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ABSTRACT 10 

Smoked salmon is a highly appreciated delicatessen product. Nevertheless, this ready-11 

to-eat (RTE) product is considered at risk for Listeria monocytogenes, due to both the 12 

prevalence and growth potential of this bacteria on the product. Biopreservation may 13 

be considered a mild and natural effective strategy for minimizing this risk. In this study, 14 

we evaluated the following three potential bioprotective lactic acid bacterial strains 15 

against L. monocytogenes in three smoked salmon types with different 16 

physicochemical characteristics, primarily fat, moisture, phenol and acid acetic content: 17 

two bacteriocin-like producers that were isolated from smoked salmon and identified as 18 

Lactobacillus curvatus and Carnobacterium maltaromaticum and a recognized 19 

bioprotective bacteriocin producer from meat origin, Lactobacillus sakei CTC494. L. 20 

sakei CTC494 inhibited the growth of L. monocytogenes after 21 days of storage at 8 21 

°C in all the products tested, whereas L. curvatus CTC1742 only limited the growth of 22 

the pathogen (< 2 log increase). The effectiveness of C. maltaromaticum CTC1741 23 

was dependent on the product type; this strain limited the growth of the pathogen in 24 

only one smoked salmon type.  25 

These results suggest that the meat-borne starter culture, L. sakei CTC494, may 26 

potentially be used as a bioprotective culture to improve the food safety of cold-smoked 27 

salmon. 28 

Keywords: Food-borne pathogens; fish products; Lactobacillus sakei CTC494; 29 

listeriostatic. 30 

 31 

 32 
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1. Introduction 33 

The consumption of ready-to-eat (RTE) foods has increased considerably during the 34 

last decades, which is likely related to the modern lifestyle (Cabedo et al., 2008). Cold-35 

smoked salmon is normally made from salmon fillets with low levels of salt (< 6% in the 36 

water phase) that are subjected either to traditional wood smoking for prolonged 37 

periods (not exceeding 25 °C - 30 °C during the process) or to the application of 38 

artificial smoke flavouring (liquefied smoke preparations formulated from the 39 

condensation of wood smoke and either water, oil, or emulsifiers). In Spain, the 40 

production and consumption of cold-smoked salmon has been increasing in the last 41 

decade; indeed, Spain represents the sixth highest European country in terms of 42 

consumption of smoked salmon (IRI, 2015). 43 

The latest European zoonoses summary report showed that Listeria monocytogenes 44 

continues to be a concern for RTE fishery products (EFSA-ECDC, 2018). The 45 

prevalence of L. monocytogenes varies depending on the type of fish matrix, the 46 

characteristics of the product, and the packaging but also on the manufacturing 47 

environment; there are differences between processing plants or fish slaughterhouses 48 

(Dauphin et al., 2001; Hoffman et al., 2003; Rotariu et al., 2014b; Thimothe et al., 49 

2004). The risk of contamination of this RTE product has been described (Dauphin et 50 

al., 2001; Jami et al., 2014), and some authors linked a high prevalence of L. 51 

monocytogenes in processing plants with the ubiquitous contamination of the industry 52 

environment and final product (Gudmundsdottir et al., 2005; Nakari et al., 2014; Vogel 53 

et al., 2001; Vongkamjan et al., 2013). Moreover, the product may be a suitable 54 

environment for L. monocytogenes growth (Mejlholm and Dalgaard, 2007b, 2009).  55 

Biopreservation strategies are methods for preserving food using non-pathogenic safe 56 

microorganisms (protective cultures) that are selected to prevent the development of 57 

other undesirable microorganisms. Such strategies are considered natural and 58 

effective means to control food-borne pathogens (Katla et al., 2003; Pilet and Leroi, 59 
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2011; Rotariu et al., 2014a). Among the biopreservation strategies, lactic acid bacteria 60 

(LAB) are considered good candidates because they produce natural antimicrobials, 61 

they are part of the common microbiota of different products, including smoked salmon, 62 

and they are recognized as non-hazardous to human health, classified as Generally 63 

Recognized As Safe (GRAS) or under the criteria of Qualified Presumption of Safety 64 

(QPS) (EFSA, 2018; FDA, 2012). Diverse studies have highlighted the bioprotective 65 

role of endogenous LAB (Lactobacillus, Carnobacterium and Enterococcus) in cold-66 

smoked salmon (Brillet et al., 2004; Duffes et al., 1999a; Ghanbari et al., 2013; Leroi et 67 

al., 2015; Leroi et al., 1998; Nilsson et al., 1997; Richard et al., 2004; Weiss and 68 

Hammes, 2006; Tomé et al., 2008, Concha-Meyer et al., 2011; Rotariu et al., 2014).   69 

The aim of this study was to evaluate the effectiveness of a meat-borne strain, L. sakei 70 

CTC494, in comparison with in vitro-selected LAB strains isolated from cold-smoked 71 

salmon against L. monocytogenes that was artificially inoculated on different cold-72 

smoked salmons, vacuum-packaged and stored at 8 °C for 21 days. L. sakei CTC494 73 

is a recognized bacteriocinogenic (sakacin K) starter and bioprotective meat culture 74 

(Aymerich et al., 2000; Hugas et al., 1995; Hugas, 1998; Ortiz et al., 2014; Ravyts et 75 

al., 2008). Recently it has been assayed as a bioprotective culture in fresh-filleted fish 76 

(Costa et al., 2019).This challenge test strategy is intended to provide scientific 77 

information to the industry, supporting the implementation of biopreservation strategies 78 

aiming to minimize the growth and associated risk of L. monocytogenes in RTE fish 79 

products.  80 

2. Materials and methods  81 

2.1. Identification of isolates and screening of antilisterial activity  82 

A set of 80 isolates from de Man, Rogosa and Sharpe agar (MRS, Merck, Darmstadt, 83 

Germany) (n = 40) and CTSI (Cresol red thallium acetate sucrose inulin) (Wasney et 84 

al., 2001) (n = 40) were obtained from 8 different types of cold-smoked salmon, 7 85 

different brands with 2 products from the same brand that differed in the fresh salmon 86 
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origin (Scottish and Norwegian). The isolates were assayed for their antimicrobial 87 

activity against L. monocytogenes CTC1500, the indicator strain. Previous assays 88 

showed that this strain is one of the fastest growing strains from a set of 4 different L. 89 

monocytogenes strains tested, including INIA G1 (serotype 1/2b) and INIA G15 90 

(serotype 1/2a) (both isolated from environmental samples of the smoked salmon 91 

industry and kindly provided by M. Medina, INIA, Madrid, Spain), CTC1500 (serotype 92 

1/2a, ST18) and CTC1680 (serotype 1/2c, ST155), which were isolated from smoked 93 

salmon and belong to the IRTA-Food Safety Program collection (unpublished results). 94 

The ability of this strain to grow at 8 ºC in cold-smoked salmon was previously 95 

confirmed in samples of 6 different brands (including 4 brands used for LAB isolations 96 

plus 2 additional brands). The meat-borne L. sakei CTC494 strain, from our own 97 

collection, is currently marketed by THT s.a.(Gembloux, Belgium) as an antilisteria 98 

starter culture for fermented meat products; this strain was used as the antimicrobial 99 

positive control. Isolates were stored at - 80 ºC in their respective growth media with 100 

20% glycerol. 101 

To identify the isolates, DNA was isolated from overnight cultures using the DNeasy 102 

tissue kit (Qiagen, Hilden, Germany). Molecular identification was performed by the 103 

partial sequencing of the 16S rRNA gene with universal primers (1061R-, 104 

CACGRCACGAGCTGACGAC and 8F-AGAGTTTGATYMTGGCTCAG) and 105 

phenylalanyl-tRNA synthase (pheS) (pheS-21-F-CAYCCNGCHCGYGAYATGC and 106 

pheS-23R-GGRTGRACCATVCCNGCHCC) (Naser et al., 2007). Species assignment 107 

was performed through online homology alignment using the BLAST+ software and the 108 

NCBI-GenBank (USA), EMBL (EU) and DDBJ (Japan) databases.  109 

To assess the antimicrobial bacteriocin-like activity of these strains, the cultures were 110 

grown in MRS (LAB) or CTSI (Carnobacterium) at 30 ºC for 18 to 20 h until the culture 111 

reached ca. 1 x 108 CFU/mL. Partial purification of the culture supernatant was 112 

performed. Cells were removed by centrifugation at 5,000 rpm for 10 min at 4 °C. The 113 
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supernatant fluid was collected, and the potential antimicrobial compound was 114 

precipitated by the addition of 0.4 g/mL ammonium sulphate (Aymerich et al., 1996). 115 

After 45 min at 0 °C, the protein precipitate was pelleted by centrifugation at 10,000 116 

rpm for 30 min. The pellet was dissolved in 10 mM sodium phosphate buffer, pH 6.0, 117 

and heat-treated by pasteurization for 10 min at 80 °C.  118 

LAB antimicrobial activity was examined using the agar spot test (Tagg et al., 1976). 119 

Serial two-fold dilutions were made from the pasteurized semi-purified extract. Then, 120 

10 µL of each dilution was placed on the surface of semisolid TSAYE overlay (Tryptone 121 

Soya agar with 0.6% yeast extract and 7.5 g/L agar) seeded with 50 µL of an overnight 122 

culture of L. monocytogenes CTC1500 in TSBYE (Tryptone Soya broth with 0.6% 123 

yeast extract) and incubated overnight at 30 °C 24 h. One arbitrary unit (AU/mL) was 124 

defined from the 10 µL of the highest dilution of bacteriocin-like solution that caused a 125 

definite zone of inhibition on the lawn of the indicator strain. 126 

2.2. Challenge test in different types of cold-smoked salmon   127 

Vacuum-packed cold-smoked Atlantic salmon (Salmo salar L.) from different producers 128 

was purchased at local retailers upon arrival (i.e. within few days after production) and 129 

transported (refrigerated) to the laboratory for further analysis. Only samples within 130 

their initial shelf life were selected in order to maximize, with limited variation, the 131 

remaining shelf life. Three different cold-smoked salmon types were considered as 132 

follows: salmon A and C were from fresh fish originating from Norway and 133 

manufactured by 2 different brands, and salmon B originated from Scotland and was 134 

elaborated by the same company that produced salmon A.  135 

To perform the challenge tests, all samples were aseptically cut into 4 x 4 cm2 portions 136 

(16 cm2), which weighed 4 g, and frozen overnight. Then, the samples were subjected 137 

to the freeze-thaw method before the surface inoculation with the pathogen to facilitate 138 

L. monocytogenes growth and test for the worst-case scenario, as reported by Kang et 139 

al. (2012). The appropriate dilution of a - 80 °C L. monocytogenes CTC1500 culture (to 140 
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simulate osmotically stressed cells in the dry environment of the food industry) (Hereu 141 

et al., 2014; Wesche et al., 2009) was inoculated on the surface of the product (1% 142 

v/w) and spread with a sterile spreader to reach ca. 2.6 log CFU/g. The samples were 143 

maintained in the safety cabinet for 10 min until the L. monocytogenes culture was 144 

completely absorbed. Afterward, the LAB cultures were independently spread over the 145 

previously inoculated samples (1% v/w) to a final concentration of ca. 4.6 log CFU/g, 146 

reabsorption was allowed, and then the samples were vacuum-packed using individual 147 

bags (Sacoliva S.L., Castellar del Vallés, Barcelona, Spain) and stored at 8 °C for 21 148 

days. 149 

Different lots were prepared to test three LAB cultures according to the experimental 150 

design depicted in Figure 1. Two independent trials were performed. A minimum of 3 151 

smoked-salmon fillets were used per each whole trial. Cut samples were randomly 152 

distributed among the different lots. Samples were analysed in triplicate for each lot 153 

and type at time 0 (after inoculation) and after 21 days of storage at 8 ºC. The storage 154 

temperature was controlled with the Evisense® system from Labguard (AES, 155 

BioMérieux, France). 156 

2.2.1. Microbial analysis 157 

Samples were weighed and ten-fold diluted in peptone physiological saline solution (1 158 

g/L peptone and 8.5 g/L sodium chloride). The suspension was mixed with the 159 

Smasher® blender (AES, BioMérieux) for 1 min at room temperature. Next, the 160 

appropriate dilutions were spread on selective agar plates for microbial counts, as 161 

follows: Enterobacteriaceae in Violet Red Bile Glucose agar (VRBG; Merck); LAB on 162 

de Man Rogosa and Sharpe Agar (MRS, Merck); Carnobacterium sp. on CTSI 163 

(Wasney et al., 2001); and L. monocytogenes on supplemented Chromogenic Listeria 164 

Agar (Oxoid Ltd, Basingstoke, UK). The quantification limit was set at 4 CFU/g for L. 165 

monocytogenes, 10 CFU/g for Enterobacteriaceae, and 100 CFU/g for LAB and 166 

Carnobacterium.  167 
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A representative portion of each product was collected before the inoculation to 168 

evaluate the initial hygienic status of the cold-smoked salmon (initial microbial load). To 169 

assess the growth potential (Δ log) of L. monocytogenes, the difference between the 170 

average count (log CFU/g) at the end of the shelf life and the average count (log 171 

CFU/g) at the beginning of the assay was calculated. 172 

2.2.2. Physicochemical analysis  173 

Physicochemical characteristics of each smoked salmon type were determined from    174 

n = 4 samples from a representative sample of 200 g. The pH (Crison puncture 175 

electrode pH 5053, pHmetre 25, Crison Instruments S.S., Barcelona, Spain) and water 176 

activity (aw) (Aqualab®, Ferrer Lab, Spain) of the fish samples were analysed in 177 

triplicate. The moisture, fat and protein contents were determined by FoodScan® 178 

(Foss, Hilleroed, Denmark). The NaCl content was measured by analysing the chloride 179 

content using the ISO 1841-2:1996 method in a potentiometric titrator 785 DMP Titrino 180 

(Metrohm AG, Herisau, Switzerland). The total phenol content (mg/Kg) was quantified 181 

according to Cardinal et al. (2004). For organic acids, neutralized 10% perchloric acid 182 

extracts (Hansen et al., 1995) were analysed by high-performance liquid 183 

chromatography with an Aminex® HPX-87H column (Bio-Rad laboratories SA, Spain). 184 

2.3. Statistical analysis 185 

Data were statistically analysed by one-way analysis of variance (ANOVA) using the 186 

least significance difference (LSD) test to assess the potential effect of 187 

physicochemical parameters, type of smoked salmon and bioprotective culture. Means 188 

were compared by Tukey-Kramer and Dunnett’s tests (p ≤ 0.05). To assess the growth 189 

potential, means were compared by paired Student’s T-test within each bacterial group.  190 

The JMP 8.0.1 statistic software from SAS Institute Inc. (Cary, NC, United States) was 191 

used.  192 
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3. Results  193 

3.1. Identification and antimicrobial activity of isolates 194 

The 40 MRS isolates originating from the 8 different cold-smoked salmon types, were 195 

identified as Lactobacillus sakei (25%) and Lactobacillus curvatus (75%). All the CTSI 196 

isolates (n=40) were identified as Carnobacterium maltaromaticum (100%). 197 

Considering all 80 isolates, in vitro antilisterial activity was observed in 12.5% of the 198 

isolates belonging to the genera Lactobacillus and 45% of those belonging to 199 

Carnobacterium. Antimicrobial activity ranged from 25,600 - 102,400 (AU/mL) and 200 200 

- 400 AU/mL, respectively. All the antilisterial isolates of Lactobacillus belonged to the 201 

same type of smoked salmon and were identified as L. curvatus. None of the L. sakei 202 

isolates exhibited antilisterial activity. Concerning Carnobacterium, 18 isolates from five 203 

different cold-smoked salmon types exhibited antimicrobial activity against L. 204 

monocytogenes CTC1500.  205 

The isolates, C. maltaromaticum CTC1741 and L. curvatus CTC1742, with an in vitro 206 

antilisterial activity of 400 AU/mL and 102,400 AU/mL, respectively, were selected as 207 

potential bioprotective cultures to be tested in different types of commercial sliced cold-208 

smoked salmon stored at refrigeration temperature (challenge test as described in 209 

section 2.2). The control strain, L. sakei CTC494, exhibited the highest in vitro 210 

antilisterial activity (153,600 AU/mL) when compared to L. curvatus CTC1742 and C. 211 

maltaromaticum CTC1741.  212 

3.2. Microbial and physicochemical characteristics of cold-smoked samples 213 

The microbiological quality of the initial samples (non-inoculated) demonstrated a good 214 

hygiene level of the types of smoked salmon used, with levels of Enterobacteriaceae 215 

under 1 log CFU/g in salmon A and B and 1.52 ± 0.81 CFU/g in salmon C. L. 216 

monocytogenes levels were under the detection limit (< 0.60 log CFU/g). LAB counts 217 

were under 2 log CFU/g in salmon B and C, and 2.21 ± 1.77 log CFU/g in salmon A. 218 
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Carnobacterium levels were under 2 log CFU/g in salmon A, and 2.15 ± 0.22 and 2.81 219 

± 1.15 log CFU/g in salmon B and C, respectively.  220 

The physicochemical parameters of the three types of smoked salmon were analysed, 221 

and all three types exhibited a similar pH, water activity (aw) and NaCl content. 222 

Significant differences (p < 0.05) were observed in the fat, protein, moisture, phenol, 223 

and acetic acid content (Table 1). Smoked salmon A and B, which were produced and 224 

sold by the same trademark but elaborated with fresh salmon from different origins 225 

(Norway and Scotland) had similar physicochemical characteristics. Salmon C (from 226 

Norwegian fresh salmon but elaborated and sold by a different trademark) had a higher 227 

fat content, which is likely associated with fresh salmon production systems. Salmon C 228 

also had a lower phenol content and higher acetic acid content, which are likely 229 

associated with the elaboration technology used (Table 1).   230 

3.3. L. monocytogenes growth potential after storage  231 

No immediate bactericidal effect on the food-borne pathogen was observed in any of 232 

the lots. L. monocytogenes achieved an average count of 5.73±1.35 log CFU/g after 21 233 

days of vacuum storage at 8 °C, and there were no significant differences in L. 234 

monocytogenes growth (p ≥ 0.05) among the three types of cold-smoked salmon 235 

(Table 2). The average growth potential of L. monocytogenes in the control samples 236 

was 2.77 ± 1.66 log units (Figure 2).  237 

No differences (p ≥ 0.05) could be attributed to the different smoked salmon types. No 238 

interaction between lot and type was observed when the growth potential of L. 239 

monocytogenes was analysed through a complete statistical model, taking into account 240 

the effect of the three selected bioprotective cultures and the three different types of 241 

salmon (Table 2). Nevertheless, a significant effect (p ≤ 0.05) of product type was 242 

observed concerning the antilisterial effect of C. maltaromaticum CTC1741 when 243 

partial models considering the L. monocytogenes growth capacity after 21 days of 244 

refrigerated storage were separately built for each bioprotective culture. In this case, C. 245 
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maltaromaticum CTC1741 demonstrated an antilisterial effect in salmon C (Figure 2), 246 

and no significant growth of L. monocytogenes was observed after 21 days of storage 247 

at 8 ºC (Table 2).  248 

The growth potential of L. monocytogenes was significantly affected by the type of 249 

bioprotective culture applied (p < 0.05) (Figure 2). In the L. sakei CTC494 lot after 21 250 

days at 8 °C, L. monocytogenes achieved 2.25 log lower counts compared with the 251 

control samples, with average final counts of 2.30 ± 0.83 log CFU/g (Table 2).  Indeed, 252 

L. sakei CTC494 resulted in L. monocytogenes growth inhibition (δ < 0.5 log) (Figure 253 

2). In the L. curvatus CTC1742 lot, L. monocytogenes achieved an average log 254 

increase of 0.80 ± 0.68 log CFU/g, while in the C. maltaromaticum CTC1741 lot, L. 255 

monocytogenes achieved an average log increase of 1.81 ± 1.06 log CFU/g (almost 256 

greater than a 2 log increase) (Figure 2), with average counts of 4.45 ± 1.06 log CFU/g 257 

at the end of the refrigerated storage period.  258 

Thus, L. sakei CTC494, with bacteriostatic activity, demonstrated the best antilisterial 259 

results (p < 0.05), followed by L. curvatus CTC1742 (p < 0.05), as a limiting growth 260 

factor. The results of C. maltaromaticum CTC1741 lot were similar to those of the 261 

control lot (Figure 2).  262 

The growth of Lactobacillus was similar on the inoculated lots, L sakei CTC494 and L. 263 

curvatus CTC1742 in any of the different salmon types (A, B and C), after refrigerated 264 

storage for 21 days at 8 °C (Table 2); Lactobacillus counts averaged 8.70 ± 0.29 log 265 

CFU/g. All the samples showed a satisfactory appearance concerning colour and 266 

odour. In the non-Lactobacillus inoculated lots, MRS counts were significantly lower, 267 

and no significant differences were observed between the non-inoculated Lactobacillus 268 

lots (Table 2), although highly variable counts were observed (2.63 ± 2.26 log CFU/g).  269 

C. maltaromaticum CTC1741 showed significantly lower counts after 21 days of 270 

refrigerated storage in salmon C (Table 2). Whereas in salmon A and B, the counts 271 

increased more than 3 log units (Table 2), achieving average counts of 7.21 ± 1.05 log 272 
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CFU/g, it did not grow (Table 2) in salmon type C; initial numbers were maintained, with 273 

average final counts of 4.65 ± 1.13 log CFU/g. All the samples showed a satisfactory 274 

appearance concerning colour and odour.  275 

No growth of endogenous Enterobacteriaceae populations, except on control C 276 

samples, were observed in any type of cold-smoked salmon or bioprotective culture lot. 277 

This finding demonstrates that proper hygiene standards were maintained until the end 278 

of the storage period (Table 2). 279 

4. Discussion 280 

It is known that the growth potential of L. monocytogenes can vary depending on the 281 

type of matrix and the intrinsic properties of it, as well as the direct or indirect 282 

competition between natural or added strains against pathogenic bacteria (Mejlholm 283 

and Dalgaard, 2007a). Certain strains of psychotropic Lactobacillus spp. and 284 

Carnobacterium spp. from cold-smoked salmon, which exert an antilisterial effect 285 

through the production of organic acids and other antimicrobials, such as bacteriocins, 286 

have been previously identified (Ghanbari et al., 2013). Bioprotective strategies are 287 

considered relevant to microbiological food safety primarily in products that allow for 288 

the growth of the pathogens according to the results observed in control samples. 289 

Indeed, Vermeulen et al. (2011) reported that smoked salmon enabled the growth of L. 290 

monocytogenes after refrigerated storage for 8 days 2 °C, 10 days 4 °C and 13 days at 291 

8 °C, with a 1.3 to 2.8 log increase at the end of the shelf life. Concha-Meyer et al. 292 

(2011) also reported a 2.4 log increase of L. monocytogenes after 28 days of storage of 293 

smoked salmon at 4 °C. Katla et al. (2001) reported an even higher growth potential, 294 

with an increase of 4.5 logs of L. monocytogenes after 14 days in vacuum-packed 295 

samples. Notably, the cold-smoked salmon in that study had been previously irradiated 296 

to reduce natural microbiota; thus, there was no competitive microbiota.  297 
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In this study, we reported the efficacy of L. sakei CTC494, which inhibited the growth of 298 

L. monocytogenes in all the three smoked salmon types tested with different 299 

representative physicochemical characteristics, including fat, protein, moisture, phenol 300 

and acetic acid content, after 8 ºC refrigerated storage for 21 days in the presence of 301 

endogenous microbiota. Indeed, L. sakei CTC494 has been previously recognized as a 302 

starter and bioprotective culture for fermented sausages and raw and cooked meat 303 

products (Hugas et al., 1998; Ravyts et al., 2008). More recently, it has been tested on 304 

fresh fish (Costa et al, 2019). Moreover, L. sakei CTC494 has been reported to reduce 305 

the adhesion of L. monocytogenes to the intestinal cell line HT29 (Garriga et al., 2015), 306 

suggesting its potential probiotic properties. Uyttendaele et al. (2009) reported that only 307 

when the pH was lowered to 5.5 - 6.0 and the aw was lowered to 0.93 - 0.94, three 308 

different inoculated LAB strains of smoked fish stored at 4 °C during 3 - 4 weeks 309 

exerted an antilisterial effect. The pathogen was able to grow on 48% of the smoked 310 

fish samples with a higher pH and aw. In contrast, in the present study, L. sakei 311 

CTC494 inhibited L. monocytogenes growth even in products with a non-acidic pH and 312 

a higher water activity (pH slightly over 6.0 and aw of 0.96). Katla et al. (2001) also 313 

reported a bacteriostatic effect when two L. sakei strains, one bacteriocin sakacin P 314 

producer (L. sakei Lb790 (pMLS114)) and its isogenic strain were used as potential 315 

bioprotective cultures on vacuum-packed smoked salmon at 10 ºC for 28 days. 316 

However, the authors previously irradiated the product to eliminate the natural 317 

background microbiota. Weiss and Hammes (2008) also reported the potential of L. 318 

sakei strains, LTH4122 and LTH5754, fish isolates, to improve the safety of cold-319 

smoked salmon stored at 4 ºC without changing sensorial properties.   320 

In our study, the selected Carnobacterium strain exhibited antilisterial activity in the in 321 

vitro assays but did not exert a significant antilisterial effect on the product except for 322 

smoked salmon type C, a product which higher concentration of acetic acid than the 323 

other type of cold-smoked salmon and where the bioprotective strain was not able to 324 
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grow. It has been described that growth of Carnobacterium could be affected by the 325 

presence of acetate (Wasney et al, 2001). Moreover, acetate has also been described 326 

as an inducer for the production of A9b bacteriocin on Carnobacterium piscicola 327 

(Nilsson et al., 2002). It is known that food components can affect bacteriocin 328 

production and activity (Aasen et al., 2003).Two strains of C. piscicola were previously 329 

reported to strongly suppress the growth of L. monocytogenes inoculated in cold-330 

smoked salmon with background microbiota when stored at 5 °C for 32 days (Nilsson 331 

et al., 1999). Duffes et al. (1999b) also reported that certain strains of Carnobacterium 332 

ssp. and L. sakei are bacteriocin-like producers that can inhibit the growth of L. 333 

monocytogenes in a cold-smoked salmon model. Concha-Meyer et al. (2011) also 334 

reported a bacteriostatic effect of two Carnobacterium strains, one endogenous and 335 

one from meat, when they were trapped in alginate films to be applied on smoked 336 

salmon at 4 °C. Indeed, the government of Canada has included Carnobacterium 337 

divergens M35 in the list of permitted food preservative to be added as bioprotective 338 

culture in cold-smoked salmon and trout (item nºC.1A) together with other additives, 339 

such as sodium diacetate up to 0.25% as a processing aid (Health Canada, 2019). 340 

However, some authors have suggested that several strains of C. divergens and C. 341 

piscicola are promising as protective cultures in products with approximately 4% 342 

moderate NaCl water phase content. Different microorganisms that are more resistant 343 

to NaCl and smoke may be needed for long-storage products (Brillet et al., 2005; 344 

Himelbloom et al., 2001; Nilsson et al., 1999). Thus, further research on alternative 345 

bioprotective cultures, such as the cultures used in the present study, with average 346 

values of 4.7 - 5.5% NaCl in the water phase, are warranted.  347 

In this study, all the products except the lot with L. sakei CTC494 enabled the growth of 348 

L. monocytogenes (> 0.5 logs). Thus, from a practical point of view and considering 349 

current EU legislation, L. sakei CTC494 was the only bioprotective culture that enabled 350 

the product to be changed from category 1.2 (RTE food able to support the growth of L. 351 
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monocytogenes) to category 1.3 (RTE food not able to support the growth of L. 352 

monocytogenes) (European Commission, 2005), thus categorizing it at a lower risk. 353 

Nevertheless, if we consider that L. monocytogenes post-processing contamination is 354 

generally low (1 log CFU/g or even less), and the three-level RTE-product 355 

categorization of Health Canada policies (Health Canada, 2011, 2012) introduces the 356 

potential of growth as a useful tool to assess risk for consumers, L. curvatus CTC1742 357 

may also be considered an effective bioprotective culture. 358 

In this context, while control samples and C. maltaromaticum CTC1741 lots should be 359 

classified at the higher risk Category 1 (products that could support the growth of L. 360 

monocytogenes), L. curvatus CTC1742 may be moved to Category 2A (products which 361 

enable limited growth of L. monocytogenes to levels not higher than 100 CFU/g 362 

throughout the stated shelf life). In addition, cold-smoked salmon with L. sakei CTC494 363 

may be classified as Category 2B (RTE food products in which the growth of L. 364 

monocytogenes cannot occur throughout the expected shelf life of that food), which is a 365 

less risky category, not only benefiting consumer and public health but also the food 366 

enterprise, with low levels of monitoring priority and legislation constraints.  367 

Moreover, considering the USDA Listeria zero policy approach (FSIS, 2014), the 368 

bacteriostatic effect of L. sakei CTC494, and the capacity of L. curvatus CTC1742 to 369 

limit the growth of L. monocytogenes, these strains could potentially be classified as 370 

antimicrobial agents (AMAs). In addition, the total suppression of L. monocytogenes 371 

growth exerted by L. sakei CTC494 would make the product eligible for a labelling 372 

claim regarding enhanced protection on the RTE cold-smoked salmon. 373 

The results of the present study extend knowledge and open the field for the potential 374 

application of L. sakei CTC494 as a suitable antilisterial bioprotective culture on RTE-375 

cold-smoked salmon.  376 

 377 

 378 
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Table 1: Physicochemical characteristics of the different types of cold-smoked salmon 609 

used for the challenge tests.  610 

Physicochemical 

parameters 

Smoked salmon type 

           A     B  C 

 Mean ± SD Mean ± SD Mean ± SD 

Fat (%) 7.06 a ± 1.37 7.21 a ± 1.99 15.44 b ± 2.24 

Protein (%) 20.48 a ± 0.85 22.50 b ±1.00 19.99 a ± 1.17 

pH 6.03 ± 0.03 6.07 ± 0.06 6.10 ± 0.10 

aw 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 

Moisture (%) 67.42 b ± 0.67 64.47 b ± 0.15 58.57 a ± 0.31 

NaCl (%) 3.90 ± 0.80 3.15 ± 0.86 3.32 ± 0.80 

Total phenol content             
(mg/Kg) 

37.80 b ± 15.77 42.59 b ± 11.52 12.35 a ± 2.85 

Lactic acid  
(mg/Kg) 

5267  ± 153 5551 ± 239 5277 ± 578 

Acetic acid  
(mg/Kg) 
 

667 a ± 104 652 a ± 242 1818 b ± 341 

 611 

a,b: Tukey-Kramer significant differences between physicochemical parameters among 612 

smoked salmon types (p < 0.05) are indicated by different small letters (in rows). 613 

 614 

 615 

 616 

 617 

 618 

 619 
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Table 2: Microbial counts (expressed in log CFU/g) of vacuum-packed cold-smoked salmon immediately after L. monocytogenes CTC1500 620 

inoculum (Time 0) and after 21 days of storage at 8 °C. 621 

  L. monocytogenes Lactic acid bacteria Carnobacterium Enterobacteriaceae 

    Time (days) Time (days) Time (days) Time (days) 

Lot  
Smoked 
salmon 

type 
0 21 0 21 0 21 0 21 

    Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Control  

A 2.68A ± 0.05 6.43Ba ± 0.36 1.45 b ± 0.58 2.63 b ± 1.93 2.17 ± 0.35 4.33 ± 2.73 0.95 ± 0.00 1.72 ± 1.20 

B 2.65A ± 0.13 5.85Bab ± 2.44 1.45 b ± 0.58 2.19 b ± 2.47 2.87 ± 1.20 4.79 ± 3.23 0.96 ± 0.02 2.23 ± 1.44 

C 2.69 A ± 0.11 4.93 Babc ± 0.70 2.35 b ± 1.68 2.74 b ± 2.06 2.16 ± 0.95 4.95 ± 1.78 0.95A ± 0.00 2.97B ± 0.86 

L. curvatus A 2.55 A ± 0.12 2.95 Bcde ± 0.17 4.65Aa ± 0.23 8.68Ba ± 0.18 2.64 ± 0.75 3.30 ± 1.51 0.95 ± 0.00 0.95 ± 0.00 

CTC1742 B 2.56 A ± 0.11 3.49 Bbcde ± 0.60 4.73Aa ± 0.08 8.80Ba ± 0.07 2.71 ± 0.83 4.21 ± 2.60 0.96 ± 0.02 2.29 ± 1.55 

  C 2.63 A ± 0.04 4.00 Babcde ± 0.89 4.70Aa ± 0.23 8.31Ba ± 0.43 3.1 ± 0.84 4.69 ± 0.79 0.95 ± 0.00 2.07 ± 1.28 

C. maltaromaticum A 2.62A ± 0.14 4.76Babcd ± 0.71 1.45 b ± 0.58 0.95b ± 0 3.91A ± 0.33 6.73B ± 1.28 1.08 ± 0.26 0.95 ± 0.00 

CTC1741 B 2.67A ± 0.09 5.22Babc ± 0.26 1.45 b ± 0.58 3.48 b ± 1.92 3.99A ± 0.42 7.69B ± 0.56 0.95 ± 0.00 2.22 ± 1.46 

  C 2.63 ± 0.04 3.36cde ± 1.03 2.28 b ± 1.53 4.22 b ± 3.77 3.7 ± 0.50 4.65 ± 1.13 1.52 ± 0.92 1.66 ± 0.82 

L. sakei A 2.52 ± 0.03 2.27e ± 0.20 4.86Aa ± 0.03 8.51Ba ± 0.06 2.68 ± 0.80 3.43 ± 1.81 0.95 ± 0.00 0.95 ± 0.00 

CTC494 B 2.67 ± 0.08 2.52de ± 1.24 4.79Aa ± 0.10 8.98 Ba ± 0.04 3.09 ± 1.28 4.48 ± 2.87 0.95 ± 0.00 2.21 ± 1.46 

  C 2.58 ± 0.10 2.10e ± 0.90 4.89Aa ± 0.11 8.88Ba ± 0.08 2.66 ± 1.26 3.96 ± 0.84 1.31 ± 0.72 1.6 ± 0.63 

 622 

Significant differences in microbial counts among different types of cold-smoked salmon and lot are indicate by small letters (columns). Significant 623 

differences in microbial counts between sampling times within each bacterial group are indicated by Capital letters (rows).  624 



27 
 

Figure 1: Challenge test experimental design for each independent trial. 625 

 626 

Figure 2: Growth potential of L. monocytogenes during the storage of vacuum-packed 627 

cold-smoked salmon at 8 °C for 21 days, depending on the bioprotective culture and type 628 

of salmon. p < 0.05 (significant difference as compared with the control lot, according to 629 

Dunnett’s test). * Significant differences among salmon types within each lot, according 630 

to Tukey-Kramer test. 631 
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