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Abstract  8 

The thickness of the subcutaneous fat in hams is one of the most important factors for the dry-9 

curing process and largely determines its final quality. This parameter is usually measured in 10 

slaughterhouses by a manual metrical measure to classify hams. The aim of the present study was 11 

to propose an automatic classification method based on data obtained from a carcass automatic 12 

classification equipment (AutoFom) and intrinsic data of the pigs (sex, breed, and weight) to 13 

simulate the manual classification system. The evaluated classification algorithms were decision 14 

tree, support vector machines (SVM), k-nearest neighbour and discriminant analysis. A total of 15 

4000 hams selected by breed and sex were classified as thin (0-10mm), standard (11-15 mm), 16 

semi-fat (16-20 mm) and fat (>20 mm). The most reliable model, with a percentage of success of 17 

73%, was SVM with Gaussian kernel, including all data available. These results suggest that the 18 

proposed classification method can be a useful online tool in slaughterhouses to classify hams.  19 

Keywords dry-cured hams; ham-fat grading; subcutaneous fat thickness; pattern recognition20 

 21 

1. Introduction 22 

Ham is one of the most valued product in pork meat industry. This primal cut represents between 23 

25 and 30 percent of the carcass (Cisneros, Ellis, & McKeith, 1996; Gispert et al., 2007) and is 24 

the basis of different regional specialities focused on preserving and flavouring raw meat 25 

(Dirinck, Van Opstaele, & Vandendriessche, 1997). Those specialities include different 26 

techniques such as salting dry-cured ham, smoking or wet curing. Some examples are 27 

Westphalian ham in Germany, Prosciutto in Italy, and Jamon Serrano in Spain. 28 

The Subcutaneous Fat Thickness (SFT) in hams determines, among other factors, which is the 29 

best process for the ham to be submitted. Hams with low subcutaneous fat have a high lean meat 30 

percentage (LMP) and are more appropriate to be processed as raw or cooked meat while hams 31 

with higher subcutaneous fat are more appropriate to be cured or smoked.  32 
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Moreover, the SFT determines the optimum curing time (Bosi, Russo, & Paolo, 2004), which is 33 

directly related to the quality of the final product (Čandek-Potokar & Škrlep, 2012). Therefore, 34 

classify the ham according to the SFT is crucial to get the maximum benefit of the product, in 35 

economic and quality terms. 36 

The thickness of the subcutaneous fat is determined by several factors, among which can be 37 

highlighted the breed (Gispert et al., 2007; Wood et al., 2004), the sex (Font-i-Furnols et al., 2012; 38 

Gispert et al., 2010), the slaughter weight (Fàbrega et al., 2011; Latorre, García-Belenguer, & 39 

Ariño, 2008) and the diet (Realini et al., 2010; Tous et al., 2014; Wood et al., 2004). Regarding 40 

the breed, there are leaner breeds, as would be the Pietrain and other fattier breeds such as the 41 

Duroc (Cilla et al., 2006; Edwards, Bates, & Osburn, 2003). In terms of sex, females tend to 42 

deposit more subcutaneous fat than males (Gispert et al., 2010; Wood, Enser, Whittington, 43 

Moncrieff, & Kempster, 1989). Moreover, the castration, especially surgical but also 44 

immunological, also contributes to deposit more subcutaneous-fat compared with entire male pigs 45 

(Gispert et al., 2010; Wood et al., 2008). 46 

Nowadays slaughterhouses have different methods to estimate the SFT of hams. One of the most 47 

used method is the visual system based on a metrical measure of the SFT over the Gluteus medius 48 

muscle, similar to ZP (Zwei-Punkte Messverfahren) measures, used to determine carcass LMP 49 

(Daumas, 2011; Font-i-Furnols et al., 2016). Indeed, the carcass LMP is a parameter widely used 50 

in slaughterhouses as the current EU legislation establishes it as compulsory for carcasses 51 

classification. There are different methods to determine LMP based, predominantly, on the 52 

existing relationship of thickness between fat and muscle in several parts of the carcass (Font i 53 

Furnols & Gispert, 2009). 54 

Obtaining these measures manually is unsuitable in slaughter plants with medium/high speed line, 55 

therefore the most used methods to determine LMP are semiautomatic systems based on 56 

reflectance penetration probes, as for instance the Fat-O-Meat’er (FOM; Frontmatec Smørum 57 

A/S, Herlev, Denmark) or the Hennessy Grading Probe (HGP; Hennessy Grading System Ltd., 58 

Auckland, New Zealand), which determine fat and muscle thickness at a defined anatomical 59 

position and use them to estimate carcass LMP. Alternatively, there are non-invasive and fully 60 

automatic systems such as AutoFom (Frontmatec Smørum A/S, Herlev, Denmark) which is based 61 

on three-dimensional ultrasonic systems, or VCS 2000 (e + V Technology GmbH, Oranienburg, 62 

Germany) that extracts LMP by processing and analysing images (Font i Furnols & Gispert, 63 

2009). Some of these devices also can estimate several SFT at the loin and at the ham level. For 64 

instance, AutoFom, provides several SFT parameters of the ham like  fatham2 (minimum 65 

subcutaneous fat plus skin thickness measured with a ruler over the muscle Gluteus medius) and 66 

fatham3 (thickness of the subcutaneous fat plus skin measured with a ruler, perpendicularly to the 67 
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skin, at the cranial part of muscle Gluteus medius).  68 

Other systems, such as thermography technology have been proposed to classify the hams 69 

according to the SFT, being the hams with lower fat cover the ones that display a significantly 70 

warmer average temperature surface (Nanni Costa et al., 2010). Also computed tomography has 71 

been used in experimental conditions to determine the fat thickness at different anatomical 72 

positions mainly in the loin region (Lucas et al., 2017) although it could also been used in the 73 

ham region as has been done in live pigs (Carabús et al., 2014). 74 

Nowadays a certain amount of data is collected in the slaughter line like gender and carcass 75 

weight, but also much other information from the productive chain is available such as breed, 76 

diet, transport and farm conditions, medication and castration (if done). In this context, with all 77 

this available data it is possible to take technical and commercial real-time decisions to better 78 

classify products and maximise profits. Therefore, our hypothesis is that complementing the 79 

Autofom-III set of estimated parameters with those additional ones could be used to improve the 80 

ham classification rate according to the SFT.  81 

To carry out this classification it is possible to use classifiers. A classifier is an algorithm used to 82 

assign an unlabelled incoming element in a known category based on certain characteristic 83 

information of that element. These algorithms need to perform a learning stage. There are two 84 

types of primary learning strategies: supervised learning which elaborates a mathematical 85 

function (hypothesis) from previously labelled training data and unsupervised learning which 86 

does not have a training package that allows knowing the data labels, so it is necessary to use 87 

grouping techniques that try to build these labels. Among supervised algorithms, some of the most 88 

widespread are Decision Trees, K-Nearest Neighbours (KNN), Linear and Nonlinear 89 

Discriminant Analysis (LDA/nLDA) and Support Vector Machine (SVM) (Bishop, 2006).  90 

Between the unsupervised classifiers the most popular strategies are the clustering which includes 91 

the Hierarchical and k-Means clustering algorithms. 92 

Thus, the objectives of this study are: (1) To apply and assess different supervised classification 93 

techniques (Decision trees, kNN, SVN, LDA/nLDA) to predict the classification of hams 94 

according to SFT by combining data form Autofom III and intrinsic data from the animal, (2) to 95 

evaluate the impact of each predictor in the accuracy of ham classification, and (3) to evaluate 96 

several combinations of predictors available in different slaughterhouses scenarios and to 97 

compare them. 98 

 99 

2. Material and Methods 100 
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2.1 Animals and facilities. The dataset construction 101 

This study was carried out with data obtained during May 2016 from pigs fattened in Spanish 102 

commercial farms and slaughtered in a commercial slaughterhouse (MAFRICA S.A.) located in 103 

Sant Joan de Vilatorrada, Catalonia, Spain. All farms were less than 200 km far from the 104 

slaughterhouse and pigs were transported using trucks in groups (usually of between 80 and 220 105 

animals). Once in the slaughterhouse pigs rested into lairage pens between 2 and 4 hours before 106 

being slaughtered. 107 

This slaughterhouse works five days per week slaughtering a mean of 1700 pigs per day, obtaining 108 

more than 32000 carcasses per month. A total of 4000 carcasses were selected for this study 109 

according to their breed and sex in order to ensure a representative sample regarding fat thickness. 110 

Those carcasses were selected according to their sex: 60.6% females, 19.4% entire males and 111 

20.0% castrated males and according to their genetics: 51.9% (Large White × Landrace) × 112 

Piétrain, 38.3% were (Large White x Landrace) x Duroc and 9.8% (Large White x Landrace) x 113 

(Duroc x Landrace). Table 1 shows the mean weight of the cold carcass and the fat thickness of 114 

the pigs according to the breed and sex.  Fat thickness parameter is given by the ultrasound 115 

AutoFom-III system and corresponds to the parameter F34 that is described as the fat thickness 116 

at 60 mm in the mid-line between the 3rd and the 4th last rib. 117 

Table 1. The cold carcass weight (mean ± s.d; kg) and the fat thickness at 60 mm in the mid-line between the 3rd and 118 
the 4th last rib (mean ± s.d.; mm) of 4000 carcass according to breed and sex.  119 

BREED n 
WEIGHT  

(mean ± s.d; kg) 

FAT THICKNESS  

(mean ± s.d.; mm) 

(Large White × Landrace) × Piétrain 2077 81.80 ± 8.16 15.39 ± 4.10 

(Large White x Landrace) x Duroc 1531 93.76 ± 10.69 24.55 ± 5.56 

(Large White x Landrace) x (Duroc x 

Landrace) 
392 85.92 ± 9.02 18.60 ± 5.20 

SEX    

Female 2289 85.49 ±10.00 17.59 ± 5.63 

Castrated 1315 90.97 ± 11.54 23.51 ± 6.19 

Entire male 396 80.38 ± 7.91 14.29 ± 3.22 

 120 

Pigs were slaughtered after stunning with CO2 (90%) for 2 min. After scalding they were totally 121 

monitored using the ultrasound AutoFom-III system. Then pigs were eviscerated and splitted 122 

according to standard commercial procedures using an automatic robotic system. After that, the 123 

two half-carcasses were weighted and an experimented operator visually determined the sex of 124 

the pig (female, entire male or castrated male) and classified the left half carcass according to 125 

minimal fat depth over muscle gluteus medius which is shown in Fig. 1. Classes were established 126 

based on the measures shown in Table 2. The operator had a pattern, based on these classes, that 127 
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was used to visually compare and determine in which of the four ham classes (HC) each ham was 128 

classified. 129 

 130 

Fig. 1. Representation of the section used and the measure performed by an expert operator to measure the minimal 131 
fat thickness over muscle gluteus medius to obtain the classification target.  132 

Table 2. Carcass classification according to minimal fat thickness over muscle gluteus medius based on a metrical 133 
measure with a ruler 134 

Ham_Class (HC) Fat depth (mm) 

(1)- Thin <10 

(2)- Standard Between < 10 and  15 

(3)- Semi-fat Between < 15 and 20 

(4)- Fat > 20 

 135 

2.2 Dataset predictors 136 

AutoFom-III predicts carcass LMP and seven other variables (Table 3) from 48 parameters 137 

obtained from the scanning. Nevertheless, a more accurate handmade classification process of the 138 

ham is required for commercial purposes. With the aim of improving classification rates the eight 139 

estimations provided by AutoFom-III, that are going to be used as predictors, are complemented 140 

with three more predictors obtained in the production line (sex, breed, and weight) (Table 3). The 141 

extended set of 11 predictors was used as the input of automatic classification systems applying 142 

pattern recognition techniques to assess different classifiers. 143 

Table 3. The eleven predictors used as the input of automatic classification systems 144 

Predictor Description 

Autofom III 

LMP Lean Meat Percentage 
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F34 
According to the official formula, the subcutaneous fat thickness at 60 mm in the mid-line 

between the 3rd and the 4th last rib. (mm) 

M34 
According to the official formula, muscle thickness at 60 mm in the mid-line from the 3rd to the 

4th last rib. (mm) 

F_GM1 
The minimum subcutaneous fat plus skin thickness measured with a ruler over the muscle 

Gluteus medius (mm) 

F_GM2 
The thickness of the subcutaneous fat plus skin measured with a ruler, perpendicularly to the 

skin, at the cranial part of muscle Gluteus medius. (mm) 

WGT_H Total weight of the ham (kg) 

WGT_HWB Ham's weight without bone (kg) 

WGT_HLM Total weight of the lean meat of the ham (kg) 

Production line 

SEX Sex of animals (females, entire males and castrated males) 

BREED 
Crossbreed ((Large White x Landrace) x Pietrain, , (Large White x Landrace) x Duroc, and 

(Large White x Landrace) x (Duroc x Landrace)) 

WGT Cold carcass weight (kg) 

 145 

Finally, the HC parameter (1, 2, 3 or 4; see Table 2) used as a response was scored by an expert 146 

operator and is referred to the manual metrical measure to classify hams according to the thickness 147 

of the fat at the point shown in Fig.1. 148 

 149 

2.3 Predictors and classifiers evaluated 150 

A preliminary study was performed to evaluate the potential of each predictor individually to 151 

forecast the HC classification. Therefore, each single predictor was only considered to feed each 152 

of the classifiers to obtain the response. All classifiers were evaluated in terms of the accuracy 153 

which is defined as the number of correct predictions divided by the number of total predictions.  154 

Moreover, the impact in the prediction of HC when taking different combinations of predictors 155 

as inputs in the classifier was also assessed in terms of the accuracy. The aim of this assessment 156 

was to compare the predictability of the classifiers when trained with only the single input LMP, 157 

and when other predictors are incorporated, such as the combinations of LMP and SEX or LMP 158 

and BREED (see Table 4) for all the combinations. These combinations were chosen according 159 

to the different slaughterhouse scenarios described below. 160 

Table 4. Predictors included in each dataset 161 

Predictors used as inputs 

Datasets LMP1 SEX2 WGT3 BREED4 F345 M346 F_GM17 F_GM28 WGT_H9 WGT_HWB10 WGT_HLM11 

D1 X           

D2 X X          

D3 X  X         

D4 X   X        

D5 X X X X        

D6 X X X X X X      
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D7 X X X X X X X X X X X 
 162 

1LMP (Lean Meat Percentage); 2SEX (females, entire males and castrated males); 3WGT (warm carcass weight); 4BREED ( (Large 163 
White x Landrace) x Pietrain,  (Large White x Landrace) x Duroc  and (Large White x Landrace) x (Duroc x Landrace));  5F34 164 
(subcutaneous fat thickness at 60 mm in the mid-line between the 3rd and the 4th last rib); 6M34 (loin depth in mmmeasured at 60 mm 165 

from the midline between the 3rd and the 4th last rib); 7F_GM1 (minimum subcutaneous fat plus skin thickness measured with a ruler 166 
over the muscle Gluteus medius); 8F_GM2 (thickness of the subcutaneous fat plus skin measured with a ruler, perpendicularly to the 167 
skin, at the cranial part of muscle Gluteus medius); 9WGT_H (total weight of the ham); 10WGT_HWB (ham's weight without bone); 168 
11WGT_HLM(total weight of the lean meat of the ham). 169 

According to the Commission Delegated Regulation (EU) 2017/1182, it is mandatory in all the 170 

slaughterhouses to classify pig carcasses by means of its LMP. Therefore the combination D1 171 

(Table 4) is available in the production line of all slaughterhouses. 172 

As more procedures are added in the slaughtering line, more predictors could be obtained in real-173 

time such as SEX, BREED, and WGT. Those additional predictors can be incorporated as inputs 174 

in the classifiers, as it has been done from D2 to D5. 175 

Combination D6 considers the addition of predictors F34 and M34 that are provided by AutoFOM 176 

III. These predictors have been chosen because they can be assessed using other classification 177 

systems like Fat-O-Meat’er- FOM (Kempster, Chadwick, & Jones, 1985). Finally, D7 takes all 178 

additional information given by AutoFOM III (predictors F_GM1, F_GM2, WGT_H, 179 

WGT_HWB, and WGT_HTL) (Table 4.). 180 

2.4 Statistical analysis 181 

To train each classifier four sets of 1000 samples of each HC class were randomly selected from 182 

the total of 31188 ones to form a balanced group of 4000 samples. Afterwards, to prevent the 183 

classifier overfitting, a 5-Fold cross-validation method was used (Bishop, 2006) dividing the 184 

dataset into 5 subsets, and for 5 times one of the 5 subsets was used as test set and the other 4 185 

subsets get together to form a training set and the average error across all 5 trials was computed.  186 

All classifiers were evaluated in terms of the accuracy (number of correct predictions divided by 187 

the number of total predictions).  188 

A set of well-known classifier techniques was evaluated (Bishop, 2006): (1) Decision Trees: this 189 

type of algorithm is based on the construction of an automatic diagram of branches that appear 190 

according to the available data and the specific weight of each parameter. This algorithm was 191 

used with 4, 20 and 100 maximum split-levels; (2) Support Vector Machines (SVM): a 192 

discriminative classifier that separates classes by a hyperplane. The SVM algorithm is based on 193 

finding the optimal separating hyperplane that gives the largest minimum distance between the 194 

classes of the training data. This algorithm was used with four different kernels - linear, quadratic, 195 
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cubic and Gaussian (Burges, 1998; Vapnik & Chervonenkis, 1964); (3) K-Nearest Neighbour 196 

Classifiers (K-NN): a non-parametric supervised classifier based on the comparison of a sample 197 

against the K samples which most resemble assigning the most abundant class (Cover & Hart, 198 

1967). This algorithm was used with six different configurations; (4) Discriminant Analysis with 199 

linear (Balakrishnama & Ganapathiraju, 1998; Fisher, 1936) and quadratic configurations based 200 

on finding a linear or quadratic combination of parameters that characterise or separates two or 201 

more classes.  202 

MATLAB and Signal Processing Toolbox™ (Matlab R2016b; The MathWorks, Inc, 1988–2016) 203 

have been used to develop and test all the models and algorithms. 204 

3. Results and discussion 205 

Table 5 shows the accuracy of 17 classification models when a single predictor is taken as input. 206 

These classification models allow interpreting the results as a measure of the impact that each 207 

predictor by itself has in the forecast. Accuracy oscillates between 15 and 68% depending on the 208 

predictor and the type of classifier. Predictors F_GM1 and F_GM2 obtain the best results of 209 

accuracy in most of the classifiers, outperforming the results obtained by LMP. F34 also achieves 210 

good results regarding accuracy, however, in this case, the results are more dependent on the 211 

classifier type. Those results were foreseeable as predictors F_GM1, F_GM2 and F34 provide 212 

information about a direct measure of fat thickness in two points of the ham and in one point of 213 

the loin, respectivily. Indeed, they are physically related to the handmade measure taken by an 214 

expert operator who assigns the HC class. On the other hand, predictors such as SEX, WGT and 215 

BREED can be good predictors to classify the hams correctly but largely depends on the type of 216 

classifier.  217 

The highest and the lowest accuracy values for each predictors’ dataset are presented in bold and 218 

underlined, respectively. The best results of predictors F_GM1, F34, F_GM2 and LMP predicted 219 

the HC class with an accuracy between 63 and 68%. Moreover, predictors BREED, WGT and 220 

SEX predicted the HC class with an accuracy between 42 and 48%. Finally, the rest of predictors, 221 

had an accuracy below 37%.  222 

In general, SVM Medium Gaussian or Coarse Gaussian or the Fine worked better when predictors 223 

are lean or fat parameters while SVM Cubic is one of the worst. This result persists in all 224 

predictors used but the interpretation about the relation of SVM kernels and the dataset is not 225 

clear.  226 

When weight predictors are used, linear or quadratic discriminant analysis, and also Medium 227 

Gaussian, Coarse Gaussian and fine SVM produce the highest accuracy. These results suggest 228 

that continuous variables, such as the weight, improve the accuracy of more complex algorithms 229 
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while categorical variables fits better with more simple algorithms. Sex and breed have higher 230 

accuracy when decision trees and SVM are used and discriminant analysis for breed. We can 231 

hypothesize than sex and breed obtain higher accuracy in decisions trees because, in the dataset, 232 

they are only three breed classes (Table 1). According to the results of (Gispert et al 2007), there 233 

is a clear relation between breed and SFT that could be easily formalized in simple decision trees.  234 

Similar relations have been found for sex (Font-i-Furnols et al., 2012; Gispert et al., 2010). The 235 

lowest accuracy is for the kNN approach. We can observe that for the classification of ham is 236 

usually more relevant breed than weight, and in turn, weight than sex. 237 

Table 5 The Accuracy (in percentage) to predict the Ham Classification (HC) based on the thickness of the 238 
subcutaneous fat of the ham for each classifier when a single predictor is considered. 239 

 Predictors 

Classifiers LMP1 F345 M346 F_GM17 F_GM28 WGT_H9 WGT_HWB10 WGT_HTL11 SEX2 WGT3 BREED4 

Decision Trees 

Simple tree 62 65 36 68 63 33 33 32 42 44 48 

Medium tree 61 65 36 67 64 33 32 32 42 43 48 

Complex tree 61 63 36 65 62 32 32 29 42 42 48 

Support Vector Machines 

Linear 52 58 27 59 51 28 27 26 40 35 47 

Quadratic 31 38 25 40 44 25 25 26 42 27 48 

Cubic 15 19 25 35 22 24 23 24 42 19 48 

Fine 63 65 36 68 65 34 33 32 42 44 48 

Medium Gaussian 63 65 36 68 65 35 33 32 42 44 48 

Coarse Gaussian 63 65 36 68 64 34 33 32 42 44 48 

K-Nearest Neighbours 

Fine  36 53 30 57 53 27 28 25 25 26 25 

Medium  58 62 33 65 63 31 32 28 25 33 25 

Coarse  62 65 35 68 64 32 32 31 27 41 25 

Cosine 25 25 25 25 25 25 25 25 25 25 25 

Cubic 58 61 33 65 63 32 32 28 25 32 25 

Weighted 57 56 31 60 55 29 30 27 25 32 25 

Discriminant analysis 

Linear 62 65 36 68 64 34 33 32 34 44 48 

Quadratic  61 64 36 68 63 35 34 32 39 44 48 

 240 



10 
 

1LMP (Lean Meat Percentage); 2SEX (Females, entire males and castrated males); 3WGT (warm carcass weight); 4BREED ( (Large 241 
White x Landrace) x Pietrain,  (Large White x Landrace) x Duroc  and (Large White x Landrace) x (Duroc x Landrace));  5F34 242 

(subcutaneous fat thikness at 60 mm in the mid-line between the 3rd and the 4th last rib); 6M34 (loin depth in mm measured at 60 mm 243 
from the midline between the 3rd and the 4th last rib); 7F_GM1 (minimum subcutaneous fat plus skin thickness measured with a ruler 244 
over the muscle Gluteus medius); 8F_GM2 (thickness of the subcutaneous fat plus skin measured with a ruler, perpendicularly to the 245 
skin, at the cranial part of muscle Gluteus medius); 9WGT_H (total weight of the ham); 10WGT_HWB (ham's weight without bone); 246 
11WGT_HLM(total weight of the lean meat of the ham). In bold he highest value for each dataset; Underlined lowest value for each 247 
dataset. 248 

Table 6 shows the accuracy of each classifier according to the data set configurations that are 249 

more commonly available in different slaughterhouse scenarios, as described in section 2.3, Table 250 

4. As commented in section 2.4 classifiers were obtained and validated with cross validation with 251 

the 4000 carcasses. In addition, although the 27188 were a non-balanced data set in terms of HC, 252 

(i.e. 16920 (thin), 6074 (standard), 4003 (semi-fat) and 191 (fat)) the classifiers were also 253 

validated using this dataset and accuracy of the results was similar to the obtained by cross 254 

validation (data not shown). 255 

 Table 6 Accuracy (in percentage) of each classification model with different dataset configurations1 used to train 256 

models. 257 

 Datasets 

Classifiers D1 D2 D3 D4 D5 D6 D7 

Decision Trees 

Simple tree 62 62 63 62 64 65 68 

Medium tree 61 64 65 62 67 68 70 

Complex tree 61 63 64 61 68 67 68 

Support Vector Machines 

Linear 52 61 67 63 69 71 71 

Quadratic 31 45 60 49 68 71 72 

Cubic 15 32 33 37 68 71 69 

Fine 63 65 66 63 68 69 69 

Medium Gaussian 63 65 67 63 69 70 73 

Coarse Gaussian 63 64 67 63 68 71 71 

K-Nearest Neighbours 

Fine 36 43 56 42 59 61 62 

Medium 58 61 64 58 65 66 68 

Coarse 62 64 56 62 65 68 67 

Cosine 25 61 56 58 65 68 68 

Cubic 58 61 65 57 65 68 68 
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Weighted 57 59 60 63 63 67 68 

Discriminant Analysis 

Linear 62 56 67 59 64 67 70 

Quadratic  62 58 65 54 55 63 66 

IIn bold the highest value for each dataset; Underlined the lowest value for each dataset. 258 

1 See Table 2 for description of the inputs included as predictors in each dataset studied (from D1 to D7). 259 

The first column shows the results obtained using LMP as a single predictor. The highest value 260 

(stood out in bold, Table 6) of the different classifiers for dataset configurations. D2 and D3 show 261 

a positive impact on most of the classifiers accuracy due to the incorporation of SEX and WGT 262 

predictors, respectively, compared with D1. Moreover, dataset configuration D4, in which 263 

BREED predictor has been incorporated, the accuracy improves just in some of the classifiers, 264 

such as SVM Linear and KNN Cosine. Predictor WGT seems to better complement LMP than 265 

SEX and BREED according to results obtained by Latorre, García-Belenguer, & Ariño (2008).  266 

As a general rule, SVM Coarse, SVM Medium Gaussian and SVM Fine obtain the highest 267 

accuracy when only one or two predictors are used (D1 to D4) compared with the other classifiers. 268 

Moreover, when more predictors are used, all the SVM classifiers produce better results than the 269 

other classifier techniques. In addition, the more predictors are added, the better results are 270 

obtained with the most sophisticated classifiers, such as SVMs with complex kernels. 271 

When SEX, WGT and BREED predictors complement LMP (D5) the accuracy of SVM Medium 272 

Gaussian, one of the classifiers with the highest accuracy in D1, increases a 6%, obtaining an 273 

accuracy value of 69%. Furthermore, the SVM Linear with D5, also obtain an accuracy value of 274 

69% increasing by 17% with respect to D1. 275 

D6 dataset configuration incorporates to D5 predictors F34 and M34 obtained by Autofom. 276 

Configuration D7 has all available predictors (see section 2.2), obtained through the use of 277 

Autofom and intrinsic characteristics of the animal. In configurations D6 and D7, the classifiers 278 

obtain a percentage of accuracy between 61 and 73%. As expected, D7 configuration obtains the 279 

best performance. Regarding the classifiers, the SVM Medium Gaussian reached the best result 280 

with a percentage of accuracy of 73%. 281 

When comparing models obtained from datasets D6 and D7, in average, there is a 1.0% of 282 

prediction improvement. It is suggested that the improvement is not greater because the added 283 

parameters are closely correlated with the previous ones. For instance, the five new predictors 284 

(F_GM1, FGM2, WGT_H, WGT_HWB, WGT_HLM) introduced in the models with input 285 

dataset D7 are highly correlated with predictors WGT and/or F34, present in dataset D6. However, 286 

although an increase of 1.0% does not represent a great improvement in terms of percentage of 287 
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success, it can mean a significantly improvement in the benefits of a company. Misclassifications 288 

of a ham in a lower category, in terms of subcutaneous fat, could incur in losses of more than 30% 289 

in the final sale price. 290 

 291 

Fig. 2 Confusion Matrix of the best accuracy models obtained using SVM medium Gaussian model trained with all 292 
data available (D7). The results are given in percentage. 293 

Fig.2 shows the confusion matrix obtained by SVM Medium Gaussian model developed using 294 

D7. The accuracy of HC classes 1 (79.0%) and 4 (80.1%) are higher than the accuracy of HC 295 

classes 2 (65.6%) and 3 (65.8%). When classes based on a metric threshold are used, extreme 296 

classes tend to be better classified.  297 

The percentage of samples that are incorrectly classified into one of the adjacent categories varies 298 

between 13.9%-19.9% (Fig. 2.). It should be noted that some of these samples fall very close to 299 

the decision thresholds and, in those cases, the classification is particularly difficult. 300 

Moreover, only less than 3.6% of the samples are misclassified in not adjacent categories. Indeed, 301 

it can be concluded that 96.7% of the 27.4% of misclassified samples correspond to samples 302 

classified into adjacent categories. 303 

As explained before, all the models are developed in order to predict the classification of the hams 304 

by an expert operator. Indeed, in this study the human classification methodology is used as 305 

“golden standard” despite the fact that this methodology presents some difficulties such as 306 

operator fatigue (Font-i-Furnols et al., 2016; Olsen et al., 2007) but also the evaluation of the fat 307 

thickness after the carcass being split down by an industrial robot (the carcasses are not precisely 308 

split down in the same way). Therefore, misclassifications of the models do not always mean that 309 

the model is classifying wrong, they are just explaining that the model classification does not 310 

match with the human classification. 311 

Nowadays, the SVM Medium Gaussian model is applied in MAFRICA S.A.  slaughterhouse. It 312 

is observed an accuracy improvement which is not currently quantified. Our working hypothesis 313 
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is that automatic classification improves manual classification because decision making is 314 

objective and operator fatigue are eliminated. 315 

4. Conclusions 316 

Pattern recognition models, based on data usually available on slaughterhouses, can be used to 317 

classify the hams according to the thickness of the subcutaneous fat, and this classification can 318 

emulate the manual system with an effectivity of 73%. This result suggests that pattern 319 

recognition models can be a useful online tool to increase slaughterhouses’ benefits because more 320 

accurate classification increases optimization of the ham processing. 321 
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