

Final publication is available from Mary Ann Liebert, Inc., publishers https://doi.org/10.1089/fpd.2017.2325

1	For publication in: Foodborne Pathogens and Disease
2	
3	
4	Characterization of Campylobacter jejuni and Campylobacter coli broiler isolates
5	by whole genome sequencing
6	
7	Guillermo Cantero ¹ , Florencia Correa-Fiz ¹ , Troels Ronco ² , Mikael Strube ² , Marta
8	Cerdà-Cuéllar ¹ , Karl Pedersen ²
9	
10	¹ Centre de Recerca en Sanitat Animal (CReSA), IRTA, Campus Universitat Autònoma
11	de Barcelona, 08193-Bellaterra, Barcelona, Spain.
12	² Technical University of Denmark, National Veterinary Institute, Bülowsvej 27, DK-
13	1870 Frederiksberg C, Denmark.
14	
15	
16	Corresponding author:
16 17	Corresponding author: Marta Cerdà-Cuéllar
16 17 18	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA
16 17 18 19	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona
16 17 18 19 20	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain.
16 17 18 19 20 21	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain. marta.cerda@irta.cat
16 17 18 19 20 21 22	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain. marta.cerda@irta.cat
16 17 18 19 20 21 22 23	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain. marta.cerda@irta.cat
16 17 18 19 20 21 22 23 23	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain. marta.cerda@irta.cat
 16 17 18 19 20 21 22 23 24 25 	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain. marta.cerda@irta.cat Keywords: <i>Campylobacter</i> , poultry, WGS, antimicrobial resistance, virulence.
 16 17 18 19 20 21 22 23 24 25 26 	Corresponding author:Marta Cerdà-CuéllarCentre de Recerca en Sanitat Animal (CReSA), IRTACampus Universitat Autònoma de Barcelona08193-Bellaterra (Barcelona), Spain.marta.cerda@irta.catKeywords: Campylobacter, poultry, WGS, antimicrobial resistance, virulence.Running title: C. jejuni and C. coli characterization by WGS.
 16 17 18 19 20 21 22 23 24 25 26 27 	Corresponding author: Marta Cerdà-Cuéllar Centre de Recerca en Sanitat Animal (CReSA), IRTA Campus Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain. marta.cerda@irta.cat Keywords: <i>Campylobacter</i> , poultry, WGS, antimicrobial resistance, virulence. Running title: <i>C. jejuni</i> and <i>C. coli</i> characterization by WGS.

29 Abstract

30 *Campylobacter* has been the most commonly reported cause of bacterial diarrhoeal 31 disease in humans in the EU since 2005 (EFSA, 2016). Most broiler batches at slaughter 32 are colonized with *Campylobacter* and the major source of infection is contaminated 33 poultry meat. The aim of this study was to characterize a selection of C. jejuni and C. 34 coli isolates from broilers through whole genome sequencing (WGS). A total of 16 35 isolates (C. *jejuni* = 12 and C. coli = 4) from five broiler farms from Catalonia 36 (northeastern Spain) were analyzed. A phylogenetic analysis based on 8420 SNPs 37 showed two main clusters grouping strains by species. Phenotypic resistances to quinolones (100%), tetracycline (81%), streptomycin (75%), erythromycin (56%) and 38 39 gentamicin (13%) were found. All the isolates carried the C257T point mutation in the 40 subunit A of the DNA gyrase gene (Thr86Ile) conferring resistance to quinolones, 41 whilst all the isolates showing resistance to tetracycline carried the tet(O) gene. The 42 genes aph(3')-III and aadE conferring resistance to aminoglycosides were identified in 43 the two isolates (one C. jejuni and one C. coli) resistant to streptomycin and gentamicin. 44 The point mutation A2075G on the 23S rDNA conferring high resistance to macrolides 45 was detected in three C. coli isolates. The CmeABC multidrug efflux pump was also 46 detected, both in C. jejuni and C.coli isolates. All C. jejuni and C. coli isolates were 47 positive for most of the 34 virulence-associated genes studied related to motility, 48 chemotaxis, adhesion and invasion. Interestingly, the wlaN gene involved in the 49 Guillain-Barré syndrome, was found in two isolates. The results underline the power of 50 WGS for investigation of virulence, clonality and antimicrobial resistance in 51 Campvlobacter.

52

54 Introduction

Since 2005 Campylobacter has outnumbered Salmonella as the most commonly 55 56 reported cause of bacterial diarrhoeal disease in humans in the EU (EFSA 2014). C. 57 *jejuni* and *C. coli* are responsible for the vast majority of infections (Eberle & Kiess 58 2012), which may subsequently lead to serious neuropathy such as Guillain-Barré 59 syndrome (Crushell et al. 2004). The majority of Campylobacter infections in humans 60 are sporadic and self-limiting which complicates the determination of the true incidence 61 rate (Hänninen et al. 2000). Due to the self-limiting behavior of the disease 62 antimicrobial treatment is only indicated in severe cases where fluoroquinolones and macrolides are the drugs of choice (Butzler 2004; Moore et al. 2006). 63

64

In the majority of the EU countries most of the broiler batches are colonized with *Campylobacter* at slaughter and the main source of campylobacteriosis in humans is chicken meat, which can account for up to 70% of cases (Boysen et al. 2014). The prevention of broiler flock colonization has therefore become a food safety priority in the EU (EFSA, 2011), that is reflected by the new regulation (amendment of Annex I to EC regulation No 2073/2005 as regards *Campylobacter* in broiler carcasses) that may enter into force in 2018.

72

The pathogenicity of *Campylobacter* strains have been linked to multiple factors including host susceptibility and, more importantly, the expression of different virulence factors and resistance to antimicrobials. Several putative virulence factors have been identified in *Campylobacter* species that contribute to motility, intestinal adhesion, colonization, toxin production and tissue invasion (Dasti et al. 2010; Bolton 2015). Also, multidrug-resistant *C. jejuni* and *C. coli* have been reported worldwide

from farm animals and retail meats, including poultry and swine (Zhao et al. 2010;Datta et al. 2003).

81

82 Phenotypic methods have been widely used to characterize C. jejuni and C. coli strains. 83 However, these methods have mostly been replaced by genotypic methods that are more 84 accurate and have higher discrimination power, such as pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) (Pfaller 1999). Nevertheless, with the 85 86 advent of next-generation sequencing, the possibility of generating high-resolution full 87 genome data is being increasingly used to differentially characterize strains. This technology allows for a rapid identification of a broad range of genotypic traits of the 88 89 isolates, such as their pool of virulence and antimicrobial resistance determinants. It has 90 proven useful in gaining insight into the epidemiology of *Campylobacter* and predicting 91 its antimicrobial resistance (Llarena et al 2017; Zhao et al 2015). Hence, the aim of this 92 study was to take advantage of whole genome sequencing (WGS) to in-depth 93 characterize a subset of C. jejuni and C. coli isolates from broilers obtained from a 94 longitudinal study involving different farms. The characterization included the 95 determination of the MLST genotype, the identification of virulence and antimicrobial 96 determinants as well as a phylogenetic study of the isolates through the discovery of 97 single nucleotide polymorphisms (SNPs) between the different strains analyzed.

98

99 Materials and Methods

100 Isolates

101 A total of 16 poultry isolates (*C. jejuni* =12 and *C. coli*= 4) from five broiler farms 102 were included in the study. The isolates were selected from *Campylobacter* positive 103 flocks of a broad two-year longitudinal study (2011-2013), where six to seven flocks 104 were studied each year by cloacal swab sampling a subset of birds. Selection of the 105 isolates was performed according to their PFGE patterns (Supplementary Fig. 1) and an 106 antimicrobial multidrug-resistant profile by disc diffusion (unpublished data). The five 107 different farms (A, B, C, D and E) were located in Catalonia (northeastern Spain). 108 Poultry houses had a capacity of 12,000 to 46,000 birds, and age of sampled birds 109 ranged 18 to 39 days. Campylobacter isolation and identification was performed as 110 previously described (Urdaneta et al., 2015). Isolates were preserved in brain heart 111 infusion broth (BHI, Merck KGaA, Darmstadt, Germany), with 20% glycerol at -80°C 112 until used and fresh cultures of the isolates were prepared on Columbia blood agar 113 plates (bioMérieux, Marcy-l'Etoile, France). Plates were incubated at 37 °C for 48 h under microaerobic conditions using a microaerobic atmosphere generator (Anaerocult® 114 115 C, Merck, Darmstadt, Germany).

116

117 Antimicrobial susceptibility testing

118 Isolates were tested for antimicrobial susceptibility using a minimum inhibitory 119 concentration (MIC) based broth microdilution (VetMIC GN-mo; National Veterinary 120 Institute, Uppsala, Sweden) for the following antimicrobial agents: nalidixic acid (1 to 121 64 mg/L), ciprofloxacin (0.06 to 8 mg/L), tetracycline (0.12 to 16 mg/L), streptomycin 122 (0.5 to 64 mg/L), gentamicin (0.12 to 16 mg/L), and erythromycin (0.5 to 64 mg/L). C. jejuni ATCC 33560 and C. coli ATCC 33559 were used as control strains. An isolate 123 124 was considered multidrug-resistant when showing resistance to three or more non-125 related antimicrobials. Isolates were considered to be susceptible or resistant based on 126 epidemiological cutoff values according to EUCAST guidelines (www.eucast.org). 127 When reporting data using EUCAST epidemiological cut-off values, bacteria should be reported as 'wild-type' (WT) or 'non-wild-type' (non-WT) (Schwarz et al. 2010). Forsimplicity of the terms, susceptible and resistant has been used here.

130

131 Whole genome sequencing (WGS) and assembly

Genomic DNA was extracted using QIAamp DNA mini kit (QIAGEN) according to the manufacturer's instructions. The libraries were prepared with Nextera XT DNA sample preparation kit (Illumina Inc., San Diego, CA, cat. no. FC-131-1024) followed by multiplexed paired-end sequencing with a read length of 2×251 bp, using Illumina's MiSeq platform (Illumina).

137

The raw reads were trimmed and cleaned for adapters, and assembling was performed using the online tool Assembler v1.2 with default parameters. All these steps are integrated in a pipeline available at the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org). Contiguous assemblies were analyzed using the CLCbio's Genomics Workbench v6.5 (CLCbio's, Aarhus, Denmark).

143

144 The raw sequence dataset is available in the NCBI database with Bioproject Accession145 number PRJNA385807.

146

147 Analysis of resistance and virulence-associated genes

148 ResFinder v2.1 (https://cge.cbs.dtu.dk/services/ResFinder/) and MyDbFinder v1.1 149 (https://cge.cbs.dtu.dk/services/MyDbFinder/), both available at the CGE were used for 150 identification of resistance and virulence genes, respectively. All strains were subjected 151 to analysis of the presence of resistance determinants to quinolones, tetracyclines, 152 aminoglycosides and β -lactams. *C. jejuni* and *C. coli* strains were tested for 34 153 virulence-associated genes; the identifiers of each of the genes analyzed and the 154 homology analyses are detailed in Supplementary Tables 2 and 3, respectively. The 155 presence of several virulence-associated genes related to motility (eight), chemotaxis 156 (five), adhesion (four), invasion (three), cytolethal distending toxin (three), multidrug 157 and bile resistance (three), stress response and survival (two), iron uptake (two), capsule 158 (two), Guillian-Barré syndrome (one) and hippuricase (one), was assessed (Koolman et 159 al. 2015). All genes were identified with a selected identity threshold of 80% (Zankari 160 et al. 2012), and a minimum coverage of 20% of the query sequence length. The 161 presence of the *flaA* and *flaB* motility genes was confirmed by PCR with specific 162 primers (Koolman et al. 2015).

163

In order to analyze the presence/absence of specific mutations related to antibiotic resistance, the raw fastq files for each of the isolates were aligned with bwa mem algorithm (Li & Durbin 2009) with the corresponding reference genome (AL111168 for *C. jejuni* and CP011015 for *C. coli*). The alignment files and the corresponding annotated reference genome were inspected manually using Tablet as the visualizing tool (Milne et al. 2013). Only mutations that appeared with frequency higher than 0.5% were considered.

171

172 Identification of SNPs

The SNP discovery was done using the CSI Phylogeny v1.4 pipeline CGE (Kaas et al. 2014). Briefly, the paired-end reads from each of the isolates were reference-aligned using strain 12 for *C. jejuni* and 4 for *C. coli* with BWA v.0.7.2 software (Li & Durbin 2009). SNP calling was done with SAMtools v.0.1.18 ('mpileup' method, Li & Durbin 2009) and filtering was done with BEDTools (Quinlan & Hall 2010). To select the valid 178 SNPs, the same criteria previously described was followed (Kaas et al. 2014). SNPs 179 were filtered out if the mapping quality was below 25 or the SNP quality was below 30, 180 and if they were called within the vicinity of 10 bp of another SNP (pruning). To 181 perform the phylogenetic analysis, concatenation of the sequences and subsequent 182 aligning with MUSCLE was done (Edgar 2004). Maximum likelihood trees were 183 created CSI 1.4 using Phylogeny (available at 184 https://cge.cbs.dtu.dk/services/CSIPhylogeny/) (Price et al. 2010) using the following 185 parameters: minimum depth at SNP position was set at 10x, the minimum SNP quality 186 accepted was 30 and the minimum read mapping quality allowed was 25. The reference genome used was C. coli (Accession number CP011015). 187

188

189 Multilocus sequence typing (MLST)

The *de novo* assembled contigs were used to identify the multilocus sequence types
(ST) and clonal complexes (CC) using the web server MLST v1.8 available at the CGE
website (www.genomicepidemiology.org).

193

194 **Results**

195 Whole genome sequencing

196 The isolates were sequenced to an average coverage that varied from 49,73 to 127,2 x 197 (Supplementary Table 1). From the assembled contigs of the sixteen isolates, nine 198 previously-described sequence types (ST) were recognized (Fig. 1). Besides, two novel 199 STs not previously reported in the PubMLST database 200 (http://pubmlst.org/campylobacter/) were identified, ST8586 (E13, C. jejuni isolate) and 201 ST8578 (E16, C. coli isolate). All the STs found belong to five different CC. The most 202 frequent CC in C. jejuni were CC257 and CC21 followed by CC206, whilst the less prevalent was CC45 with only one *C. jejuni* isolate from ST45 belonging to this group.
All of the *C. coli* isolates belonged to the same clonal complex (CC828), which
included three different STs (ST827, ST854 and ST8578).

206

207 Comparison of the sequences obtained from the sixteen isolates allowed the 208 identification of a total of 8420 SNPs, which were used to perform the phylogenetic 209 analysis. The representation of the SNP tree is depicted in Fig. 1 and a heatmap 210 representing the SNP counts between the genomes is shown in Supplemental Fig. 2. 211 None of the isolates analyzed were identical. The isolates showed distribution in two 212 main clusters, with all strains grouped by species.

213

214 Antimicrobial susceptibility

215 The phenotypic antimicrobial susceptibility patterns determined for the sixteen strains 216 analysed is shown in Table 1. All the strains showed a multidrug resistant profile, with 217 resistance to quinolones (nalidixic acid and ciprofloxacin) being common to all of them. 218 The resistance to tetracycline was the second most commonly observed (81%) followed 219 by streptomycin and erythromycin resistance (75% and 56%, respectively). Among the 220 latter, one third of C. jejuni isolates were resistant, whilst all C. coli isolates showed resistance to this antimicrobial. Gentamicin resistance was the less prevalent, detected 221 222 only in two isolates from farms A and B (13%).

223

In order to study the potential mechanisms of antimicrobial resistance, the assembled genomes of each of the strains under study were investigated for particular patterns known to be associated to resistance. Phenotypic antimicrobial resistances obtained with the MIC analysis corresponded well for most of the isolates with the identification of

228 specific antimicrobial resistance genes detected by WGS (Table 1). All the isolates 229 carried the C257T point mutation in the subunit A of the DNA gyrase gene (Thr86Ile) 230 conferring resistance to quinolones. Other less common mutations in gyrA (Asp-90-Asn 231 and Ala-70-Thr) were not detected in any of the isolates. All the isolates showing 232 resistance to tetracycline carried the tet(O) gene. Within the two isolates resistant to 233 streptomycin and gentamicin, the genes aph(3')-III and aadE conferring resistance to 234 aminoglycosides were identified. Three C. coli isolates were found to show a mutation 235 in the A2075G position of the 23S rDNA region, which confers a high level of 236 resistance to macrolides. The CmeABC multidrug efflux pump has been described as 237 the major efflux pump mechanism conferring resistance to a wide range of 238 antimicrobials, and it was identified in 15 out of the 16 isolates analyzed.

239

240 Virulence determinants

241 All isolates of C. jejuni and C. coli were positive for almost all of the 34 virulence-242 associated genes studied, including motility, chemotaxis, adhesion and invasion genes, 243 with few exceptions (Table 2). The flagellin genes were unexpectedly found absent in 244 most of the strains through WGS analysis. However, due to the known difficulty 245 associated to accurately assemble duplicated genes, the presence of these *flaA* and *flaB* genes was assessed by PCR. Table 2 shows the experimentally-validated presence of 246 247 *flaB* in all the isolates and absence of *flaA* in one third of the isolates by specific PCR. 248 Only one isolate was negative for *cmeB* (component of the CmeABC efflux pump) and 249 another one for cfrA (gene involved in iron uptake), both were C. jejuni strains from 250 farm E. Remarkably, the *wlaN* gene, involved in the Guillain-Barré syndrome, was 251 detected in two C. *jejuni* isolates from different farms. As expected, the *hipO* gene was 252 not detected in any C. coli isolate.

254

255 **Discussion**

256 The whole-genome sequence data revealed that the C. jejuni and C. coli isolates 257 belonged to five different CC, all of them associated both with poultry and human 258 campylobacteriosis in many countries (*Campylobacter* PubMLST: 259 http://PubMLST.org). The two positive isolates to *wlaN* gene, related to the Guillain 260 Barré Syndrome, belonged to ST21 and to the novel ST8586, both from CC21. In the 261 Campylobacter PubMLST database, there are only seven isolates within CC21 262 associated with the Guillain-Barré syndrome and none of them belong to the widespread 263 ST21.

264

The comparison of the assembled genomes revealed a large number of nucleotide changes (SNPs), among the isolates and the reference genomes. The identified variations were used to study the phylogeny to infer the relationship among the isolates, which were in concordance to the species they belong (Fig. 1). Not surprisingly, isolates of identical ST were more closely related compared to isolates of different STs.

270

The antimicrobial resistance found are of relevance in a public health context, 271 272 particularly those to fluoroquinolones and macrolides (mainly ciprofloxacin and 273 erythromycin, respectively), but also tetracyclines and aminoglycosides. Quinolones 274 and macrolides are the antibiotic of choice to treat severe human Campylobacter 275 infections, whilst tetracyclines are used as an alternative treatment (Moore et al. 2006; 276 Butzler 2004) and aminoglycosides are recommended to treat bacteraemia caused by 277 Campylobacter (Kassa et al. 2007). Resistance to fluoroquinolones and macrolides is 278 quite common in poultry (Thakur 2010). High quinolone resistance in poultry has 279 previously been reported in Spain (Pérez-Boto et al. 2013; Melero et al. 2012), as well

280 as in other EU countries (Luber et al. 2003; Nobile et al. 2013). The high MIC values 281 detected here may be related to the presence of Thr86Ile in all of the isolates, which in 282 itself provides high resistance to quinolones (MIC >16 mg/L) (Ruiz et al. 1998). This 283 mutation is the most prevalent in clinical and veterinary isolates (Hormeño et al. 2016; 284 Butzler 2004). The high prevalence of isolates resistant to tetracyclines is similar to that 285 previously reported in poultry in Spain (Pérez-Boto et al. 2013; Melero et al. 2012; 286 Duarte et al. 2016). This resistance is mediated by the tet(O) gene which was detected in 287 all isolates showing tetracycline resistance. Besides the chromosomal location of this 288 gene, it has also been reported in plasmids (Avrain et al. 2004; Iovine 2013). In contrast, 289 resistance to aminoglycosides was diverse, with a considerably high resistance to 290 streptomycin (75%) and a much lower resistance to gentamicin (13%), in agreement 291 with Duarte et al. (2016) and Pérez-Boto et al. (2013). Gentamicin resistance in 292 Campylobacter spp. from poultry is a rare event all over European countries (Carreira et 293 al. 2012; De Jong et al. 2009; Pérez-Boto et al. 2013), probably because it is not used in 294 poultry production. The aph(3')-III and aadE genes involved in aminoglycoside 295 resistance were identified in some strains. However, the finding of a high resistance to 296 streptomycin in some of the strains despite the absence of corresponding genes might be 297 due to the presence of undiscovered genes. Nevertheless, the present work was focused 298 on chromosomal genes, so whether these strains carried plasmids encoding 299 streptomycin resistance-genes cannot be ruled out and deserve further research (Iovine 300 2013). Over 50% of isolates were resistant to erythromycin and was more common 301 among C. coli than C. jejuni, similarly to what has been previously reported in poultry 302 in the EU (Duarte et al. 2016; Wimalarathna et al. 2013). Erythromycin resistance is 303 acquired through point mutations in domain V of the 23S rDNA at positions 2074 and 304 2075 (positions 2058 and 2059 in E. coli numbering) (Iovine 2013); the point mutation

305 A2075G which is the most prevalent in Campylobacter spp. and confers high-level 306 resistance to macrolides, was identified in three C. coli isolates. The overall resistances 307 detected here are those also common in food-producing animals in the EU, as reported 308 by EFSA (2015). Particularly, the pattern of resistance among *Campylobacter* isolates 309 was predominantly quinolones (ciprofloxacin and nalidixic acid) and tetracyclines, 310 whilst resistance to erythromycin and gentamicin was comparatively low. This is most 311 probably due to the frequent use of enrofloxacin (quinolone) and doxycycline 312 (tetracycline) in the studied farms.

313

314 Several virulence factors have been identified in Campylobacter, which include 315 flagella-mediated motility, bacterial adherence to intestinal mucosa, invasive capability 316 and the ability to produce toxins. C. jejuni isolates were positive for the presence of 317 most of the virulence genes analyzed related to these virulence factors. However, few 318 strains were negative for the *flaA* gene, whilst all were positive for the *flaB* gene. Those 319 adjacent genes encode for the protein flagellin which compose the flagellar filament, an 320 important colonization factor (Silva et al. 2011; Koolman et al. 2015). Isolates negative 321 for the *flaA* gene might have reduced motility and colonization ability (Neal-McKinney 322 et al. 2010). The gene wlaN, responsible for the expression of Guillain-Barré syndrome, 323 was detected with a low frequency, in agreement with other reports (Koolman et al. 324 2015; Datta et al. 2003; Talukder et al. 2008). In contrast, the multidrug CmeABC 325 efflux system, which has a role in antimicrobial resistance, was present in all but one 326 isolate that lacked the CmeB gene. The efflux system is common in Campylobacter and 327 consists of an external membrane protein (CmeC), a drug transporter in the internal 328 membrane (CmeB) and an external membrane protein (CmeA). They all form a 329 membrane channel that expels toxic substances from the cell (Lin et al. 2002). The *hipO*

gene, which is specific for *C. jejuni*, was not present in any of the *C. coli* isolates.
Besides this gene, and the *wlaN* gene, which is relatively rare, all virulence genes
analyzed were present in all *C. coli* strains. It is noteworthy to highlight that the *sodB*gene involved in stress defense, and that was recently first reported in *C. coli* isolates by
Koolman et al. (2015), has also been found in all *C. coli* isolates in this study.

335

Altogether, the in-depth characterization of these poultry isolates contributes to the understanding of *Campylobacter* epidemiology. WGS technology has become a fast and affordable tool and may become a rapid and cost-effective approach to characterize isolates from epidemiological studies (Llarena et al. 2017).

341	Acknowledgements
342	This study was partially supported by the CamCon project (Campylobacter control -
343	novel approaches in primary poultry production), funded by the European Community's
344	Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 244547.
345	
346	
347	References
348	Avrain L, Vernozy-Rozand C, Kempf I. Evidence for natural horizontal transfer of tetO
349	gene between Campylobacter jejuni strains in chickens. J Appl Microbiol 2004;
350	97:134–140.
351	Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol 2015; 48:99-
352	108.
353	Boysen L, Rosenquist J, Larsson T, Nielsen EM, Sorensen G, Nordentoft S, Hald T.
354	Source attribution of human campylobacteriosis in Denmark. Epidemiol Infect
355	2014;142:1599-1608.
356	Butzler JP. Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 2004;
357	10:868–876.
358	Carreira AC, Clemente L, Rocha T, Taveres A, Geraldes M, Barahona MJ, Botelho A,
359	Cunha MV. Comparative Genotypic and Antimicrobial Susceptibility Analysis of
360	Zoonotic Campylobacter Species Isolated from Broilers in a Nationwide Survey,
361	Portugal. J Food Prot 2012; 75:2100-2109.
362	Crushell E, Harty S, Sharif F, Bourke B. Enteric Campylobacter: Purging Its Secrets? J
363	Food Prot 2004; 55:3–12.
364	Dasti JI, Malik Tareen A, Lugert R, Zautner A, Groß U. Campylobacter jejuni: A brief
365	overview on pathogenicity-associated factors and disease-mediating
366	mechanisms. Int J Med Microbiol 2010; 300:205-211.

367 Datta S, Niwa H, Itoh K. Prevalence of 11 pathogenic genes of *Campylobacter jejuni* by
368 PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J
369 Med Microbiol 2003; 52:345–348.

- De Jong A, Bywater R, Butty P, Derooverl E, Godinho K, Klein U, Marion H, Simjee
 S, Smets K, Thomas V, Valle M, Wheadon A. A pan-European survey of
 antimicrobial susceptibility towards human-use antimicrobial drugs among
 zoonotic and commensal enteric bacteria isolated from healthy food-producing
 animals. J Antimicrob Chemother 2009; 63:733–744.
- Duarte A, Seliwiorstowa T, Miller WG, Zutter L, Uyttendaele M. Discriminative power
 of *Campylobacter* phenotypic and genotypic typing methods. J Microbiol Methods
 2016; 125:33–39.
- 378 Eberle KN, Kiess AS. Phenotypic and genotypic methods for typing *Campylobacter*379 *jejuni* and *Campylobacter coli* in poultry. Poult Sci 2012; 91:255–64.
- Edgar RC. Muscle: Multiple sequence alignment with high accuracy and high
 throughput. Nucleic Acids Res 2004; 32:1792–1797.
- 382 [EFSA] European Food Safety Authority. Panel on Biological Hazards (BIOHAZ);
 383 Scientific Opinion on *Campylobacter* in broiler meat production: control options
- and performance objectives and/or targets at different stages of the food chain.
 EFSA J 2011; 9.
- [EFSA] European Food Safety Authority. The European Union summary report on
 trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014
 European Food Safety Authority European Centre for Disease Prevention and
 Control. EFSA J 2014; 13.
- [EFSA] European Food Safety Authority. EU Summary Report on antimicrobial
 resistance in zoonotic and indicator bacteria from humans, animals and food in

- 392 2013. EFSA J 2015; 13:1–178.
- Hänninen ML, Perko-Mäkelä P, Pitkälä A, Rautelin H. A three-year study of *Campylobacter jejuni* genotypes in humans with domestically acquired infections
 and in chicken samples from the Helsinki area. J Clin Microbiol 2000; 38:1998–
 2000.
- Hormeño L, Palomo G, Ugarte-Ruiz M, Porrero C, Borge C, Vadillo S, Píris S,
 Domínguez L, Campos MJ, Quesada A. Identification of the main quinolone
 resistance determinant in *Campylobacter jejuni* and *Campylobacter coli* by
 MAMA-DEG PCR. Diagn Microbiol Infect Dis 2016; 84:236–239.
- 401 Iovine NM. Resistance mechanisms in *Campylobacter jejuni*. Virulence 2013;4:230–40.
- Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of
 comparing whole bacterial genomes across different sequencing platforms. PLoS
 One 2014; 9:1–8.
- Kassa, T, Gebre-Selassie S, Asrat D. Antimicrobial susceptibility patterns of
 thermotolerant *Campylobacter* strains isolated from food animals in Ethiopia. Vet
 Microbiol 2007; 119:82–87.
- Koolman L. Distribution of virulence-associated genes in a selection of *Campylobacter*isolates. Foodborne Pathog Dis 2015; 12:424–32.
- Llarena AK, Taboada E, Rossi M. Whole-genome sequencing in epidemiology of *Campylobacter jejuni* infections. J Clin Microbiol 2017; 55:1269-1275.
- 412 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
 413 transform. Bioinformatics 2009; 25:1754–1760.
- Lin J, Michel LO, Zhang Q. CmeABC Functions as a Multidrug Efflux System in *Campylobacter jejuni* CmeABC Functions as a Multidrug Efflux System in *Campylobacter jejuni*. Society 2002; 46:2124–2131.

- Luber P, Wagner J, Hahn H, Bartelt E. Antimicrobial Resistance in *Campylobacter jejuni* and *Campylobacter coli* Strains Isolated in 1991 and 2001-2002 from
 Poultry and Humans in Berlin, Germany. Antimicrob Agents Chemother 2003;
 47:3825–3830.
- Melero B, Juntunen P, Hänninenb ML, Jaime I, Rovira J. Tracing *Campylobacter jejuni*strains along the poultry meat production chain from farm to retail by pulsed-field
 gel electrophoresis, and the antimicrobial resistance of isolates. Food Microbiol
 2012; 32:124–128.
- Milne I, Stephen G, Bayer M, J.A.Cock Peter, Pritchard L, Cardle L, Shaw PD,
 Marshall D. Using tablet for visual exploration of second-generation sequencing
 data. Brief. Bioinform 2013; 14:193–202.
- Moore JE, Barton MD, Blair IS, Corcoran D, Dooley JSG, Fanning S, Kempf I,
 Lastovica A, Lowery C, Matsuda M, McDowell D, McMahon A, Cherie Millar B,
 Rao JR, Rooney PJ, Seal B, Snelling WJ Tolba O. The epidemiology of antibiotic

431 resistance in *Campylobacter*. Microbes Infect 2006; 8:1955–1966.

- 432 Neal-McKinney J, Christensen JE, Konkel ME. Amino-terminal residues dictate the
- 433 export efficiency of the *Campylobacter jejuni* filament proteins via the flagellum.
- 434 Mol Microbiol 2010; 76: 918–931.
- Nobile CGA, Costantino R, Bianco A, Pileggi C, Pavia M. Prevalence and pattern of
 antibiotic resistance of *Campylobacter* spp. in poultry meat in Southern Italy. Food
 Control 2013; 32:715–718.
- 438 Pérez-Boto D, García-Peña FJ, Abad-Moreno JC, Echeita MA. Antimicrobial
 439 susceptibilities of *Campylobacter jejuni* and *Campylobacter coli* strains isolated
 440 from two early stages of poultry production. Microb Drug Resist 2013; 19:323–30.
- 441 Pfaller MA. Molecular epidemiology in the care of patients. Arch Pathol Lab Med

- 442 1999; 123:1007–1010.
- 443 Price MN, Dehal PS, Arkin AP. FastTree 2 Approximately maximum-likelihood trees
 444 for large alignments. PLoS One 2010.
- 445 Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic
 446 features. Bioinformatics. 2010; 26:841–842.
- 447 Ruiz J, Goñi P, Marco F, Gallardo F, Mirelis B, Jimenez De Anta T, Vila J. Increased
- 448 resistance to quinolones in *Campylobacter jejuni*: a genetic analysis of gyrA gene
- 449 mutations in quinolone-resistant clinical isolates. Microbial Immunol 1998;
 450 42:223–226.
- 451 Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, Gaastra W.
 452 Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from
 453 animals. J Antimicrob Chemother 2010; 65:601–604.
- 454 Silva J, Leite D, Fernendes M, Mena C, Gibbs PA, Teixeira P. *Campylobacter* spp. As a
 455 foodborne pathogen: A review. Front Microbiol 2011; 2:1–12.
- 456 Talukder KA, aslam M, Islam Z, Azmi IJ, Dutta DK, Mossain S, Nur-E-Kamal A, Nair
- GB, Cravioto A, Sack DA, Endtz HP. Prevalence of virulence genes and cytolethal
 distending toxin production in *Campylobacter jejuni* isolates from diarrheal
 patients in Bangladesh. J Clin Microbiol 2008; 46:1485–1488.
- Thakur S, Zhao S, McDermott PF, Harbottle H, Abbott J, English L, Gebreyes WA,
 White DG. Genotypic Profile Comparison of *Campylobacter jejuni* and *Campylobacter coli* Isolated from Humans and Retail Meats. Foodborne Pathog
 Dis 2010; 7: 835-844.
- Urdaneta S, Dolz R, Cerdà-Cuéllar M. Assessment of two different types of sample for
 the early detection and isolation of thermophilic *Campylobacter* in broiler farms,
 Avian Pathol 2015; 44:103-105.

- Wimalarathna HML, Richardson JF, Lawson AJ, Elson R, Meldrum R, Little CL,
 Maiden MCJ, McCarthy ND, Sheppard SK. Widespread acquisition of
 antimicrobial resistance among *Campylobacter* isolates from UK retail poultry and
 evidence for clonal expansion of resistant lineages. BMC Microbiol 2013; 13:160.
- Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup
 FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J
- 473 Antimicrob Chemother 2012; 67:2640–2644.
- Zhao S, Young SR, Tonr E, Abbott JW, Womack N, Friedman SC, McDermott PF.
 Antimicrobial resistance of *Campylobacter* isolates from retail meat in the United
 States between 2002 and 2007. Appl Environ Microbiol 2010; 76:7949–56.
- 477 Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, Lam C, Folster JP, Whichard
- JM, McDermott PF. Whole-Genome Sequencing Analysis Accurately Predicts
 Antimicrobial Resistance Phenotypes in *Campylobacter* spp. Appl Environ
 Microbiol 2015; 82:459-66.

1 Figure legends

3	Figure 1. Maximun-likelihood phylogenetic tree based on SNPs from the assembled
4	genomes and genotypic MLST types of the Campylobacter isolates. The tree was drawn
5	to scale, with branch lengths measured in the number of substitutions per site.
6	^a Reference genomes for <i>C. jejuni</i> NCTC 11168 (Accession number: AL111168) and for
7	C. coli FB1 (Accession number: CP011015) were included in the analysis. The tree was
8	drawn to scale, with branch lengths measured in the number of substitutions per site.
9	^b ST, sequence type; CC, clonal complex.
10	
11	Supplementary Fig. 1. PFGE combined dendrogram of SmaI and KpnI patterns of C.
12	<i>jejuni</i> and <i>C. coli</i> isolates.
13	
14	Supplementary Fig. 2. Heatmap representing the SNPs between the genomes.

			Quinolones	5	Tetracycline Aminoglycosides						Ma	crolide	Efflux	
Isolates	Species	Nal ^a	Ci	R-mech ^c Thr86Ile	Тс	R-mech <i>tet(O)</i>	Sm	R-mech aphA(3')	R-mech aadE	Gm	R-mech aphA(3′)	Ery	R-mech 23S rDNA	pump CmeA,B,C
A1	C. coli	R (> 64) ^b	R (> 8)	+	S (0,5)		R (32)	+		R (2)	+	R (32)	+	+ + +
A2	C. jejuni	R (32)	R (> 8)	+	S (0,5)		S (0,5)			S (0,12)		R (32)		+ + +
B3	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	R (32)			S (0,12)		R (> 64)		+ + +
B4	C. jejuni	R (32)	R (0,5)	+	R (> 16)	+	R (8)			S (0,12)		S (1)		+ + +
B5	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	R (> 64)	+	+	R (2)	+	S (0,5)		+ + +
B6	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	R (> 64)			S (1)		S (1)		+ + +
C7	C. coli	R (> 64)	R (4)	+	R (2)	+	R (32)			S (0,12)		R (> 64)	+	+ + +
C8	C. coli	R (> 64)	R (4)	+	R (> 16)	+	R (> 64)			S (0,25)		R (> 64)	+	+ + +
С9	C. jejuni	R (32)	R (4)	+	R (> 16)	+	S (0,5)			S (0,12)		S (1)		+ + +
C10	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	R (> 64)			S (0,12)		R (> 64)		+ + +
D11	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	S (0,5)			S (0,12)		S (1)		+ + +
D12	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	R (> 64)			S (1)		R (> 64)		+ + +
E13	C. jejuni	R (> 64)	R (4)	+	R (> 16)	+	S (0,5)			S (0,12)		S (1)		+ + +
E14	C. jejuni	R (> 64)	R (> 8)	+	R (> 16)	+	R (> 64)			S (0,12)		R (8)		+ +
E15	C. jejuni	R (> 64)	R (> 8)	+	S (0,5)		R (16)			S (0,25)		S (1)		+ + +
E16	C. coli	R (16)	R (> 8)	+	R (> 16)	+	R (4)			S (0,12)		R (> 64)		+ + +
Total		100%	100%		81%		75%			13%		56%		

^a Nal: Nalidixic acid, Ci: Ciprofloxacin, Tc: Tetracycline, Sm: Streptomycin, Gm: Gentamicin and Ery: Erythromycin.

^b Interpretation of MIC values for *C. jejuni* epidemiological cut-off values: Nal ($R \ge 16 \text{ mg/L}$); Ci ($R \ge 0.5 \text{ mg/L}$); Tc ($R \ge 1 \text{ mg/L}$); Sm ($R \ge 4 \text{ mg/L}$); Gm ($R \ge 2 \text{ mg/L}$) and Ery ($R \ge 4 \text{ mg/L}$). Interpretation for *C. coli* epidemiological cut-off values: Nal ($R \ge 16 \text{ mg/L}$); Ci ($R \ge 0.5 \text{ mg/L}$); Tc ($R \ge 4 \text{ mg/L}$); Tc ($R \ge 2 \text{ mg/L}$); Tc (

^c R-mech: resistance mechanism. Thr86Ile: point mutations in the subunit A of the DNA gyrase gene; tet(O), aphA(3') and aadE: presence of these

genes; 23S rDNA: point mutation on this region of the genome.

		Mot	ilitara	CDC	Hippuricase	Multi	drug ai	ıd bile	Iron		
Isolates	Species	MOU	muya	GD3	gene	<u> </u>	resistan	ce	upt	ake	
		flaA	flaB	wlaN	hipO	cmeA	cmeB	стеС	<i>cfrA</i>	fur	
A1	C. coli	+	+			+	+	+	+	+	
A2	C. jejuni		+		+	+	+	+	+	+	
B3	C. jejuni	+	+		+	+	+	+	+	+	
B4	C. jejuni	+	+		+	+	+	+	+	+	
B5	C. jejuni	+	+		+	+	+	+	+	+	
B6	C. jejuni		+		+	+	+	+	+	+	
C7	C. coli	+	+			+	+	+	+	+	
C8	C. coli	+	+			+	+	+	+	+	
С9	C. jejuni	+	+	+	+	+	+	+	+	+	
C10	C. jejuni		+		+	+	+	+	+	+	
D11	C. jejuni	+	+		+	+	+	+	+	+	
D12	C. jejuni		+		+	+	+	+	+	+	
E13	C. jejuni	+	+	+	+	+	+	+	+	+	
E14	C. jejuni		+		+	+		+	+	+	
E15	C. jejuni	+	+		+	+	+	+		+	
E16	C. coli	+	+			+	+	+	+	+	
Total		11	16	2	12	16	15	16	15	16	

TABLE 2. DISTRIBUTION OF VIRULENCE GENES IN C. JEJUNI AND C. COLI ISOLATES*

*The presence of genes related to motility (*flhA*, *flhB*, *flgB*, *flgE*, *fliM*, *fliY*); chemotaxis (*cheA*, *cheB*, *cheR*, *cheW*, *cheY*); adhesion (*cadF*, *dnaJ*, *pdlA*, *racR*); capsule (*kpsM*, *waaF*); Invasion (*iamA*, *ciaB*, *ceuE*); Cytolethal distending toxin (*cdta*, *cdtB*, *cdtC*); Stress response and survival (*katA*, *sodB*), was also confirmed in all the isolates, (data not shown to facilitate the reading). ^aThe results for fla genes was confirmed by PCR.

Isolates	Species	N50	Assembly size	N° contigs	Coverage
A1	C. coli	52.853	1.746.294	133	49.73
A2	C. jejuni	102.764	1.713.572	45	114.7
B3	C. jejuni	59.250	1.730.328	100	85.37
B4	C. jejuni	106.203	1.748.765	34	72.99
B5	C. jejuni	66.683	1.688.181	130	82.47
B6	C. jejuni	221.977	1.688.205	36	100.3
C7	C. coli	168.863	1.638.379	62	75.94
C8	C. coli	166.289	1.746.251	58	127.2
С9	C. jejuni	91.129	1.723.771	55	89.97
C10	C. jejuni	162.254	1.690.078	30	120.6
D11	C. jejuni	148.283	1.675.334	53	86.66
D12	C. jejuni	91.211	1.705.710	68	117.6
E13	C. jejuni	79.604	1.677.193	72	104.4
E14	C. jejuni	83.132	1.811.001	97	78.98
E15	C. jejuni	59.658	1.591.333	93	65.64
E16	C. coli	79.519	1.687.906	49	100.6

SUPPLEMENTARY TABLE 1. ASSEMBLY METRICS

CONSIDERED IN THIS STUDY AND THEIR CORRESPONDING LOCUS TAG

C	Ι	Locus tag
Genes	C. jejuni	C. coli
flaA	Cj0887c	VC76_04395
flaB	Cj0887c	VC76_03535
flhA	Cj0882c	VC76_04415
flhB	Cj0335	VC76_01775
flgB	Cj0526c	VC76_02755
flgE	Cj1729c	VC76_08610
fliM	Cj0060c	VC76_00300
fliY	Cj0059c	VC76_03960
cheA	Cj0284c	VC76_01475
cheB	Cj0924c	VC76_04655
cheR	Cj0923c	VC76_04650
cheW	Cj0283c	VC76_01470
cheY	Cj1118c	VC76_05495
cadF	Cj1478c	VC76_07295
dnaJ	Cj0954c	VC76_03025
<i>pldA</i>	Cj1351	VC76_06765
racR	Cj1261	VC76_03020"
cdtA	Cj0079c	VC76_01515
cdtB	Cj0078c	VC76_01510
<i>cdtC</i>	Cj0077c	VC76_01505
wlaN	Cj1139c	Absent
iamA	Cj1647	VC76_00545
ciaB	Cj0914c	VC76_04610
ceuE	Cj1355	VC76_06790
cmeA	Cj0365c	VC76_01930
cmeB	Cj0366c	VC76_01925
cmeC	Cj0365c	VC76_07315
katA	Cj1385	VC76_06950
sodB	Cj0169	VC76_07880
cfrA	Cj0755	VC76_03645
fur	Cj0400	VC76_02095
kpsM	Cj1448c	VC76_07145
waaF	Cj1148	VC76_05560
hipO	Cj0985c	Absent

Motility **Isolates** Species flaA flaB flhA flhB % Identity Query/HSP length % Identity Query/HSP length % Identity Query/HSP length % Identity Query/HSP length C. coli A1 95.12 2253/2253 99.47 756/756 99.91 2178/2178 100 1089/1089 A2 C. jejuni 100 2175/2175 100 1089/1089 C. jejuni **B3** 99.72 2175/2175 99.82 1089/1089 C. jejuni **B4** 98.59 1133/1719 98.15 1133/1719 99.95 2175/2175 100 1089/1089 C. jejuni **B5** 97.07 100 2175/2175 98.16 1086/1089 1261/1719 C. jejuni **B6** 99.72 2175/2175 99.82 1089/1089 **C7** C. coli 97.96 2253/2253 756/756 100 2178/2178 100 1089/1089 100 **C8** C. coli 95.12 2253/2253 756/756 99.91 2178/2179 100 1089/1089 99.47 C. jejuni **C9** 99.38 1113/1719 100 2175/2175 99.91 1089/1089 1133/1719 99.82 C. jejuni C10 99.72 2175/2175 99.82 1089/1089 C. jejuni D11 92.64 1263/1719 99.95 2175/2175 100 1089/1089 D12 C. jejuni 99.95 2175/2175 100 1089/1089 C. jejuni E13 1261/1719 98.73 1261/1719 99.91 1089/1089 98.73 C. jejuni 99.91 2175/2175 E14 99.72 1089/1089 C. jejuni E15 91.77 1325/1719 91.77 1325/1719 99.82 1089/1089 E16 C. coli 96.40 2253/2253 100 756/756 100 2178/2178 100 1089/1089

SUPPLEMENTARY TABLE 3. HOMOLOGY ANALYSES OF EACH STUDIED GENE OF THE REFERENCE STRAINS (C. jejuni NCTC

11168 and *C. coli* FB1) WITH RESPECT TO THE CORRESPONDING GENES IN THE TESTED ISOLATES

		Motility												
Isolates	Species		flgB		flgE		fliM	fliY						
		% Identity	Query/HSP length											
A1	C. coli	100	432/432	95.91	1638/1638	92.04	1080/1080	99.74	771/771					
A2	C. jejuni	97.22	432/432	99.82	1638/1638	99.63	1080/1080	99.64	843/843					
B3	C. jejuni	96.76	432/432	99.88	1638/1638	100	1080/1080	100	843/843					
B4	C. jejuni	100	432/432	99.82	1638/1638	98.43	1080/1080	99.76	843/843					
B5	C. jejuni	100	432/432	100	1638/1638	98.43	1080/1080	99.76	843/843					
B6	C. jejuni	96.76	432/432	98.78	1638/1638	92.41	1080/1080	100	843/843					
C7	C. coli	100	432/432	98.78	1638/1638	92.41	1080/1080	99.87	771/771					
C8	C. coli	100	432/432	95.91	1638/1638	90.37	1080/1080	99.74	771/771					
С9	C. jejuni	100	432/432	100	1638/1638	98.43	1080/1080	99.76	843/843					
C10	C. jejuni	96.76	432/432	99.88	1638/1638	100	1080/1080	100	843/843					
D11	C. jejuni	97.22	432/432	99.88	1638/1638	98.43	1080/1080	99.64	843/843					
D12	C. jejuni	100	432/432	99.82	1638/1638	98.43	1080/1080	99.76	843/843					
E13	C. jejuni	97.22	432/432	99.88	1638/1638	98.43	1080/1080	99.64	843/843					
E14	C. jejuni	97.22	432/432	99.88	1638/1638	98.06	1080/1080	99.53	843/843					
E15	C. jejuni	99.77	432/432	99.88	1638/1638	97.69	1080/1080	99.56	843/843					
E16	C. coli	100	432/432	98.41	1638/1638	92.41	1080/1080	99.74	771/771					

SUPPLEMENTARY TABLE 3 CONTINUED.

						(Chemotaxis				
Isolates	Species		cheA		cheB		cheR		cheW		cheY
		% Identity	Query/HSP length								
A1	C. coli	99.96	2295/2295	100	555/555	99.87	798/798	100	522/522	100	957/957
A2	C. jejuni	99.96	2310/2310	99.82	555/555	100	798/798	100	522/522	99.75	393/393
B3	C. jejuni	99.31	2310/2310	99.82	554/555	99.75	798/798	99.81	522/522	99.75	393/393
B4	C. jejuni	99.48	2310/2310	100	555/555	100	798/798	100	522/522	99.75	393/393
B5	C. jejuni	99.96	2310/2310	100	555/555	100	798/798	100	522/522	100	393/393
B6	C. jejuni	99.31	2310/2310	99.82	554/555	99.75	798/798	99.81	522/522	99.75	393/393
C7	C. coli	100	2295/2295	100	555/555	99.75	798/798	100	522/522	100	957/957
C8	C. coli	99.96	2295/2295	100	555/555	99.87	798/798	100	522/522	100	957/957
С9	C. jejuni	99.96	2310/2310	100	555/555	100	798/798	100	522/522	100	393/393
C10	C. jejuni	99.31	2310/2310	99.82	554/555	99.75	798/798	99.81	522/522	99.75	393/393
D11	C. jejuni	99.96	2310/2310	100	555/555	100	798/798	100	522/522	99.75	393/393
D12	C. jejuni	99.48	2310/2310	100	555/555	100	798/798	100	522/522	99.75	393/393
E13	C. jejuni	99.96	2310/2310	100	555/555	100	798/798	100	522/522	99.75	393/393
E14	C. jejuni	99.96	2310/2310	100	555/555	99.87	798/798	100	522/522	99.75	393/393
E15	C. jejuni	98.01	2310/2310	98.74	554/555	99.11	798/798	99.23	522/522	99.49	393/393
E16	C. coli	100	2295/2295	100	555/555	99.62	798/798	100	522/522	100	957/957

SUPPLEMENTARY TABLE 3 CONTINUED.

					Adh	esion				
Isolates	Species		cadF		dnaJ		pldA	racR		
		% Identity	Query/HSP length							
A1	C. coli	99.60	999/999	98.22	1125/1125	100	996/996	99.85	672/672	
A2	C. jejuni	100	960/960	100	1122/1122	99.98	990/990	100	672/672	
B3	C. jejuni	100	960/960	99.73	1122/1122	98.79	990/990	100	672/672	
B4	C. jejuni	100	960/960	99.29	1122/1122	98.69	990/990	99.85	668/672	
B5	C. jejuni	100	960/960	100	1122/1122	100	990/990	100	672/672	
B6	C. jejuni	100	960/960	99.73	1122/1122	98.79	990/990	100	672/672	
C7	C. coli	99.70	999/999	99.73	1125/1125	99.60	996/996	100	672/672	
C8	C. coli	99.60	999/999	98.67	1125/1125	100	996/996	99.85	668/672	
С9	C. jejuni	100	960/960	98.04	1125/1125	100	990/990	99.55	672/672	
C10	C. jejuni	100	960/960	99.73	1122/1122	98.79	990/990	100	672/672	
D11	C. jejuni	100	960/960	100	1122/1122	100	990/990	100	672/672	
D12	C. jejuni	100	960/960	99.29	1122/1122	98.69	990/990	99.85	672/672	
E13	C. jejuni	100	960/960	100	1122/1122	99.90	990/990	100	672/672	
E14	C. jejuni	99.58	960/960	98.76	1122/1122	99.09	990/990	99.70	672/672	
E15	C. jejuni	99.06	960/960	100	1122/1122	98.59	990/990	100	672/672	
E16	C. coli	99.70	999/999	99.20	1125/1125	99.20	996/996	100	672/672	

SUPPLEMENTARY TABLE 3 CONTINUED.

	SmaI	KpnI	Isolates	Species	Year
50 60 60 60 60 100	T.C. 0100.00	TTTTTT	E16	C coli	2013
				C. con	2013
			AI	C. con	2011
			C8	C. coli	2012
		<u> </u>	C7	C. coli	2012
			C9	C. jejuni	2013
			A2	C. jejuni	2012
			B4	C. jejuni	2011
			D12	C. jejuni	2011
			E15	C. jejuni	2013
		T TÜ ÜÜ	B5	C. jejuni	2012
			E13	C. jejuni	2011
			E14	C. jejuni	2011
			D11	C. jejuni	2011
			B6	C. jejuni	2013
			C10	C. jejuni	2013
			B3	C. jejuni	2011

ALITH	a constant	al west	Children Commit	AL DANK	St. Date	E. DER	St. DEN	St. Date	C. DEDA	C. Dest	Contraction of the local division of the loc	Cont of	Cont Cant	al Deale	C. DEDA	C. DEN	C. DEN	Scannak
6171	1046	605	43	6033	- 017	6531	1343	2860	-011	1046	6115	623	100	100	2855	414	. 0	CP011015_Casil/1-13404
417	2581	1340	1528	1398	3425	3742	-	-	1413	2581	3475	640	3613	7100	2014	0	414	Campy9/1-13404
10048	3945	40.04	367	- 16.00	10120	10	3363	215	-		***	100	8.11	2548		1004	2855	Campy8/1-13-0-6
7376	245	100	20	2425	Nit	200	2042	2855	201	2012	796	743	313		2548	700	3354	Campy??1-13-04
2408	10	3673	2555	203	2327	3782	706	111	2538	15	2531	2575	•	-	115	3612	GI	Carpy6/1-13-04
752	2536	1352	1558	1458	307	3779	6967		101	2536	1508	8	275	Test	100	640	4223	Campy5/1-13-04
1464	2508	1975	166	1447	2384	3763	4996	-	1414	2508	0	1508	2531	7100	109	1476	6293	Campy#1-13-04
2579	6	3425	2736	2799	2279	3792	7104	2146	5477	٠	2508	2536	15	7607		2585	iOn6	Campy3/1-13-0-4
1377	207	3547	3054	1760	2021	3759	- 075		0	3477	3436	3106	3510	. 7001	-	163	4223	Cwopy\$/1-13454
1647	- 104	- 11.13	804		1120	101	3160	0	-	10-66	-84		83	2855	215		2810	Campy1/1-13404
6853	2008	- 1971	4456	- 07	3039	7245	. 0	3540	6013	7014	SPN.	96	300	2040	3563	- 1964	1313	Campy161-13434
3759	3736	354	3776	31723	3736		726	-	3259	3752	3763	3719	3783	200	100	3742	673.1	Campy15/3-13434
2451	2278	2463	3434	3430	0	3736	7010		2321	327%	2384	3407	2327	200		9493	-017	Campy14/1-15434
131.8	2597	368	1707		3430	3753	-		1768	2599	1647	1458	3630	Net	812	1391	4331	Carpy13/1-13434
1506	2536	1701	0	1707	2414	37%	4955	-	1454	2536	166	1558	2555	114	1017	1528	6178	Campy12/3-13434
1261	363	0	1700	369	2463	3768	671		1647	305	1575	1352	3653	100	1116	1245	102	Campy11/0-13434
3579	0	2623	25.26	2597	2279	3750	7030	1946	2477	6	2508	2526	15	740	- 1140.1	2593	.040	Campy10/1-13434
0	2779	150	1506	1318	2418	3739	- 113	30(7)	1377	2579	1464	732	2608	. 1016	8540	-67	an:	AL11160_Cjquar1-13404