through the 
damaged membrane can interact with phagocytic receptors 
and initiate internalization of necrotic targets through macro-
pinocytic mechanisms. Such eat-me signals include endog-
enous danger signals loaded with heat shock proteins, nuclear 
proteins like high-mobility group box-1 protein (HMGB1), 
histones, ATP, DNA, RNA, other nucleotides, and components 
of the extracellular matrix that are cleaved by cellular proteases 
(58–60). Negatively exposed phosphatidylserine (PS) is also 
involved in the recognition and engulfment of necrotic cells, 
but with a distinct and non-competitive mechanism compared 
to apoptotic cells (60, 61).

HOW MAcrOPHAges cLeAr DeBris

Macropinocytosis enables macrophages to continuously sample 
and internalize their extracellular environment at a rate of up 
to twice their surface area per hour. They use distinct and often 
unrelated receptors and bridging molecules, meaning that 
complete inhibition of engulfment machinery has never been 
achieved. This highly redundant system with various receptors 
mediates recognition of damage-associated molecular patterns 
(DAMPs), including heat shock proteins, cytokines, DNA, RNA, 
metabolic ATP, HMGB1, histones, and altered carbohydrates. 
Exposed PS on the surface of necrotic corpses is recognized 
directly by its receptors (Tim4, stabilin-2, RAGE, CD300f, and 
Bai-1) or indirectly by bridging molecules (Gas6, Protein S, and 
MFGE8) (Figure 1B). In general, the physiology of macrophages 
dramatically alters following uptake of these components, lead-
ing to modification of protein expression and cytokine produc-
tion. Internalized antigens are processed and loaded onto MHC 
molecules for presentation to immune cells (62). Both MHC class 
I and II have been identified on macropinosome-like structures 
(63–65). The macropinocytic process is expected to provoke an 

inflammatory response (66). However, contradictory results 
from cancer patients and in vivo models support the complexity 
of the TME (60, 67).

POteNtiAL MecHANisMs iN HAMs 
ALterAtiON

chromatin remodeling
The necrotic zone is a non-resolving inflammatory condition, 
and macrophages/monocytes continue to enter the zone and 
differentiate as the lesion progresses. DAMPs derived from 
necrotic cancer cells can foster this chronic condition through 
stimulation of TLRs and specific plasma membrane receptors in 
macrophages (Figure 1B). With enormous functional plastic-
ity, HAMs integrate these signals, leading to alteration of their 
regulatory state and transcriptional program. For example, 
HMGB1 activates an immune response via TLR signals and 
regulates intracellular transcription (68).

Molecular studies of macrophages show similar trends in 
response to a single polarizing stimulus. Results obtained from 
gene expression profiling of a 20,000-element cDNA microarray 
in LPS-stimulated murine macrophages show major changes in 
expression of a broad range of genes with comparison to normal 
tissue (4, 69–72). Interestingly, the expression level of these 
genes across five-time points after LPS challenge has a profound 
effect on the macrophage transcriptome, and both differentiated 
TRMs and monocyte-derived macrophages become less plastic 
over time (73–76). Most of the genes initially expressed at a high 
level are repressed, as if to accommodate the new spectrum of 
induced genes. Genes which were initially undetectable are 
promoted, and very few elements also remain static. Every 
macrophage population in these experiments is likely to be dif-
ferent (77). A similar tendency has been reported in response to 
other stimuli, including a TLR2-ligand (MALP2), a TLR9-ligand 
(CpGs), M-CSF (78), GM-CSF (79), and exposure to cytokines, 
such as IL-1β, IL-4, tumor necrosis factor (TNF)α, IFNγ, or 
TGFβ (80). Results suggest that changes are persistent even after 
stress signal exposure is seized, and are faster and stronger with 
each consecutive exposure.

The phenotype of macrophages during hypoxia is expected 
to be similar to that of LPS-stimulated macrophages, which is 
M1-like. However, HAMs are associated with an M2-like response 
(81). In vivo tumor models of glioma and breast cancer have 
demonstrated macrophage migration as a function of hypoxia, 
and suggest evolving polarization to M2, concomitant to the 
hypoxic shift within the growing tumor (82, 83). Taken together, 
these results appear to support our assumption that continuous 
exposure to a broad range of stimuli determines a continuum of 
distinct transcriptional and functional output in HAMs. As time 
goes on, HAMs exhibit gradual changes in their receptor expres-
sion anywhere between M1 and M2. In fact, the engulfment 
machinery of macrophages is engaged with a continuous cycle 
of necrotic debris, leading to significant, prolonged changes in 
involved receptors. Disarmed macrophages are not able to recruit 
or present antigens to other immune cells and block the adap-
tive immune response. Macrophages may eventually become 
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senescent or undergo necrotic cell death, thus joining the crew 
of the necrotic zone.

the Hypoxic response
Macrophages respond to hypoxia through activation of the 
transcription factor, hypoxia-inducible factor-1, which is an 
oxygen sensor and plays a significant role in macrophage 
polarization (84). This master transcription factor is regulated 
by nuclear factor-κB (NF-κB) and induces profound changes 
in the expression level of angiogenesis- and metastasis-related 
genes, such as VEGF, FGF2, MMP7, and MMP9 (38, 52, 53, 85). 
Consequent to this is recruitment of more macrophages, and 
release of pro-inflammatory cytokines, such as TNFα, IL-1β, 
MIF, CCL3, and COX2, as well as M2 markers, such as IL-10 
and arginase 1. A clear link between the HIF responses of innate 
immunity and cellular processes that aid the engulfment pro-
cesses in macrophages has been established in previous research  
(86, 87). The continued upregulation of HIF is part of the regen-
erative and immunosuppressive response (88).

Negative regulatory Feedback Loops
Here, we argue that continuous inflammatory events within the 
necrotic zone cause prolonged changes in macrophage phago-
cytic receptors. A well-known example is aberrant expression of 
TAM-receptors (Tyro, Axl, Mer) during tumor progression in 
many cancers (89).

Binding of inflammatory cytokines to TLRs and costimula-
tory receptors in HAMs can result in activation of signaling 
cascades, causing upregulation of TAM-receptors. The innate 
immune response is a carefully regulated system, meaning 
that unrestrained signaling by TLRs and cytokine receptors is 
not supported. A notable mechanism to inhibit these immune 
responses in APCs is the negative regulatory pathway driven by 
the TAM-receptor tyrosine kinases. These receptors bind their 
cognate ligand using bridging molecules, like Gas6 or protein 
S, which sit between them and PS on the surface of apoptotic 
cells, necrotic debris, and CSCs. The suppressor of cytokine 
signaling proteins (SOCS1 and SOCS3) are among the most 
important genes that are induced by this negative feedback 
loop. TAM-receptor signaling also inhibits TLR3, TLR4, and 
TLR9 activation and their multiple points in signal transduc-
tion cascades, including the activation of the p38 mitogen-
activated protein kinase, extracellular-signal-regulated 
kinase 1 (ERK1/ERK2), NF-κB, and TNF-receptor-associated 
factor (TRAF3 and TRAF6). TLR-induced production of 
proinflammatory cytokines, including TNFα, interleukins 
(IL-6, IL-12), and type 1 interferons (IFNs), are also inhibited 
as result of this signaling (90). Our assumption is that this 
feedback loop is likely to desensitize macrophage receptors 
in the hypoxic area and reduce their rate of turn over and  
phagocytic uptake.

immune checkpoints
The reduced phagocytic capacity of HAMs could also be a con-
sequence of signaling pathways triggered by immune checkpoints. 
Increased expression in tumor cells of such signals, like CD47 
and programmed death-ligand 1 (PD-L1), is proposed to be a 

mechanism through which cancer cells induce “don’t eat me” 
signals and evade immune detection by T cells. Immune check-
point blockade has been the subject of multiple clinical trials in 
cancer, but has tended to focus on the functional consequences 
of T  cells rather than macrophages (11, 91, 92). Interestingly, 
a limited number of research has demonstrated an increase in 
phagocytosis and reduction in tumor growth in a macrophage-
dependent fashion (93, 94).

Overexpression of CD47 in cancer cells activates SIRPα, 
which is an inhibitory receptor expressed mainly by myeloid 
cells. Upon binding CD47, SIRPα initiates a signaling cascade 
through phosphorylation of the immunoreceptor tyrosine-
based inhibition motifs on its cytoplasmic tail (95). Subsequent 
binding and activation of SHP-1 and SHP-2 in macrophages 
prevents accumulation of myosin-IIA at the phagocytic syn-
apse and blocks phagocytosis (96). Antibody blocking of this 
regulatory signal in normal tissue does not induce phagocyto-
sis, although it does turn off the “don’t-eat-me” signal; this is 
owing to the fact that in the absence of CD47/SIRPα signaling, 
a secondary pro-phagocytic “eat-me” signal is required to 
subject cells to phagocytosis (12). There are several “eat-me” 
signals which have the potential to trigger this process, such as 
surface calreticulin (CRT) and PS (97, 98). Cell-surface CRT is 
present on a subset of all solid tumors, with no expression on 
normal cells (99). CRT interacts with CD91 on macrophages 
and is required for phagocytosis of tumor cells following neu-
tralization of the CD47/SIRPα interaction (100). It has been 
reported that cell-surface expression of CRT is controlled by 
the TLR-Btk pathway, and that a TLR4 agonist is necessary for 
activation of macrophages after blocking of the CD47/SIRPα 
interaction (101).

Another clinically successful immune checkpoint, the PD-1 
receptor, is primarily known for its role in the inhibition of 
stimulated T  cells (102). Its phagocytic effect, however, has 
recently been considered. TAMs in humans express variable 
levels of PD-1 which increase with tumor progression in the M2 
subset, and their upregulation over time correlates negatively 
with phagocytic potency against tumor cells in human cancer. 
PD-L1 removal in animal models rescues PD-1+ phagocytosis in 
macrophages and decreases tumor size. The M2 subset of TAMs 
mainly originates from bone marrow and resides in the inflam-
matory TME (103).

Final thoughts
Here, we have focused on the role of HAMs in the clearance of 
cell debris resulting from stress stimuli in the necrotic zone of 
solid tumors. The aim has been to highlight how the engulfment 
machinery of macrophages may alter due to interaction with 
endogenous danger signals. This alteration may worsen over time 
because of continuous exposure to presented stimuli. Therefore, 
the uncleared necrotic zone is perhaps the most strategic region 
in carcinoma, an area in which CSCs can ingest essential building 
blocks for their survival and maintain anaerobic metabolism in 
the hypoxic microenvironment. Consequently, cells growing 
within this harsh milieu are highly aggressive and capable of 
developing drug and therapeutic resistance. Further proliferation 
of CSCs jointly with necrotic corpses could tear the carcinoma 
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FigUre 2 |  (A) Macrophage alteration in pre-necrotic zone and gradual loss of activities due to continuous exposure to cell debris. (B) Anaerobic metabolism  
of cancer stem cells (CSCs) in necrotic zone through macropinocytosis, and enhanced proliferation and paracrine activities of CSCs due to accumulation of cell 
debris in necrotic zone.
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