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Abstract

The analysis of volatile organic compounds (VOCs) emanating from biological samples appears as one of the most promising approaches in
metabolomics for the study of diseases, namely cancer. In fact, it offers advantages, such as non-invasiveness and robustness for high-
throughput applications. The purpose of this work was to study the urinary volatile metabolic profile of patients with renal cell carcinoma (RCC)
(n = 30) and controls (n = 37) with the aim of identifying a potential specific urinary volatile pattern as a non-invasive strategy to detect RCC.
Moreover, the effect of some confounding factors such as age, gender, smoking habits and body mass index was evaluated as well as the ability
of urinary VOCs to discriminate RCC subtypes and stages. A headspace solid-phase microextraction/gas chromatography–mass spectrometry-
based method was performed, followed by multivariate data analysis. A variable selection method was applied to reduce the impact of potential
redundant and noisy chromatographic variables, and all models were validated by Monte Carlo cross-validation and permutation tests. Regard-
ing the effect of RCC on the urine VOCs composition, a panel of 21 VOCs descriptive of RCC was defined, capable of discriminating RCC patients
from controls in principal component analysis. Discriminant VOCs were further individually validated in two independent samples sets (nine
RCC patients and 12 controls, seven RCC patients with diabetes mellitus type 2) by univariate statistical analysis. Two VOCs were found consis-
tently and significantly altered between RCC and controls (2-oxopropanal and, according to identification using NIST14, 2,5,8-trimethyl-1,2,3,4-
tetrahydronaphthalene-1-ol), strongly suggesting enhanced potential as RCC biomarkers. Gender, smoking habits and body mass index showed
negligible and age-only minimal effects on the urinary VOCs, compared to the deviations resultant from the disease. Moreover, in this cohort,
the urinary volatilome did not show ability to discriminate RCC stages and histological subtypes. The results validated the value of urinary volati-
lome for the detection of RCC and advanced with the identification of potential RCC urinary biomarkers.

Keywords: volatile organic compounds� urine� biomarkers� renal cell carcinoma� gas chromatography–mass
spectrometry�multivariate statistical analysis

Introduction

RCC, the most common and lethal malignancy of the kidney [1], is
traditionally detected by classical imaging techniques, such as
ultrasound, computed tomography and magnetic resonance imaging

[1, 2]. However, most RCCs lack characteristic early clinical symp-
toms and persist asymptomatic until later stages [2, 3], when the
response to therapy is limited and the prognosis poorer with a dismal
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possibility of cure [4]. In view of these aspects, the markedly impor-
tance of investigating new diagnostic assays that allow early detection
and diagnosis and the clinical impact that they could have in the clini-
cal management of RCC is highlighted [5, 6].

Throughout the past decade, the considerable refinement of new
analytical techniques, such as mass spectrometry (MS), usually cou-
pled to separation techniques (namely, gas chromatography, GC) and
nuclear magnetic resonance (NMR) spectroscopy, has made it possi-
ble to more easily detect and identify compounds in complex mix-
tures, providing a way to perform metabolic profiling of body fluids
[7–10]. The exhaustive exploration of metabolomics potentialities for
biomarker discovery, particularly regarding cancer, is linked to the
opportunity that it offers to follow, most of the times non-invasively,
metabolic alterations accompanying the pathology. From this per-
spective, following distinctive deviations in a biofluid such as urine
seems even more advantageous regarding its non-invasiveness and
easy collection.

Since ancient times that physicians have been correlating speci-
fic odours to specific ailments, as reviewed by several authors
[11–13], and it is assumed that pathological processes may influ-
ence the individual odour fingerprint by changing the type or the
relative amount of VOCs that are usually produced [11]. Regarding
this, the analysis of the volatile profile (volatilome), through the
analysis of VOCs, is one of the most promising metabolomics-
derived approaches and, in fact, different volatile patterns have
been correlated with a plethora of diseases, including cancer [11,
14, 15]. Moreover, after trained dogs successfully discriminate
patients with cancer from controls on the basis of urine odour
[16–20], the potential of VOCs for the analysis of cancer was even
more sustained by the development of some promising sensors
array which function is dependent on the detection of VOCs ema-
nating directly from cancer lesions [21, 22], breath [23] and urine
[24]. These studies provide a convincing support that the presence
of cancer cells in the body leads to the alteration of VOCs emanat-
ing from biological samples, particularly of those closely correlated
with tumoral tissues. The analysis of volatiles holds other advan-
tages because sample preparation is simpler and faster, compared
to other approaches, which prevents metabolite loss and enables
high-throughput processing and analysis of a plethora of com-
pounds from several samples [25].

This study consists of an extension of our previous work in
which we developed a headspace solid-phase microextraction (HS-
SPME) gas chromatography–mass spectrometry (GC-MS) method-
ology to perform the volatile profiling of human urine samples as a
way to detect changes characteristics of RCC. In fact, our previous
work [26] demonstrated, in a pilot study, the potential of the uri-
nary volatilome to successfully segregate RCC patients and controls
after multivariate statistical analysis. Here, we tested the analytical
protocol using a larger cohort. Besides the effect of the disease
over the urinary volatilome, the effect of the following possible con-
founding factors body mass index (BMI), age, gender and smoking
habits was also evaluated, and the ability of urinary VOCs to dis-
criminate samples according to RCC histological subtypes and
stages was assessed. Moreover, we used two independent sets of
samples, including controls and RCC with and without diabetes

mellitus type 2 (DMT2), to validate the 21 compounds that, accord-
ing to univariate statistical analysis, showed to be descriptive of
RCC. DMT2 is a relatively common comorbidity in patients with
RCC and has been proposed as a possible risk factor for RCC’s
development [27]; however, it is known to independently produce
alterations on the metabolic profile, namely on the urinary volatile
profile [28–30]. Thus, the validation of any discriminant com-
pounds in patients with DMT2 would be of great importance to
assess the robustness of potential RCC biomarkers.

Material and Methods

Chemicals

The chemicals used during the experimental work were all of analytical

grade. Sodium chloride (NaCl, 99.5%) and hydrochloric acid (HCl, 37%)

were purchased from Sigma-Aldrich (St. Louis, MO, USA). The water
used to prepare the 6M solution of HCl was ultrapure water obtained

from a Milli-Q system (Millipore, Bedford, MA, USA).

Subjects

The Portuguese Oncology Institute-Porto (IPO-Porto) cordially provided

the urine samples from patients diagnosed with RCC and samples from

control subjects (cancer-free) were kindly provided by the Cedofeita
Clinical Analysis Laboratory (Porto, Portugal). All subjects enrolled in

the study gave written informed consent, and the study was approved

by the Ethics Committee of IPO-Porto (CES76/2012).
For the construction of the classification model, the cohort enrolled

in this study comprised 30 patients diagnosed with primary RCC (11

females and 19 males; age range 35–79, average age 60) and 37

healthy control (cancer-free) subjects (27 females and 10 males; age
range 38–86, average age 69; Table 1). Subjects with type II diabetes

mellitus and other acute pathological conditions were left out from the

study. Table 1 includes the classification of the RCC tumours regarding

the histopathological subtype and TNM staging [2]. For RCC patients,
information on subject age, gender, smoking habits and BMI is also dis-

played on the table. For controls, only description on age and gender

was available.
The urine samples from all the patients were provided before sur-

gery, radiation and/or implementation of any chemotherapeutic sched-

ules. Both patients and controls provided a sample of first void urine

(after overnight fasting) in a sterile cup. All samples were then cen-
trifuged (2916 9 g for 20 min. at 4°C) and split into several aliquots.

The aliquots of urine samples were stored into cryovials at �80°C until

further analysis.

Sample preparation

Prior to HS-SPME/GC-MS, urine samples were thawed (room tempera-
ture), 2 ml of urine was acidified (pH 2.00 � 0.02; adjusted with 6M

hydrogen chloride and transferred to a 10-ml glass vial containing

0.59 g of sodium chloride, capped with a PTFE septum and a screw

cap). Each sample was tested in duplicate.
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HS-SPME/GC-MS measurements

The HS-SPME procedures were performed using a Combi-PAL autosam-

pler (Varian Pal Autosampler, Switzerland) and the Cycle Composer
software (CTC Analytics System Software, Switzerland) using a DVB/

PDMS fibre coating, as optimized in a previous work [26].

The GC-IT/MS analyses of the volatiles extracted from urine were per-

formed using a Varian CP-3800 gas chromatograph equipped with a Var-
ian Saturn 4000 ion trap mass detector and a Saturn GC-IT/MS

workstation software (version 6.8). Chromatographic separation was car-

ried out using a capillary column VF-5 ms (30 m 9 0.25 mm

9 0.25 lm) from Varian. High purity helium C-60 (Gasin, Portugal) was
used as the carrier gas at a constant flow rate of 1.0 ml/min. The oven

temperature was held for 1 min. at 40°C and then increased at a rate of

5°C/min to 250°C (held for 5 min.) followed by an increase in 5°C/min to
300°C (held for 1 min.). The detection was performed using an ion trap

detector set as follows: the transfer line, manifold and trap temperatures

were 280, 50 and 180°C, respectively. The mass range was 40–400 m/z,

with a scan rate of 6 scans. The emission current was 50 lA, and the
electron multiplier was set in relative mode to autotune procedure. The

maximum ionization time was 25,000 ls, with an ionization storage level

of 35 m/z. The analysis was performed in full scan mode.
The tentative assignment of the volatiles was based on the compar-

ison of their retention times (RTs), Kovats retention index (RIs) and

mass spectra to those from the National Institute of Standards (NIST)

mass spectral library (2014). When possible, the identification was con-
firmed with the injection of available standards using the same column

and temperature programme. Only for forward and reverse % of match

Table 1 List of urine samples collected for controls and RCC subjects, comprising number of samples, age and gender

Sample group no. samples Age range Mean age � S.D. Females Males

Controls (total cohort) 37 50–86 69.08 � 12.04 27 10

RCC (total cohort) 30 35–79 59.95 � 12.44 11 19

Clear- cell (ccRCC) 20 41–79 61.47 � 12.24 5 15

Type 1 papillary (pRCC) 5 24–74 61.53 � 7.34 3 2

Chromophobe (chRCC) 5 35–71 52.28 � 16.34 3 2

With metastases 8 50–78 66.05 � 8.62 1 7

Without metastases 22 35–79 57.73 � 13.02 10 12

Stage I 16 41–79 58.50 � 12.13 8 8

Stage II 3 42–78 59.99 � 17.91 3 3

Stage III 7 35–76 61.74 � 14.70 2 5

Stage IV 4 50–72 62.58 � 9.20 - 4

Smokers *,† 9 35–76 55.20 � 13.16 2 7

Non-smokers 21 41–79 62.86 � 11.00 10 11

BMI ≥25‡ 20 35–79 61.02 � 11.80 9 11

BMI <25 7 42–77 60.84 � 14.45 1 6

Controls >60 year versus Controls ≤60 year, gender-matched

Age ≤60 12 50–60 54.75 � 4.05 8 4

Age >60 13 67–86 80.62 � 5.84 9 4

ccRCC versus other RCC subtypes, age-matched

ccRCC 9 41–74 57.81 � 12.56 1 8

Other subtypes 9 35–74 56.79 � 13.68 5 4

For RCC patients, histopathological cancer type, TNM staging, presence or absence of metastases, smoking habits and BMI (kg.m-2).
S.D., standard deviation.
*Information not available for 1 subject.
†Includes smokers (n = 4) and former smokers (n = 5).
‡Information not available for three subjects.
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of 70% or above the tentative compound identification was considered.
The integration of the selected variables was performed using selected

qualifier ions based on their relative abundance and selectivity. The RI

of these variables was calculated according to the RTs obtained, under

the same chromatographic conditions, for a solution of n-alkanes (C8-
C20) series (Table S1A). Unidentified compounds are reported as ‘VOCi’

(i = 1,2,3,. . .), throughout the text, according to their crescent RT

value.
In addition to other adequate references, the Human Metabolome

Database (HMDB, www.hmdb.ca) and Urine Metabolome Database

(www.urinemetabolome.ca) were consulted to assist in the identification

and biochemical interpretation of compounds.

Multivariate statistical analysis

All the raw data files were exported as ASCII files and imported into
Excel for manual chromatogram alignment. The MS spectra were used

to confirm peak identity as a way of supervising the manual alignment.

The goal of this procedure was the correction of small differences in
RTs across the samples due to analytical drifts. Manual alignment was

preferred, despite being a time-consuming process. The matrix corre-

sponding to the sample with higher number of scans (expressed as

kcounts) was used as reference for the manual alignment, and all the
other samples were aligned against it. As all the samples were analysed

as duplicates, a mean chromatogram was obtained for each. After

alignment, the chromatographic region between 1.31 and 44.00 min.

was considered for multivariate analysis, after exclusion of a chromato-
graphic region with a chromatographic signal with an expressive tailing

(4.67–5.90 min.) (MATLAB 7.12.0, The MathWorks, Inc, Natick, MA,

USA). Chromatograms were normalized by probabilistic quotient
normalization (PQN) (Matlab 7.12.0, The MathWorks, Inc) and scaled

to unit variance (UV) (SIMCA-P 11.5, Umetrics, Umea, Sweden). Princi-

pal component analysis (PCA) and partial least-squares discriminant

analysis (PLS-DA) were applied to the chromatograms (SIMCA-P 11.5,
Umetrics, Umea, Sweden). PLS-DA model robustness was assessed by

Monte Carlo cross-validation (MCCV) using 500 iterations, using a soft-

ware developed in the University of Aveiro [31]. For each generated

classification models, Q2 values, number of latent variables and confu-
sion matrices of original and randomly permuted classes were

retrieved. Sensitivity (sens), specificity (spec) and classification rates

(CR) were computed. A receiver operating characteristics (ROC) map
was constructed to assess the predictive power of each model. PLS-DA

models were considered robust when only minimal overlap of the origi-

nal and randomly permuted Q2 distributions was observed.

A variable selection method was applied to the aligned and normal-
ized matrices in order to increase model robustness and decrease the

impact of potentially noisy variables. The chromatographic variables

were selected through the intersection of three conditions: VIP > 1 and

VIP/VIPcvSE > 1 and |b/bcvSE| > 1 [32]. After the application of variable
selection, each PLS-DA was reapplied and resubmitted to MCCV. For

each model, the chromatographic features (characterized by RT and

mass spectra) found to contribute to class discrimination were inte-

grated in the original chromatograms (Saturn GC-IT/MS workstation
version 6.8). The average value for each feature was obtained and PQN-

normalized (Matlab 7.12.0, The MathWorks, Inc). The statistical signifi-

cance of each normalized integral was evaluated by the nonparametric
Wilcoxon rank-sum test or the parametric two-sample Student’s t-test.

Chromatographic features were considered statistically relevant when P

value <0.05. The Benjamini–Hochberg false discovery rate (BH-FDR)

correction [33] was applied to adjust P-values for multiple comparisons.
The FDR-corrected P-value is equal to P-value*(n/ (n�2)), where n is

the number of chromatographic features tested in univariate statistical

analysis. Similarly, the cut-off value considered to discriminate the sta-

tistically significant features was 0.05. Moreover, for each feature inte-
grated, the effect size (following the definition given in Berben et al.

[34]) and percentage of variation and uncertainty were calculated.

Finally, a correlation network was computed using the set of signifi-
cantly different VOCs in RCC patients compared with controls, based on

Spearman’s rank correlation. The correlation network was computed

using the Gephi 0.9.1 software (The Gephi Consortium, Paris, France)

[35], considering pairs with a correlation coefficient (r) and a signifi-
cance (P) threshold of |r| 0.7 and P < 0.05.

Validation of the descriptive VOCs

The RCC-distinctive panel of volatiles was tested in two independent

validating sets: the first consisting of nine patients diagnosed with pri-

mary RCC (six females and three males; age range 44–72, average age
60) and 12 control subjects (seven females and five males; age range

38–83, average age 59); the second consisting of seven patients diag-

nosed with primary RCC and with DMT2 (two females and five males;

age range 40–82, average range 66; Table S1).

Results

A total of 181 metabolites (full scan) were consistently detected in the
urine samples of both RCC patients and healthy controls, and it was
possible to identify among them several chemical classes, such as
alcohols, aldehydes, ketones, terpenes, compounds containing sul-
phur and furan moieties, steroids and naphthalene derivatives. A rep-
resentative urine full scan chromatogram with some of the most
abundant VOCs is presented as supplementary material as well as a
list of the selected VOCs identified for the computed PLS-DA models
(Fig. S1, Table S2).

To study the effect of the possible confounding factors, the con-
trols were considered to study the effects of age and gender. Accord-
ing to the results of the MCCV (Table S3), and considering these
cohort of samples used on the untargeted approach, only age showed
some predictive ability to classify the samples and thus act as a con-
founder. In fact, when considering the age (controls ≤60 years versus
controls >60 years) as the discriminant factor, from the selected vari-
ables of the gender-matched cohort (Table S4), nine were found sta-
tistically significantly altered (after BH-FDR correction) between
controls over 60 years compared to controls under 60 years of age.
Six of these compounds were found elevated (1,2,3,4-tetrahydro-
1,5,7-trimethylnaphthalene, 1,1,6-trimethyl-1,2-dihydronaphthalene,
1-(2,3,6-trimethylphenyl)-3-buten-2-one, 4-(2,6,6-trimethyl-1-cyclo-
hexa-1,3-dienyl)butan-2-one, 1,1,4,5,6-pentamethyl-2,3-dihydro-1H-
indene, and one unidentified) and 3 decreased (2-pentylfuran,
D-carvone, and (4Z)-4-(2,2-dimethyl-6-methylidene-cyclohexyli-
dene)-butan-2-ol) in older subjects.

Considering the differences among the RCC group of samples for
smoking habits and BMI, unmatched and matched PLS-DA models
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were obtained for these and submitted to MCCV, but all failed to show
predictive ability to classify the samples which means that, consider-
ing this cohort of samples, these factors do not seem to act as con-
founders and impact the classification of samples according to the
presence of the disease. Moreover, using the volatile profile, it was
not possible to distinguish RCC samples according to their TNM stag-
ing (Table S3). Some ability to classify samples according to histolog-
ical subtype (ccRCC versus other subtypes) was demonstrated
(median Q2 = 0.70, sens = 94%, spec = 78.6% and CR = 86.3%;
Table S3); however, when the variables were tested for their individual
significance, none was found significant.

Regarding the disease model, when considering an age- and gen-
der-matched subcohort of RCC and control samples, the predictability
of the PLS-DA model did not improve compared to the unmatched
cohort (Table S3), evidencing a negligible effect of both age and gen-
der in the urinary volatilome of this set of samples. Thus, the
unmatched model was the one considered for the assessment of the
impact of the variables contributing for the urinary profile of RCC.

Considering the study of the effect of RCC on the urinary volati-
lome, the PCA scores scatter plot showed only a slight separation
trend between controls and RCC on the first principal component
(PC1) but using the PLS-DA a better discrimination was possible
(R2X = 0.316; R2Y = 0.671; Q2 = 0.550). Moreover, the prediction
power of the PLS-DA model improved after variable selection
(Q2 = 0.631; Fig. 1) and was confirmed by MCCV (median
Q2 = 0.72, sens = 95.6%, spec = 92.6%, CR = 93.9% versus med-
ian Q2 = 0.42, sens = 69.7%, spec = 81.7%, CR = 76.3, before the
selection of the variables), as is expressed by the improvements in
the Q2 distribution and ROC curve (Fig. S2, Table S3). Once more, the
application of a method of variables selection proved to be useful for
the reduction/exclusion of redundant and irrelevant variables for the
classification whereas retaining those with more predictive power.

Among the chromatographic features selected as discriminative
for the PLS-DA classification for the unmatched disease model
(Fig. 1C), 2-pentylfuran, 1,2,3,4-tetrahydro-1,5,7-trimethylnaphtha-
lene, TDN and VOC2 were common to the age model (Table 2) and

Fig. 1 PCA (A) and PLS-DA before (B) and after(C) variable selection scores scatter plots obtained for the HS-SPME/GC-MS chromatograms of

human urine samples for the unmatched cohort of controls (n = 37, ) and RCC patients (n = 30, ●). The PCA model was obtained with 2 PCs

and the PLS-DAs with 2 LVs. The ellipses indicate the 95% confidence limit of each model. [Colour figure can be viewed at wileyonlinelibrary.com]
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showed possible bias of higher average age in controls than in RCC
patients. Thus, the results evidence that there is only a possible small
effect of the discrepancies on age on the classification of the RCC
samples and, overall, considering this cohort of samples, the possible
existing confounders did not hinder the classification of RCC samples.
Moreover, in the unmatched disease model, from the 21 variables
that showed to be significant (P < 0.05) after the BH-FDR correction,
only two (VOC2 and 1,1,6-trimethyl-1,2-dihydronaphthalene) with
possible bias from the age model were present.

From the 21 compounds found significantly altered between the
two classes of samples, 11 were found elevated in cancer patients
compared to controls and 10 decreased. This 21-panel of compounds
includes five unidentified features (RT 20.86, 24.15, 24.63 and
26.85 min.). Using the normalized integrals of these 21 compounds,
a PLS-DA model was computed showing, after MCCV, a comparable
performance regarding the sensitivity, specificity and CR but a rela-
tively lower predictive power (Q2) of the PLS-DA model using all the
selected variables for the unmatched cohort (median Q2 = 0.46,
sens = 90.8%, spec = 93.3%, CR = 92.1% versus median Q2 =
0.72, sens = 95.6%, spec = 92.6%, CR = 93.9%; Table S3). Never-
theless, during unsupervised multivariate analysis (using a PCA), this
21-compound panel was able to discriminate RCC and control
classes, confirming the potential for them as RCC biomarkers
(Fig. 2). Moreover, removing the VOC2 and 1,1,6-trimethyl-1,2-dihy-
dronaphthalene, that show possible bias with age, and resubmitting
the remaining 19 normalized integrals to PCA analysis, the resulting
model did not improve (PC1 = 32.8% and PC2 = 12.6% compared
to PC1 = 32.0% and PC2 = 15.9%) and a similar result was
observed for the PLS-DA analysis (Table S3).

The significance of the 21 VOCs panel was further tested in an
independent set of urine samples from 12 controls and nine RCC
patients (Table S1). These samples were analysed under the same
conditions but at a different time which led to significant visual differ-
ences on the full scan chromatograms compared to the typical

chromatogram of the set used during the untargeted study (Table 1).
In fact, from the 21 panel, only 15 were detected and only three of
them showed to be statistically significant when comparing the RCC
with controls: 2-oxopropanal, 2,2-dimethylpropionic acid butyl ester
and 2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalene-1-ol. 2-Oxopropa-
nal and 2,2-dimethylpropionic acid butyl ester were detected signifi-
cantly increased in RCC urine samples compared to controls,
whereas 2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol was
decreased (Fig. 3), similar to what was found in the cohort of sam-
ples used for the untargeted approach, as seen in Table 2.

Additionally, the biomarker potential for these 21 compounds was
tested in a small number of RCC samples with DMT2 to evaluate their
sensitivity for the detection of RCC even in the presence of other
comorbidities, particularly diabetes, which has been considered one
of the potential risk factors for the development of RCC [27]. From
the 21-panel, only five VOCs appeared statistically significant
(P < 0.05) when comparing these RCC-DMT2 samples with controls:
2-oxopropanal, 2,2,5,5-tetramethyltetrahydrofuran, a-methylstyrene,
2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol, and DHEA-S. Inter-
estingly and confirming the potential of these compounds to detect
RCC, the variation for all of them between RCC and controls was the
same found during the untargeted study (Table 3).

Finally, correlation networks were used to represent the overall
interconnected map of the 21 VOCs found statistically different in
RCC patients compared with controls with the aim to deduce underly-
ing biochemical pathways based on the observed correlations. Inter-
estingly, the resulting correlation network (Fig. 4) showed two
correlation clusters comprising VOCs increased (A) and decreased
(B) in RCC patients compared to controls. Cluster A reflects alter-
ations in alcohols (2-methylpropan-2-ol, 2-methylpropan-1-ol and 2-
methylbutan-2-ol), carbonyl compounds (2-oxopropanal and 4-
methylheptan2-one) and ethers (2-ethoxy-2-methylpropane and
2,2,5,5-tetramethyltetrahydrofuran). In addition, 2,2,5,5-tetramethyl-
tetrahydrofuran is positively correlated with an ester compound (2,2-
dimethylpropionic acid butyl ester). Cluster B links the naphthalene
derivatives (TDN, 1,1,5,6-tetramethyl-1,2-dihydronaphthalene and
2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol) with (E)-1-(2,3,6-
trimethylphenyl)buta-1,3-diene. Moreover, this correlation network
suggests that VOC4 and VOC5 may also be naphthalene derivatives
due to their positive correlations with TDN, as well as common char-
acteristic fragments in MS spectra (157 + 172 in Table 2).

Discussion

In the present study, the volatile profile of human urine was studied,
in an attempt to reveal a VOC-biomarker panel for non-invasive detec-
tion of this cancer. Despite the potential of VOCs for the discrimina-
tion between cancer and control samples being currently
acknowledged [22, 24, 36–38], concerning RCC, the potentialities of
human urine volatilome for that purpose are scarcely exploited [26,
39].

Previous studies have shown that, besides the metabolic status of
the individual [11], other factors, such as gender [28], age [40] and
diet [41, 42], may have a substantial impact on the urinary volatilome,

Fig. 2 PCA scores scatter plot obtained for the urine of the unmatched

cohort of controls ( ) and RCC patients (●) with the 21-metabolite

panel, obtained with 2 PCs (ellipse indicates the 95% confidence level).
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which increases the importance of a critical analysis of each candi-
date urinary biomarker yielded by the analysis of volatiles in urine. In
fact, the alterations on the volatiles may be not only a function of the
presence of the disease but also of contributions from many other
less uncontrolled variables which would decrease their biomarker
power even when strong disease associations are found. Considering
the present study, the impact of age, gender, BMI, and smoking
habits on the urine volatilome was studied and showed to be negligi-
ble. In fact, only when gender-matched controls over 60 years and
under 60 years were compared, nine compounds (six of them already
reported in human urine according to the HMDB) were found as being
expressed differently in the urine of older and younger, with six being
significantly increased. Robinson and Robinson (1991), reported
higher urinary levels of several ketones (namely carvone) and furans
(such as 2-methyltetrahydrofuran, 2-methylfuran and 3-methylfuran)
in the urine of younger males compared to older (mean age not

referred) [40]. The alteration found for carvone and 2-pentylfuran (de-
creased in the younger group) is concordant with that found in the
present study but not for the other 2 ketones (1-(2,3,6-trimethylphe-
nyl)-3-buten-2-one and 4-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl)
butan-2-one), which were found here significantly increased in the
older group. Moreover, the description of the biological origin and
association of the volatiles found significantly altered with ageing is
very difficult as the majority of them possess also an exogenous ori-
gin (diet).

Regarding the possible bias resultant from the unmatching of
control and RCC urine samples for age, only four compounds showed
possible bias: 2-pentylfuran, 1,2,3,4-tetrahydro-1,5,7-trimethyl-
naphthalene, TDN and VOC2. Thus, for the cohort considered, the
effect of the disease on the urinary volatilome was not hindered by
the unmatching of control and RCC samples for these unwanted
sources of variation.

Fig. 3 Boxplots for the three VOCs found significantly altered between urine controls (n = 12) and RCC patients (n = 9) samples in the independent

set and that are in accordance with the results for the untargeted analysis. (A) 2-oxopropanal (P-value = 1.48 9 10�2), (B) 2,2-dimethylpropionic

acid butyl, (C) 2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol.
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Among the compounds found significantly altered in the urine of
RCC patients compared to controls, three alcohols (2-methylpropan-
2-ol, isobutanol and 2-methylbutan-2-ol) were found significantly
increased in the urine of RCC patients compared with controls, show-
ing strong positive correlations between them. No previous cancer

association was found for these compounds, but increased urinary
levels of isobutanol, similar to other aliphatic alcohols and ketones,
were already related with diabetes [28, 29, 43], while others reported
decreased urinary levels of isobutanol in patients with diabetes [30,
44].

Table 3 List of statistically significant varying metabolites in RCC patients with DMT2 (n = 7) compared to controls (n = 37), characterized

by their IUPAC (and common) name. The percentage of variation (� % uncertainty), ES, ESSE and P-values are presented

Metabolite
% variation
(� % uncertainty)

ES (�ESSE) P-value

2-Oxopropanal 56.73 (20.10) 1.37 (0.86) 3.52 9 10�2

2,2,5,5-tetramethyltetrahydrofuran 390.67 (76.91) 2.95 (1.02) 6.91 9 10�5

(1Z)-1-Propen-1-ylbenzene (a-methylstyrene) �94.41 (24.93) �0.79 (0.83) 4.88 9 10�2

2,5,8-Trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol �59.01 (23.11) �0.51 (0.82) 8.94 9 10�3

[(3S,8R,9S,10R,13S,14S)-10,13-Dimethyl-17-oxo-1,2,3,4,7,8,9,11,
12,14,15,16-dodecahydrocyclopenta[a]phenanthren-3-yl] hydrogen sulphate (DHEA-S)

30.21 (25.11) 0.21 (0.81) 1.06 9 10�3

Fig. 4 Correlation network of VOCs signature of RCC patients compared to controls, based on Spearman’s correlation coefficients (|r| 0.7 and

P < 0.01). Node size denotes the effect size value of RCC patients in relation to controls, while colours indicate direction of effect size with (A) red

for decrease and (B) green for increase. Only positive correlations were found according to the threshold (|r| 0.7 and P < 0.01), as indicated by
dark red lines. (Identification: (1) 2-oxopropanal; (2) 2-methylpropan-2-ol; (3) 2-ethoxy-2-methylpropane; (4) 2-methylpropan-1-ol; (5) 2-methylbu-

tan-2-ol; (6) 2,2,5,5-tetramethyltetrahydrofuran; (7) 4-methylheptan-2-one; (8) 2,2-dimethylpropionic acid butyl ester; (9) TDN; (10) VOC2; (11) (E)-

1-(2,3,6-trimethylphenyl)buta-1,3-diene; (12) 1,1,5,6-tetramethyl-1,2-dihydronaphthalene; (13) VOC4; (14) VOC5; (15) 2,5,8-trimethyl-1,2,3,4-tetrahy-

dronaphthalen-1-ol.
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Considering carbonyl compounds, the increased levels of 2-oxo-
propanal (also known as pyruvaldehyde) and 4-methylheptan-2-one
in urine of RCC patients showed a positive correlation, suggesting a
possible relationship in the RCC disturbed biochemical pathways.
2-Oxopropanal is a reactive carbonyl compound produced endoge-
nously by the metabolism of acetone and the catabolism of dihydrox-
yacetone phosphate, glyceraldehyde-3-phosphate and threonine [45,
46]. This metabolite has been found significantly increased in both
urine and serum of patients with diabetes [45] and neurodegenerative
diseases [47]. Regarding cancer, the accumulation of 2-oxopropanal
(and consequently increased urinary excretion) may be a conse-
quence of high glycolytic rates characteristic of cancer [46]. In addi-
tion, increased levels of oxidative stress frequently observed in
oncological states [48, 49] may contribute for even more accumula-
tion of 2-oxopropanal due to increased demands for glutathione. In
this study, the association found between 2-oxopropanal and RCC
suggests, even more, a possible connection between diabetes and
insulin resistance and RCC, which has been described as a possible
risk factor for the development of this type of cancer [27]. Other car-
bonyl compounds, such as ketones, were previously detected in the
urine of oncological patients (colorectal, lymphoma and leukaemia)
compared to controls [37]; however, the present study reports
increased levels of ketones (penten-2-one and 4-methylheptan-2-one)
in the urine of cancer patients as previously reported for breast can-
cer [50]. In addition, penten-2-one has been detected in the faeces of
patients with infectious diseases [51].

The decreased levels of (E)-1-(2,3,6-trimethylphenyl)buta-1,3-
diene, naphthalene derivatives and unknown VOCs (VOC2, VOC4 and
VOC5) in urine of RCC patients may have a possible common origin,
as suggested by the correlation network. Some naphthalene deriva-
tives [52, 53] and (E)-1-(2,3,6-trimethylphenyl)buta-1,3-diene [54]
have been reported as exogenous compounds related with diet. How-
ever, increased levels of naphthalene derivatives were previously
reported in the urine of patients suffering from breast [50] and col-
orectal cancers, lymphoma and leukaemia compared to controls [37].
The later study also suggests that naphthalene derivatives may be the
degradation products of steroids [37].

Finally, considering the 21 VOCs signature of RCC patients, no
correlations were found for a-methylstyrene, 2-carene, retinol acet-
ate, DHEA-S and VOC6. The presence of 2-carene in human urine was
already described [55], and an isomer (4-carene) was found
increased in the urine of patients with breast cancer [50], whereas
here a decrease was observed for RCC patients compared to controls.
Retinol acetate (a derivative of vitamin A) possess an exogenous ori-
gin and have been also related with diet [56]. DHEA-S is a steroid hor-
mone produced endogenously related with ageing in men but not
clearly defined in women [57]. It was found significantly decreased in
the serum of patients with lung cancer [58] and decreased in the
urine of patients with epithelial ovarian cancer [59], alterations con-
sistent with those found in this study.

Our findings are different from the results of another unique
similar study described until now in the literature [39] which
detected statistically significant differences in 14 VOCs in RCC
patients compared to controls. These differences could at least in
part be dependent on differences in samples’ preparation (we used

acidified urine samples) and the extraction procedure used, as the
type of fibre.

Considering a second set of independent samples (from the same
geographic origin), analysed under the same conditions but approxi-
mately 1 year before, from the 21 compounds, only 15 were detected
and 3 (2-oxopropanal, 2,2-dimethylpropionic acid butyl ester, and
2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol) were significant
and in agreement with the results from the untargeted approach.
Moreover, alterations in VOCs have been strongly associated with dia-
betes [29, 30, 43], and as aforementioned, diabetes has been posi-
tively associated with the development of RCC [27, 60]. For that
reason, and as a preliminary study to validate the 21-panel of VOCs
found here to be descriptive of RCC, seven samples of RCC patients
with DMT2 were tested for the significance of those compounds. Five
of the compounds (2-oxopropanal, 2,2,5,5-tetramethyltetrahydro-
furan, a-methylstyrene, and 2,5,8-trimethyl-1,2,3,4-tetrahydro-
naphthalen-1-ol, and DHEA-S) were concordant with the results
yielded by the untargeted approach. The lack of significance for all the
other compounds may be a result of a confounding effect of diabetes
on the urinary volatilome.

Among all the samples analysed, 2-oxopropanal and 2,5,8-tri-
methyl-1,2,3,4-tetrahydronaphthalen-1-ol (this only identified using
NIST14 and RI) were consistently and concordantly expressed differ-
ently between controls and RCC. Thus, we can suggest that these are
the volatile compounds that hold a greater biomarker power and
robustness regarding the detection of RCC, particularly in order to be
able to detect the disease in a population characterized by high inter-
variability as is the case of the human population. From these, 2-oxo-
propanal, presenting preferentially an endogenous origin, has at least
theoretically a greater biomarker strength and disease correlation
being less affected by other uncontrolled variables.

In this study, the urinary volatilome did not allow the discrimina-
tion of RCC urine samples according to their histological subtype or
even TNM staging. Thus, this seems to hamper the ability of urinary
VOCs to distinguish RCC of lower risk or slower progression from
those more aggressive. However, this may be a result of the limited
cohort of samples that is not well representative of all the stages or
histological subtypes, and it would be expected that considering a
bigger cohort of samples, the detection of predictive or prognostic
biomarkers would be possible. A following larger study is warranted
to investigate and confirm this.

Regarding the biochemical interpretation of the differentially
expressed RCC-associated VOCs, it is required to take into account
that some of them may not be directly cancer-derived but be associ-
ated with other local or systemic body responses, such as inflamma-
tion and/or necrosis [11].

Despite the difficulties and discrepancies perceptible in published
works, there is still a wish for the use of VOCs as disease biomarkers
due to their relatively easy analysis and for that, it would be impera-
tive to correctly identify and exclude exogenous compounds as well
as to decrease the possibility of sample contamination from sample
collection until analysis. Moreover, the simultaneous analysis of dif-
ferent biological samples could help to decrease the spectrum of
unreliable biomarkers. Additionally, the understanding of VOCs ori-
gins as well as deeper knowledge about the pathophysiology of the

2102 ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



disease should assist the identification of specific disease-related
VOCs.

Concluding remarks

In the past years, distinctive volatile profiles have been associated
with several pathophysiological processes what, along with their non-
invasive sampling nature, made them very attractive for disease’s
monitoring. In fact, there are some expressive cases of differences on
volatiles underlying specific disease, such as the characteristic ure-
mic breath odour of patients with chronic renal failure, the acetone-
like breath of diabetic patients with ketoacidosis and specific odours
due to bacterial infections [61]. The same was also reported regard-
ing cancer which provided the sustained basis for the study of urinary
volatilome as a path for the identification of diagnostic cancer
biomarkers.

In the cohort of samples studied, in general, sources of unwanted
variation, such as age, gender, BMI and smoking habits showed a
minimal impact on the urine volatilome compared to the effect of the
disease, not hampering its classification. A panel of 21 VOCs was
identified in urine as successfully characterizing RCC. Moreover, only
for some of them previous correlations with cancer were reported in
urine. Regarding a primary way of external validation of this 21-panel
in independent urine samples, 2-oxopropanal and 2,5,8-trimethyl-
1,2,3,4-tetrahydronaphthalen-1-ol were found significantly altered in
the urine of RCC patients compared to healthy controls. This suggests
the increased potential of them for the validation as RCC biomarkers.
However, an independent validation of the complete volatile signature
found here for RCC is much needed as a follow-up of these results.
Nevertheless, considering the fact that several metabolic alterations
are characteristically shared by different types of cancer and the can-
cer in its full complexity comprehends a diverse group of relation-
ships (cancer cell–cancer cell and cancer cell–host), it should be
addressed in a holistic way. Thus, validation of a panel of biomarkers
instead of single biomarkers should prevail and be followed to achieve
the sensitivity and specificity required.

In conclusion, the results reported in the present study, despite
some limitations, are very encouraging, confirming that the evaluation
of the urinary volatile profile holds great potential regarding the diagno-
sis of RCC. Moreover, their biological and pathophysiological impor-
tance of these discriminatory VOCs is worthy of further exploration.
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