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Abstract

We perform a stability analysis on a discrete analogue of a known, continuous model of
mutualism. We illustrate how the introduction of delays affects the asymptotic stability
of the system’s positive nontrivial equilibrium point. In the second part of the paper we
explore the insights that the model can provide when it is used in relation to interacting
financial markets. We also note the limitations of such an approach.
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1. Introduction

In ecology, mutualism is an interaction between two or more species in which both
or all species involved derive benefit. An example of this is the classic flower/bumblebee
pollinator mutualism. Mathematical modelling of mutualistic relationships has received
comparatively less historical attention than the interactions of predator-prey or competi-
tion. We present the following discrete model (with delays in the realisation of mutual-
istic benefits) representing facultative (beneficial but not necessary for species survival)

Email addresses: j.roberts@chester.ac.uk (J.A. Roberts),
n.kavallaris@chester.ac.uk (N.I. Kavallaris), andyrowntree@hotmail.co.uk. (A.P.
Rowntree)

Preprint submitted to Applied Numerical Mathematics June 25, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/227979379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mutualism.

N1(k + 1) = N1(k) exp

(
r1 −

b1N1(k)

1 + α12N2(k − τ2)
− d1N1(k)

)
, (1a)

N2(k + 1) = N2(k) exp

(
r2 −

b2N2(k)

1 + α21N1(k − τ1)
− d2N2(k)

)
, (1b)

where N1(k), N2(k) represent abundancies of species 1 and 2 respectively at discrete
time point k, for k = 0, 1, 2, . . . , delay terms τ1, τ2 are nonnegative integers and associ-
ated initial functions are

N1(−θ + 1) = φ1(N1(−θ), N2(−θ)), (1c)

N2(−θ + 1) = φ2(N1(−θ), N2(−θ)), (1d)

for θ = 1, 2, . . . , τmax, where τmax = max {τ1, τ2}, N1(−τmax) > 0 and N2(−τmax) > 0
are known. Constant parameters r1, r2, b1, b2, d1, d2 > 0 represent species 1 and 2’s
intrinsic growth, birth and death rates respectively, α12 ≥ 1 represents the strength of
the mutualistic effect species 2 has upon species 1 and vice-versa for α21 ≥ 1. This
model is a discrete analogue of a continuous model which is well understood and is
described without delay below:

dN1(t)

dt
=

(
r1 −

b1N1(t)

1 + α12N2(t)
− d1N1(t)

)
N1(t), (2a)

dN2(t)

dt
=

(
r2 −

b2N2(t)

1 + α21N1(t)
− d2N2(t)

)
N2(t). (2b)

Model (2) represents an indirect mutualistic interaction in which the presence of a
species decreases the density dependence in the other’s per capita birth rate; it is dis-
cussed in works by Wolin and Lawlor [18] and Kot [8]. The model differs to other
mutualism models in that it eliminates the so-called “orgy of mutual benefaction" as
coined by May [12] whereby the populations of both species exhibit unbounded growth.
In [15], Roberts and Joharjee introduced nonnegative delays in the interaction terms of
(2) to represent a time-lag in the realisation of beneficial effects felt by the both species.
It was proved analytically in [15] that (2) possesses an asymptotically stable positive
nontrivial equilibrium (i.e. the point in the positive quadrant of N1 × N2 phase space
at which neither species is extinct and coexistence occurs) for r1, r2, b1, b2, d1, d2 ∈
(0,∞), α12, α21 ∈ [1,∞) and that this result is independent to the size of delays. In the
following sections, we analyse whether this is the case for a discrete analogue of (2),
namely (1).
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2. Construction of discrete model

Nonlinear, continuous equations such as those in (2) may often be difficult, if not
impossible to solve analytically. Thus, in order to obtain solutions to such systems it
is not uncommon to apply a numerical method to the component differential equations;
thereby creating discrete approximations of solutions to the original continuous system.
Schemes which are sometimes used are those based on a simple Euler’s method ap-
proach or, if one wants to take advantage of ready-made routines in packages such as
ODE 45 in MATLAB, a Runge-Kutta type method may be employed [15]. There is,
however, another approach; it has been argued, in Li [10] for example that discrete time
models governed by difference equations are more appropriate than continuous ones
when the populations have nonoverlapping generations. As such, we choose a discreti-
sation approach which is not based around simply applying a numerical method. In [5],
piecewise constant arguments are introduced by Fan and Wang to discretise a predator-
prey system. In this section we follow a parallel approach to create such a discrete
analogue of the continuous mutualistic system (2). We outline the approach next.

2.1. Piecewise constant arguments approach
The piecewise constant arguments approach is a method by which differential equa-

tions are discretised into nonlinear difference equations. Akmet [1] describes a system
consisting of these types of equation as “roughly" a hybrid of discrete and continuous
time systems, they have also been said to occupy a position midway between differential
equations and difference equations [5]. Let us assume that the average growth rates in
(2) change at regular intervals of time. We can incorporate this aspect in (2a) and obtain
the following differential equation with piecewise constant arguments;

1

N1(t)

dN1(t)

dt
= r1 −

b1N1([t])

1 + α12N2([t])
− d1N1([t]), (3)

where [t] denotes the integer part of t, t ∈ (0,∞). To be a solution of (3), N1 must
possess the following properties:

1. N1 is continuous on [0,∞).

2. The derivative dN1(t)
dt

exists at each point t ∈ [0,+∞) with the possible exception
of the points t ∈ {0, 1, 2, . . . }, where left-sided derivatives exist.

3. (3) is satisfied on each interval [k, k + 1) with k = 0, 1, 2, . . .

[5]. A solution N2 must possess symmetrical properties. On any closed interval [k, k +
1), k = 0, 1, 2, . . . , we may integrate (3) between k + 1 and k, i.e.∫ k+1

k

dN1(t)

N1(t)
=

∫ k+1

k

(
r1 −

b1N1([t])

1 + α12N2([t])
− d1N1([t])

)
dt,
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and obtain

N1(t) = N1(k) exp

([
r1 −

b1N1(k)

1 + α12N2(k)
− d1N1(k)

]
(t− k)

)
,

for k ≤ t < k+1. Letting t→ k+1, performing the same process with (2b) we obtain
a discrete analogue of system (2) and introducing integer delays in the interaction terms
α12N2(k) and α21N1(k) we arrive at the system of difference equations (1). We can
also consider the nondelay system (i.e. when τ1 = τ2 = 0) as being a special case of
(1). For computations in the next section, we set the initial data (1c), (1d) to be the
solutions of the nondelay system with identical parameter values (i.e. we consider the
nondelay system until enough time has passed for the delay to kick in) with initial values
N1(1) = 1, N2(1) = 1. We note that the introduction of delays increases the order of
the system (1) such that we are now considering a system of difference equations of
order τ1 + τ2 + 2. Next, we shall state the equilibrium points of the system (1).

2.2. Equilibria of the discrete model
The discrete system (1) possesses identical equilibria to that of the continuous sys-

tem (2) from which it is derived. These four equilibria are:

• N∗
(1) = (N∗

1 , N
∗
2 ) = (0, 0)

• N∗
(2) = (N∗

1 , N
∗
2 ) =

(
r1

b1+d1
, 0
)

• N∗
(3) = (N∗

1 , N
∗
2 ) =

(
0, r2

b2+d2

)
• N∗

(4) = (N∗
1 , N

∗
2 ) =

(
−B1 +

√
B2

1 − 4A1C1

2A1

,
−B2 +

√
B2

2 − 4A2C2

2A2

)
where,

A1 = b1d2a21 + d1d2a21 + d1r2a12a21, A2 = b2d1a12 + d1d2a12 + d2r1a12a21,

B1 = b1b2 + b1d2 + d1b2 + d1d2 + d1a12r2 − r1d2a21 − r1r2a12a21,
B2 = b1b2 + b1d2 + d1b2 + d1d2 + d2a21r1 − r2d1a12 − r1r2a12a21,
C1 = −r1b2 − r1d2 − r1r2a12, C2 = −r2b1 − r2d1 − r1r2a21.

Focusing upon the equilibrium within the positive quadrant, we shall determine circum-
stances under which N∗

(4) is asymptotically stable. Since the system (1) is nonlinear, we
must perform a stability analysis by linear approximation and thus we may only check
for local rather than global asymptotic stability. Local asymptotic stability means that
both solutions N1(k) and N2(k) converge to the point N∗

(4) as k → ∞ given that they
begin sufficiently close to it.
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3. Stability analysis of discrete model

It is known that for a system of nonlinear difference equations to have a local asymp-
totically stable equilibrium point, then |λ| < 1 must be true for all characteristic roots
(λ) of the linearised system when determined around that equilibrium.

3.1. Finding (1)’s characteristic equation around N∗
(4)

Consider (1) in the following vector form,

N(k + 1) =

N1(k + 1)

N2(k + 1)

 =

f1(N1, N2)

f2(N1, N2)

 , (4)

where fi(N1, N2) = Ni(k) exp
(
ri − biNi(k)

1+αijNj(k−τj) − djNi(k)
)
, ri, bi, di > 0, αij ≥

1, i = 1, 2, j = 1, 2, i 6= j. A linear approximation of the nonlinear system (1) around
its equilibrium N∗

(4) may be written in the form

N(k + 1) = JN∗
(4)
N(k) + R̃, (5)

where,

JN∗
(4)

=


∂f1(N∗

(4))
∂N1

∂f1(N∗
(4))

∂N2

∂f2(N∗
(4))

∂N1

∂f2(N∗
(4))

∂N2

 =

 1− r1
α12b1(N∗

1 )
2
λ−τ2

(1+α12N∗
2 )

2

α21b2(N∗
2 )

2
λ−τ1

(1+α21N∗
1 )

2 1− r2

 (6)

is the Jacobian matrix of (1) around the system’s equilibrium N∗
(4) and R̃ is a column

vector of residual terms. (6) is important in assessing the qualitative local behaviour
of solutions to the system (1) around N∗

(4). Steps in determining the partial derivatives
which compose the elements of (6) can be found in detail in [16]. The eigenvalues (λ) of
(6) are the roots of the following characteristic equation of the system (1) around N∗

(4);

det
(
JN∗

(4)
− λI

)
= 0, (7)

where I is the 2 × 2 identity matrix. We may now expand (7), collect like powers of λ
and multiply both sides by λτ1+τ2 to obtain the following characteristic polynomial of
degree τ1 + τ2 + 2;

λτ+2 −Qλτ+1 +Rλτ − S = 0, (8)
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where

Q = 2− (r1 + r2), R = (1− r1)(1− r2), S =
α12α21b1b2 (N

∗
1N

∗
2 )

2

(1 + α12N∗
2 )

2 (1 + α21N∗
1 )

2

and τ = τ1 + τ2. Since τ + 2 is the highest power of the polynomial (8), then it is
clear to see that as the delays within system (1) grow large then it will become more and
more difficult to determine the roots λ analytically. However, it is possible to determine
when |λ| < 1 is true without solving (8). Jury conditions (the discrete time version of
Routh-Hurwitz conditions) are a set of necessary and sufficient conditions (often in the
form of inequalities involving coefficients within the polynomial) which, if held true,
guarantee that all roots of an nth order polynomial are less than one in absolute value.
The conditions were developed by Jury [7], yet we shall take advantage of a formulation
of the conditions found in Murray [14].

3.2. Local asymptotic stability of the positive nontrivial equilibrium
For the nondelay case of τ1 = τ2 = 0, (8) becomes the following quadratic charac-

teristic equation;
λ2 −Qλ+R− S = 0. (9)

We require both roots of (9) to be less than one in absolute value for local asymptotic
stability of the equilibrium N∗

(4) to be confirmed. Since we have a quadratic, we know
from Brauer and Chaves [3] that the Jury conditions required for local asymptotic sta-
bility of N∗

(4) in this case can be written as

|−Q| < R− S + 1 < 2, (10)

which is

|r1 + r2 − 2| < (1− r1)(1− r2)−
α12α21b1b2 (N

∗
1N

∗
2 )

2

(1 + α12N∗
2 )

2 (1 + α21N∗
1 )

2 + 1 < 2. (11)

Next, we may consider the τ = 1 case. This is, of course when either τ1 = 1, τ2 = 0
or τ1 = 0, τ2 = 1. The characteristic equation of the now, third order system (1) around
N∗

(4) in this case is the following cubic polynomial,

λ3 −Qλ2 +Rλ− S = 0. (12)

Here, of course, we require all three of the roots of equation (12) to have magnitude less
than 1 for local asymptotic stability of N∗

(4) to be confirmed. Again from [2], the Jury
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conditions required for this to be true are

1−Q+R− S > 0, 1 +Q+R + S > 0,

3−Q−R + 3S > 0 and 1 +QS −R− S2 > 0. (13)

These conditions immediately seem to be different to the conditions required in the
nondelay case. If this is true, then it means that changing the value of the delays within
(1) can affect the stability of its nontrivial coexistence equilibrium; a property which is
not present in the analogous continuous system of DDEs. Next, we consider the case of
when τ = 2, this yields the following characteristic polynomial of degree 4,

P (λ) = λ4 −Qλ3 +Rλ2 − S = 0. (14)

This case has five Jury conditions required for stability; they are

1−Q+R− S > 0, 1 +Q+R− S > 0,∣∣(−S)2∣∣ < 1,
∣∣1− S2

∣∣ > |−QS| , (15)∣∣(1− S2)2 −Q2S2
∣∣ > ∣∣(1− S2)(R +RS)−Q2S

∣∣ .
Even though the Jury conditions are expressed differently in each case; (11), (13) and
(15), we may not yet conclude that they are not equivalent. We are interested in deter-
mining how these conditions manifest themselves on the stability of the equilibrium, or
more specifically, how changing the value of the delay within (1) affects this. Analyt-
ically, this proves difficult since it becomes a longer and more arduous task to develop
such conditions as the degree of the characteristic polynomial (8) increases. However,
by using computer programs, we can gather insight into what is happening to the asymp-
totic stability of N∗

(4) when τ increases. We do this by considering the system’s param-
eter space next.

3.3. Stability regions in the r1 × r2 plane
By increasing and decreasing each parameter by different percentages from a base-

line set of values, then measuring the percentage change in the resultant solution vector,
we determined that the parameters r1 and r2 are the most influential upon N∗

(4)’s local
asymptotic stability property. This is known as performing a one-at-a-time sensitivity
analysis. With this knowledge, we fixed the system’s other six parameter constants to
b1, b2, d1, d2, α12, α21 = 1 and used MATLAB to develop images of the r1 × r2 plane
at different τ values. Points (r1, r2) within this plane which satisfy the local asymp-
totic stability conditions of N∗

(4) make up a 2-dimensional, asymptotic stability region.
Images are presented below, we separate even and odd images for visual purposes.
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(a) τ = 0 (b) τ = 2

(c) τ = 4 (d) τ = 10

Figure 1: Images of r1 × r2 planes of the system (1) with different even τ values and all other parameter
values fixed. Area is red when all roots of the corresponding system’s characteristic polynomial deter-
mined around N∗

(4) have magnitude less than 1. (NB. images of intermediate values of τ ∈ (4, 10) are
identical and thus have been omitted).
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(a) τ = 1 (b) τ = 3

(c) τ = 5 (d) τ = 7

(e) τ = 9 (f) τ = 101

Figure 2: Images showing r1×r2 planes of the system (1) with different odd τ values and all other param-
eter values fixed. Area is red within an image when all roots of the corresponding system’s characteristic
polynomial determined around N∗

(4) have magnitude less than 1.

In the images in the odd τ case (Figure 2), we seem to see a reduction in the asymp-
totic stability region as the τ value gets larger but in the even τ case (Figure 1) these
regions do not change. With a suitably chosen mesh size, we present a line graph plot-
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ting the number of r1, r2 pairs which satisfy our stability criteria against an increasing τ
value within the system (1). This allows us to visualise how the regions are changing in
Figure 2 up to a large τ value without producing a large number of images. The resultant
image is shown below. Again, trends in odd and even τ cases have been separated.

Figure 3: Line graph of the number of coupled r1, r2 values for which the equilibrium N∗
(4) of the system

(1) is asymptotically stable when all other parameters are fixed at 1 vs the value of the sum of integer
delays τ ∈ [1, 150].

Figure 3 indicates that when even, the sum of the delay values (τ = τ1 + τ2) within
system (1) has no effect upon the subset of parameter space for which the equilibrium
N∗

(4) is asympotically stable. It also indicates that when odd, this region changes with
the value of τ . Moreover, small odd τ values produce larger stability regions whereas
large odd τ values produce regions more similar to those produced when τ is even, this
is also seen in Figure 2f. We discuss this finding further at the end of the paper.

4. Fitting ecological models to financial data

In the paper by Lee, Lee and Oh [9], a model designed for the purposes of popu-
lation dynamics is used in an attempt to better understand stock market fluctuations in
Korea. The authors attempt to analyse the dynamic relationship between two stock mar-
kets; Korean Securities Dealers Automated Quotations (KOSDAQ) and Korean Stock
Exchange (KSE, presently known as KOSPI), via a comparison with a discrete version
of a Lotka-Volterra model. With financial data from after the latter market’s emergence
in 1997 following a Korean economic crisis, it is claimed that the two stock markets
could be understood well by viewing them as species competing for the same investor’s
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resources during this time period and by analysing through the use of ecological popu-
lation models. The software EViews was used with data of the closing values of KSE
and KOSDAQ through the period 1997-2001, together with a least squares method to
estimate coefficients within their chosen ecological model. Once the coefficient’s sign
was determined, the type of the model which best fitted with their data was identified
(different signs of the interaction coefficient within the Lotka-Voltera model has been
considered to represent different ecological interactions). The paper introduces a novel
approach to understanding financial markets and we have built upon this approach here.
In doing so, we note some limitations in such an approach which we shall describe later.

4.1. Our approach
4.1.1. Models under consideration

We have chosen two more existing discrete time models to compare with our mu-
tualism model (1) when fitting them to data. Firstly, the following model of species
competition which is derived from the Lotka-Volterra formulation,

N1(k + 1) = N1(k) exp
(
r1 − a11N1(k)− a12N2(k − τ2)

)
, (16a)

N2(k + 1) = N2(k) exp
(
r2 − a21N1(k − τ1)− a22N2(k)

)
, (16b)

where constant parameters r1, r2 are the intrinsic growth rates of species 1 and 2 re-
spectively. Here, a11 = r1

K1
, a12 = α12r1

K1
, a21 = α21r2

K2
and a22 = r2

K2
, where α12, α21

represent the strength of the competitive effect of species 2 upon species 1 and species 1
upon species 2 respectively. K1, K2 represent species 1 and 2’s carrying capacities and
τ1, τ2 are nonegative integers which represent a delay in competitive effect felt by each
species respectively. Papers [4] by Chen and [11] by Li et al. study nondelay and delay
versions of this form of competition model respectively. Secondly, we consider the fol-
lowing predator-prey model with Holling type-II functional response which is studied,
in its nondelay form, by Fan and Wang [5]:

N1(k + 1) = N1(k) exp

(
a− bN1(k)−

cN2(k − τ2)
mN2(k) +N1(k)

)
(Prey), (17a)

N2(k + 1) = N2(k) exp

(
− d+ fN1(k − τ1)

mN2(k) +N1(k)

)
(Predator). (17b)

In (17), parameter a represents the intrinsic growth rate for the prey, c represents the
capture rate, d represents the predator’s mortality rate and f represents the conversion
rate of consumed prey into new predators. The parameter b = a

K
where K is the prey’s

carrying capacity and m is half the saturation constant (saturation is the idea that preda-
tors can only ever consume a certain amount of highly abundant prey meaning that the
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prey will not go extinct). We choose to introduce integer delay values (τ1, τ2) to the
model at the main interaction terms; namely, in the capture rate term (cN2) in (17a) and
the conversion rate term (fN1) in (17b). Initial functions for systems (16) and (17) are
similar to those we impose for system (1) as stated in Section 2.

4.1.2. Data and time periods under consideration
In, [13] Mikdashi uses the words “mutualistic" and “competition" in the same sense

as in ecological interactions. Of course, competition for resources in the form of trading
is clear to see between stock markets, but the formation of alliances (i.e. mutualism)
between them may seem a slightly less obvious feature. A key quote from “The Trans-
formation of Stock Exchanges" by Tirez [17] (within [13]) which inspired our choice of
stock markets is; “in the immediate future, Europe is expected to see a consolidation of
exchanges around three major poles – Frankfurt, Paris Euronext and London - and fur-
ther merger and cooperation agreements that will eliminate the smaller exchanges". So,
the idea of mutualistic relationships being formed and predatory behaviour manifesting
as a consequence seems to be prominent in stock exchange dynamics around Europe.
As a result of this, we choose to use data from arguably the two major European stock
exchanges which are relatively close geographically; London’s Financial Times Stock
Exchange (FTSE) and Frankfurt’s Deutscher Aktienindex (DAX). Our investigation is
concerned with whether any of the models we consider; (1), (16) or (17) may best suit
such financial data during times of economic stress and thus be useful in describing a
stock market interaction as either mutualistic, competitive or predatory. To this end,
we consider two periods of recent history during which such stress has occurred; the
global financial crisis circa 2008 and the UK’s EU membership referendum circa 2016.
Obtained from [6], we consider the daily opening prices of FTSE and DAX stock ex-
changes on the dates 2nd June 2008 to the 30th April 2009 and 23rd June 2016 to the
16th May 2017 to encompass these respective events. We omit any dates which are not
trading days for both indices, this gives us 234 trading days (data points in our time
series) for the period during the financial crisis and 226 trading days for the period im-
mediately after the EU referendum. Below, we present line graphs of our obtained data
to a suitable scaling, dividing each value by the first data point in the FTSE time series
in the year 2000 provides this scaling.
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(a) 2nd June 2008 to 30th April 2009 (b) 23rd June 2016 to 16th May 2017.

Figure 4: Scaled opening values of the FTSE and DAX stock markets during two time periods of interest.

4.1.3. Parameter fitting
In search of a best fit between a set of data and a nonlinear model with variable

parameters, [9] used EViews software to compute estimations of coefficients within
their model. We take a different approach and use the optimisation solver add-in from
Microsoft Excel; it uses a generalised reduced gradient method to perform its optimi-
sation tasks. With N1 and N2 denoting the solution vectors for our choice of model
and Ñ1 and Ñ2 denoting scaled data from FTSE and DAX respectively. We set the
initial values to each of the models as the first two values of our collected data, i.e.
N1(1) = Ñ1(1), N2(1) = Ñ2(1) and residuals (R) are calculated as the sum of squares
of the difference between data and model solutions at each discrete time point k for
k = 1, . . . , n, i.e.

R =
n∑
k=1

[(
Ñ1(k)−N1(k)

)2
+
(
Ñ2(k)−N2(k)

)2]
, (18)

where n is the size of the particular time series we consider. We optimise parameter val-
ues (from a starting point of 1) for each model at both time periods and obtain minimised
residual values R for each test. The smallest R value after each model’s optimisation
may be seen as the best fit for that time period. We note at this point that we have 10
parameters (including delays) in the system (1) meaning approximately 23 data points
per parameter when fitting this model. Similarly, (16) and (17) contain 8 parameters
each: this means that we have approximately 28 and 29 data points per parameter for
2008-09 and 2016-17 time periods respectively.

4.2. Findings
Below, we present images of the resultant solution trajectories of each model using

their optimised parameter values alongside data from Figures 4a and 4b for reference.
We also present summary tables containing the normalised residual values.
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4.2.1. Period of June 2008 - April 2009
The following four images are the fitted models along with the data from Figure 4a.

(a) Mutualism (b) Competition

(c) Predator (FTSE) - Prey (DAX) (d) Predator (DAX) - Prey (FTSE)

Figure 5: Images of FTSE and DAX daily opening prices from June 2008 to April 2009 and the fit-
ted solutions to the mutualistic system (1), competition system (16) and predator-prey system (17) with
optimised parameter values.

4.2.2. Period of June 2016 - May 2017
The four images of the fitted models along with the data from Figure 4b are pre-

sented below.
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(a) Mutualism (b) Competition

(c) Predator (FTSE) - Prey (DAX) (d) Predator (DAX) - Prey (FTSE)

Figure 6: Images of FTSE and DAX daily opening prices from June 2016 to May 2017 and the fitted solu-
tions to the mutualistic system (1), competition system (16) and predator-prey system (17) with optimised
parameter values.

4.2.3. Summary of residual values
Below we present a table of normalised residual values obtained from the above

optimal fits of each model. We require normalisation for comparative purposes between
time series since the time periods contain a different number of data points. These values
are normalised by dividing the minimised value R, defined by (18), by the number of
data points in that time series.
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Normalised residual value
Model 08-09 period 16-17 period

Mutualism 0.004410054226 0.002081775314
Competition 0.004417731453 0.002248030956

Predator-Prey (FTSE-DAX) 0.003944355827 0.002631759597
Predator-Prey (DAX-FTSE) 0.004772988598 0.00275144836

Table 1: Table of normalised minimised residual values for each model when fitted to both times series.

4.2.4. Can we forecast a trend?
We preface the following by saying that we are not setting out here to use our models

as any kind of forecasting aid to be used for predictions, e.g. for trading. We see that
all residual values in Table 1 are very small, yet the clear best fitting model to the 2008-
2009 time period is (17) where FTSE is considered the predator and DAX the prey. In
the following image, we extend time in Figure 5c for a further 6 months.

Figure 7: Image of FTSE and DAX daily opening prices from June 2008 to April 2010 and the solutions
to the predator-prey system (17) with parameter values used for solution in Figure 5c.

We do the same for images in Figures 6a and 6b since the mutualism model (1) and
competition model (16) were the two lower residuals for the 2016-2017 time period.
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Figure 8: Image of FTSE and DAX daily opening prices from June 2016 to May 2018 and the solutions
to the mutualistic system (1) with parameter values used for solution in Figure 6a.

Figure 9: Image of FTSE and DAX daily opening prices from June 2016 to May 2018 and the solutions
to the competition system (16) with parameter values used for solution in Figure 6b.
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We can see, in Figure 7, that the predator-prey model does a reasonably good job of
predicting the upward trend which occurs in FTSE and DAX throughout mid-2009.
Also, the mutualism model and the competition model display some agreement with the
trends in the stock market data after May 2018 as shown in Figures 8 and 9.

5. Conclusions

It can be seen in Figure 3 that the number of asymptotically stable r1, r2 pairs in the
odd delay case appears to be converging to that of the even delay case which remains
constant. This is an interesting finding with regards to the study of difference equations:
it offers the proposition that when considering high order systems of such equations,
certain qualitative behaviours can be produced which are very similar if not the same
to those produced with the corresponding lower order systems. For this reason, it may
simply not be necessary to perform difficult stability analyses on higher order systems
since the lower order cases work just as well in this regard and are easier to work with;
this knowledge has the potential to save time and effort for those working with such
systems. We can see this exemplified in Figure 2f which is remarkably similar to that
of Figure 1a. We see in Section 4 that overall, all three of our models give a good fit as
trend lines to both time series with very low residual values. Further, we have shown
that the models which produced the smallest of these residual values exhibit similar
trends to that of the actual time series data when projected 6 months into the future.
However, it is clear that dramatic conclusions, although enticing, may be naive to make
here. One reason for this could be that our number of data points per parameter may be
inadequate for the purposes of fitting. Another may be that there is a great deal of un-
certainty from a projection point of view: we acknowledge that the differences between
R values in Table 1 are far too marginal to distinguish between types of interaction i.e.
there is no true “better" fit. This is also an issue we discovered in the paper [9]. So
despite some positive findings in our attempts at projecting forwards, we don’t claim
to have any tool for identifying in advance which model gives the best prediction. The
work we have produced in this paper can provide useful assistance in the complex world
of financial modelling, yet it is important that future researchers use this work to under-
stand the following. It may be unwise to directly fit ecologically designed population
models to financial data as they are not constructed for this purpose. However, the prin-
ciples of ecological study, e.g. the concept of incorporating species (i.e. stock market)
interactions, etc. can be extremely useful in helping modellers develop purpose-built,
sophisticated financial models from the ground up.
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