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Abstract 

This paper describes the results of two experiments regarding porcine reproductive and respiratory syndrome virus 
(PRRSV1): the first one studied the existence of bottlenecks in an experimental one‑to‑one model of transmission in 
pigs; while the second analysed the differences between viral quasi‑species in vaccinated pigs that developed shorter 
or longer viraemias after natural challenge. Serum samples, as well as the initial inoculum, were deep‑sequenced and 
a viral quasi‑species was constructed per sample. For the first experiment, the results consistently reported a reduc‑
tion in the quasi‑species diversity after a transmission event, pointing to the existence of bottlenecks during PRRSV1 
transmission. However, despite the identified preferred and un‑preferred transmitted variants not being randomly 
distributed along the virus genome, it was not possible to identify any variant producing a structural change in any 
viral protein. In contrast, the mutations identified in GP2, nsp9 and M of the second experiment pointed to changes 
in the amino acid charges and the viral RNA‑dependent RNA polymerase structure. The fact that the affected proteins 
are known targets of the immunity against PRRSV, plus the differential level of neutralizing antibodies present in pigs 
developing short or long viraemias, suggests that the immune response selected those changes.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
The comprehension of how the transmission of patho-
gens occurs is key to the understanding of infectious dis-
eases. Most often, the source of excretion, the route of 
transmission, the portal of entry and the minimum infec-
tive dose, when known, are common features to charac-
terize transmission. However, it is increasingly evident 
that transmission is an extremely complex phenomenon; 
for example, the existence of bottlenecks during host-
to-host transmission [1]. A bottleneck can be defined 
as a sharp reduction in size (population bottleneck) or 
diversity (genetic bottleneck) in a population. Focusing 

on pathogen transmission, the existence of such bottle-
necks must be examined with consideration to the por-
tal of entry in the recipient host and the pathogen source 
(blood, nasal secretion, faeces, etc.). Since a pathogen 
may be present in different tissues, organs, or fluids, 
each one might be considered a compartment with its 
own particularities. The pathogen population contained 
in the compartments where the transmission to the next 
host occurs is termed transmissible population; whereas 
the successful infectors in the recipient host are called 
founder variants or transmission founders. The location, 
size, and genetic diversity of the transmissible population 
can influence the founder population after a transmission 
event [2–4].

Successful transmission founders can be thought of 
as either the result of a non-selective bottleneck—the 
particles that crossed by chance the portal of entry—, 
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or viewed as a selective bottleneck, where only the vari-
ants fit enough to cross the portal of entry are trans-
mitted. In the case of RNA viruses, which exist as 
quasi-species, these different scenarios could imply 
very different outcomes. On the one hand, a non-
directional unspecific bottleneck would produce a new 
quasi-species cloud from randomly selected variants. 
In contrast, on the other hand, a directional bottleneck 
would promote the expansion in the recipient host of 
variants derived from founders fit for transmission that 
are subsequently selected, since they are not necessarily 
the fittest, neither the most efficient for replication in 
the host.

There are other factors, such as the immune status 
of the host that may influence the diversity of a quasi-
species for example, in Human Immunodeficiency Virus 
(HIV) [5], Influenza A Virus [6] and Hepatitis C virus 
(HCV) [7], continuous diversification has been consid-
ered the means by which the virus escapes the immune 
system and establishes a persistent chronic infection. 
However, other additional factors, such as the antigenic 
cooperation between intra-host variants, may permit 
immune adaptation, leading to the co-existence of viral 
variants with different capacities to bind antibodies or to 
be attacked by the cell-mediated immunity [8, 9].

The ex  vivo study of founder variants and the quasi-
species evolution in humans is challenged by the diffi-
culty of determining the precise timing of transmission 
and the associated quasi-species distribution in the 
donor. However, in animal models this can be examined 
in a more controlled environment. As a result, transmis-
sion bottlenecks and quasi-species variation can be more 
precisely determined.

Porcine reproductive and respiratory syndrome (PRRS) 
is one of the most economically detrimental pig diseases. 
It is caused by PRRS virus (PRRSV), a positive-sense, 
single-stranded RNA virus in the Arteriviridae fam-
ily within the order Nidovirales, which exhibits one of 
the highest substitution rates observed [10, 11]. Experi-
mental models to study PRRSV are well known and have 
been used in transmission studies [12, 13]. The immune 
response against PRRSV is unusual, since neutralizing 
antibodies appear late and cell-mediated immunity has 
an erratic course lasting weeks. However, after several 
weeks of viraemia, the virus is confined to the lymphoid 
tissue and eventually cleared [14, 15]. Neutralizing anti-
bodies may protect against the homologous infection in a 
dose dependent way [16], although heterologous protec-
tion cannot be predicted [17]. In addition, there is a large 
individual variation in the immune response [18]. As a 
result, when a vaccinated animal is challenged with a het-
erologous strain, viraemia usually develops, but generally 
of shorter duration than in a naïve animal.

In the present study we used Next Generation 
Sequencing (NGS) to analyse the quasi-species diversity 
and evolution in a transmission model of PRRSV in order 
to: (i) characterise and compare the transmissible popula-
tion and the founder variants in intra-nasally inoculated 
and naturally infected animals, (ii) compare the diversity 
at early and late phases of viraemia and, (iii) identify the 
differences in the viral quasi-species between vaccinated 
pigs developing short and long viraemias after being in 
contact with infected pigs.

Materials and methods
Animal experiment
Samples used in the present study were obtained in the 
course of a previous experiment aimed to determine the 
transmission of PRSRV in a one-to-one basis [12]. Table 1 
and Figure  1 summarizes the first experiment regard-
ing transmission, where two different scenarios were 
examined. The first one studied animals experimentally 
infected by the intranasal route with a PRRSV inocu-
lum produced in Porcine Alveolar Macrophages (PAM) 
(n = 9); the second scenario studied cases of transmission 
by contact in naïve pigs (n = 5). In all cases, the serum 
samples used were collected on the first observed day of 
viraemia in the recipient, usually day 2 after inoculation 
or contact. When transmission occurred by contact, the 
donors’ serum of a sampling point prior to the transmis-
sion event (usually 1–3 days before the onset of the virae-
mia in the recipient) was analysed. Additionally, since 
samples at later viraemia stages were available, we exam-
ined the changes in the diversity throughout the viraemic 
period. Oral fluid samples were also available and might 
have been more representative than sera to characterize 
the transmissible quasi-species population. However, the 
viral load present in those samples was insufficient—even 
after cell passage—to carry out a successful NGS analysis.

In a second experiment, the changes in the viral quasi-
species present in blood of vaccinated animals that 
were infected by contact with seeder pigs were exam-
ined (n = 11). For this purpose, the last day of viraemia 
was analysed. In this later experiment, animals were 
seen to develop long viraemias (≥ 7 days) or short virae-
mias (< 7  days) and were classified accordingly into two 
groups: short viraemia (SV, n = 7) or long viraemia (LV, 
n = 4). Since in some cases the amount of virus in blood 
was not enough to proceed directly to NGS, all samples 
were subjected to a single passage in PAMs in order to 
maintain similar conditions for all.

For the first experiment, the inoculum used was a 
sixth passage of strain CReSA3267 (Accession Num-
ber JF276435). The percentage of nucleotide differences 
between the quasi-species present in the inoculum 
and the one in the vaccine batch was 10.6%. In both 
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experiments, viral load in blood was determined by one 
step RT-PCR (qRT-PCR) targeting PRRSV ORF7 using 
the method described by Pileri et al. [19].

NGS protocol
As stated above, all sera were previously passaged once in 
PAM. Cell culture supernatants were firstly centrifuged 

up to 14 000 g in order to remove potential debris. After-
wards, total RNA was extracted using the Trizol LS© rea-
gent following the manufacturer’s instructions. Extracted 
RNA was assessed by spectrophotometry at 260 nm and 
280 nm and used in the PRRSV-specific qRT-PCR as pre-
viously stated for determining concentration of RNA and 
purity.

Table 1 Variation of the viral load and nucleotide diversity (π) in transmission events and between days of viremia

The table shows the difference in nucleotide diversity between: (i) the transmissible population in sera for the donor before the transmission and the founders in 
the recipient at the first day of viremia, and (ii) samples of the same animals in different days of the virological course. The difference of nucleotide diversities was 
calculated by subtracting the π value of a given day from the π value the previous examined day. For the first day of each animal the difference was calculated with 
regards to the inoculum (inoculated animals) or with regards to the diversity of the donor (D1 to D5) on the likely day of transmission (transmission by contact) to the 
corresponding recipient (R1 to R5) animals. In italic, the most likely day of transmission for the donor animals.

Group Animal n° Viremic day Viral load π Difference 
between donor 
and recipient

Difference 
between consecutive 
samples

Inoculum produced in PAM N.A. 0.0127

Inoculated animals D1 1 7.91E+06 0.0045 −0.0082

6 6.04E+05 0.0182 +0.0137

13 6.18E+06 0.0239 +0.0057

D2 1 1.24E+05 0.0091 −0.0036

6 3.23E+05 0.0124 +0.0033

13 1.24E+05 0.0115 −0.0009

D3 1 1.07E+06 0.0064 −0.0063

13 1.15E+07 0.0075 +0.0011

D4 6 3.46E+05 0.0117 −0.0010

13 2.14E+06 0.0528 +0.0411

D5 1 1.11E+06 0.0123 −0.0004

13 6.09E+05 0.0132 +0.0009

6 1 5.66E+05 0.0305 +0.0178

6 1.40E+07 0.0308 +0.0003

15 1.97E+05 0.0097 −0.0211

7 1 3.60E+06 0.0072 −0.0055

13 5.88E+05 0.0524 +0.0452

8 1 5.71E+05 0.0064 −0.0063

06 7.37E+04 0.0152 +0.0088

13 2.66E+06 0.0088 −0.0064

9 1 4.81E+06 0.0091 −0.0036

6 2.58E+05 0.0041 −0.0050

13 1.64E++06 0.0335 +0.0294

Naïve infected by contact R1 1 1.23E+07 0.0031 −0.0151

6 4.60E+04 0.0119 +0.0088

22 5.99E+03 0.0178 +0.0059

R2 1 1.63E+06 0.0108 −0.0090

8 2.41E+07 0.0091 −0.0017

15 2.25E+03 0.0109 +0.0018

R3 3 2.76E+05 0.0134 +0.007

10 8.57E+06 0.0165 −0.0031

R4 1 3.17E+06 0.0092 −0.0025

5 2.90E+08 0.0065 +0.0027

R5 3 6.06E+06 0.0069 −0.0054

10 5.97E+06 0.0099 +0.0030
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The assessment of PRRSV diversity within each sample 
was characterised directly from RNA without any previ-
ous amplification step using a NGS approach developed 
by our group. The procedures included: (i) construction 
of a genomic library for Illumina NGS sequencing using a 
commercial protocol and reagents (Protocol for use with 
Purified mRNA or rRNA Depleted RNA and  NEBNext® 
Ultra™ II RNA Library Prep Kit for  Illumina®, New Eng-
land Biolabs), (ii) trimming of low quality reads (QC > 20 
as determined by FastQC©software, Babraham informat-
ics) using Trimmomatic© [20], (iii) mapping of the reads 
against strain CReSA3267 using the Burrows-Wheeler 
Aligner applying the BWA-MEM algorithm for long 
reads [21], (iv) variant calling with SnpSift© to determine 
the frequency of each nucleotide at each position of the 

reference genome and, (v) construction of the viral quasi-
species in fasta format.

Validation of the procedure, estimation of the PAM 
passage error rate and quality control check
Given that the samples used were cell culture super-
natants, it was necessary to validate the technique for 
ascertaining the potential bias introduced between 
PAM-passaged and un-passaged samples. For this pur-
pose, four serum samples with high viral load (> 106 viral 
genomes/mL after quantification by qRT-PCR) were 
directly deep-sequenced. In parallel, the same four sera 
were single passaged in PAM during 72–96 h and the cell 
culture supernatants were also deep-sequenced. Both 
samples were then filtered against the reference genome 
and a quasi-species for each one was constructed. Finally, 
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Figure 1 Summary of the 14 transmission events studied. A Intranasal inoculation of 9 naïve pigs using a nebulizer; B Experimental infection in 
a 1:1 basis of 5 non‑vaccinated naïve pigs (R1 to R5) from seeders (D1 to D5). Nucleotide diversity (π) estimations of the donor population (orange 
boxes) and the founder variants, in green boxes if the global diversity decreased and in red if an increase was reported. The donor animals, the 
recipient animals, and the nucleotide diversity estimations are also depicted in Table 1.
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both quasi-species were compared. To be admitted to 
further analysis, a sample should produce a complete 
genome with at least a depth of 100 reads per nucleotide 
position.

Nucleotide diversity estimations and frequency changes 
per position in the transmission events
To assess the change in the diversity of viral populations 
in the different transmission cases, the calculation of the 
nucleotide diversity (π) was performed using DNAsp 
[22]. These calculations were done comparing respec-
tively: (a) the diversity in the PAM inoculum versus the 
diversity in the samples collected the first day of viraemia 
in experimentally inoculated animals and, (b) the diver-
sity on the first day of viraemia of animals infected by 
contact versus the diversity in the sample of the donor on 
the most likely day of transmission. Additionally, with the 
transmission by contact cases (5 animals) the frequency 
of each nucleotide in each position in the donor and the 
recipient were compared to estimate what nucleotides 
increased or decreased their frequency in the transmis-
sion event. Frequency changes above 4.9% were arbitrar-
ily considered relevant.

Analysis of molecular variance (AMOVA) in vaccinated 
animals
In the case of vaccinated animals, it was considered key 
to identify nucleotide positions that could be differen-
tially selected in animals with longer or shorter viraemias. 
Therefore, firstly animals were grouped according to the 
viraemia as stated before (Long viraemias, LV, ≥ 7  days, 
or short viraemias, SV, < 7  days). Then, the average fre-
quencies of each nucleotide per position and group were 
compared using AMOVA in Arlequin ver 3.5.2.2 [23]. 
Positions presenting a Fct > 0.05 were selected for further 
analysis.

Screening of potential changes in the amino acid 
composition in the viral proteins
For all cases (transmission to naïve or vaccinated ani-
mals), the resulting reads were ordered to represent the 
different viral proteins known. Once this was done, the 
potential changes in codons for the positions showing 
changes above the considered threshold (4.9%) for fre-
quencies of nucleotides were analysed.

As a first step, each change potentially causing the 
appearance or increase of a non-synonymous codon 
was annotated in the corresponding domain of the pro-
tein if known. Then, by bibliographic review, the affected 

positions were assessed for a known function. In addi-
tion, the changes in the protein structure were evaluated 
using SWISS-MODEL [24]. The 3D structures were built 
up choosing the default parameters in the program and 
the potential modification in the charge of the protein or 
site were evaluated.

Results
The RNA NGS method was suitable for assessing viral 
quasi‑species
Deep sequencing results for PRRSV1, obtained from four 
un-passaged sera with high viral loads and from four cell 
culture supernatants of single-passaged samples from 
the same sera, produced similar viral quasi-species. The 
observed differences between the quasi-species, obtained 
from un-passaged sera and the isolated virus, ranged 
between 1 and 3 nucleotides for every 10  000 nucleo-
tides. So, the results obtained from un-passaged sera or 
single-passaged isolates only differed at this error rate, 
which was considered an acceptable bias.

The quality scores (QC) of the NGS runs were above 
30 in all the analysed samples (equivalent to equal or less 
than 0.1% error in the reads obtained), yielding a depth of 
reads for viral sequences above 115 in all cases. With this 
depth, variations in the range of percentage units could 
be determined.

The characterization of PRRSV transmission events 
supports the existence of bottlenecks
The transmission experiment scheme and results are 
summarized in Table 1 and Figure 1. In 8/9 of the intra-
nasally inoculated naïve pigs, the viral population in 
blood at the onset of viraemia showed lower diversity 
compared to the initial inoculum. Similarly, in 4/5 of 
the naïve pigs infected by direct contact with a seeder, 
the observed nucleotide diversity was lower compared 
with their seeder counterparts. As a whole, and assum-
ing the limitations of the method, the results pointed to 
a reduction in the diversity of the founders compared to 
the transmissible population, supporting the existence of 
a bottleneck during PRRSV transmission events.

Taking advantage of the availability of serial samples 
during the virological course of each animal, it was pos-
sible to compare the diversity at different stages (Table 1). 
After the initial reduction during transmission, nucleo-
tide diversity increased in most pigs analysed, although 
in some animals this was not the observed pattern.
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Preferred and un‑preferred transmitted variants are 
differentially distributed along the PRRSV genome
Mean frequency differences for each nucleotide in every 
genome position were calculated for the transmission 
events where naïve acceptors were infected by seeder 
pigs (Figure 1B). For this section we used only data from 
pigs infected by contact, since for the inoculated pigs 
(Figure  1A), the PAM propagated inoculum might have 
had shown some level of adaptation to the cell passages 
and this might have masked the true changes associ-
ated with transmission fitness. Figure 2 shows the mean 
increase or decrease in the frequencies of each nucleotide 
per position between the quasi-species of the transmissi-
ble population and the transmitted founders (only values 
larger than 5% are shown). An increase in the nucleotide 
frequency was associated with a preferentially transmit-
ted variant, while a decrease was identified as an un-pre-
ferred transmitted one. Along the PRRSV1 genome, 65 
variants in 32 positions were detected (32 preferred and 
33 un-preferred). Nineteen nucleotide variants produced 
synonymous changes, while 13 variants induced potential 
amino acid changes. These mutations were consistently 
reported in the quasi-species within both transmissible 
populations and transmitted founders, indicating that 
the mean differences reported were not caused by results 
observed in single transmission events.

A salient feature exhibited was the non-random distri-
bution of the affected positions: 10 in nsp2 region (31%, 
4 synonymous and 6 non-synonymous), 3 in nsp4 (9%, 
2 synonymous and 1 non-synonymous), 3 in nsp9 (9%, 
all synonymous), 6 in nsp10 (19%, 3 synonymous and 3 

non-synonymous) and 3 in ORF5 (9%, 1 synonymous and 
2 non-synonymous).

Next, we examined and related the non-synonymous 
changes with the regions and known features of the 
encoded proteins. The six amino acid changes detected 
within nsp2 fell in the two hypervariable regions flank-
ing the papain-like cysteine protease domain, with one 
change (Gln-336-Lys) located in the B Cell epitope site 
3 proposed by Oleksiewicz et  al. [25] and a second one 
(Tyr-736-His) falling in a non-conserved epitope induc-
ing IFN-γ and IL-10 responses, as reported by Burgara-
Estrella et  al. [26]. In nsp4, an Ile-142-Leu change was 
located in the middle β-barrel domain II of the main 
PRRSV proteinase 3C-like protease, but the mutation 
did not result in any substantial change of the 3D struc-
ture of the protein. The single change detected in nsp5—
Leu-32-Phe—was located in a transmembrane domain. 
Regarding nsp10, 2/3 amino acid changes identified in 
this protein fell in the Zinc-binding domain, while the 
third was located in the C-terminal domain. One of the 
affected residues, located at position 46, preferentially 
changed from Ser to Gly during the transmission events. 
Finally, in GP5 two nucleotide mutations in the first and 
second position of a codon led to the change Ile-36-Asp 
in the hypervariable ectodomain of GP5, just after a sig-
nal peptide cleavage site. None of the above-mentioned 
changes produced a relevant structural change in any 
protein.
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Figure 2 Preferentially and un‑preferred transmitted variants. Mean percentage of variation in nucleotide frequencies along the PRRSV1 
genome of the identified preferred or un‑preferred transmitted variants in the transmission events between infected and naïve pigs studied 
(Figure 1B). Only positions with variations larger than 5% are shown.



Page 7 of 11Cortey et al. Vet Res          (2018) 49:107 

Differences in viral quasi‑species between short‑ vs 
long‑viraemic pigs are mostly located in nsp9 and ORF2
In PRRS, immunity against heterologous viral strains 
is considered partial and, consequently, the infection of 
vaccinated animals is possible if a heterologous strain 
is used. After examining transmission to naïve pigs, we 
compared the viral quasi-species in two groups of vacci-
nated pigs infected by contact through seeder penmates 
in a one-to-one basis. Those vaccinated animals devel-
oped viraemias that were classified as long (LV > 7 days) or 
short (SV < 7 days). The results indicated a different distri-
bution of the changes in nucleotide frequencies between 
groups along the viral genome (Figure 3). As in the first 
experiment, mutations were consistently reported within 
LV and SV groups of quasi-species. Forty-five of the 55 
positions (81.8%) identified were located in the nsp9 (37 
positions, 64%) and ORF2 (8 positions, 15%); while these 
two proteins only account for 17.8% of the nucleotide 
positions in the viral genome. Remarkably, in all these 
55 positions, the nucleotide variants characterising the 
LV group coincided with the nucleotide present in the 
original strain causing the infection, while the SV group 
always showed a different nucleotide. When the nucleo-
tide variants present in the SV and LV were translated, 
most variants (43) generated the same amino acid (blue 
dots in Figure 3), but 12 introduced amino acid changes: 
2 located in nsp2, 5 in nsp9, 3 in ORF2 and 2 in ORF6 
(red dots in Figure 3).

In addition to this, both SV and LV groups shared an 
increase in the frequency of Lys at amino acid 106 of GP5 
(13% in SV and 21% in LV), instead of the 106-Gly present 
at 100% in the initial inoculum.

Again, non-synonymous changes were examined 
for potential biological significance. The two changes 
identified in nsp2, Ala-392-Thr and Pro-669-Ser, fell 
in the B-cell epitopes 4 and 7 described by Oleksiewicz 
et  al. [25]. In nsp9, one of the key enzymes for PRRSV 

synthesis, all the amino acid changes identified were 
located in the viral RNA-dependent RNA polymerase 
(RdRp), encoded by the C-terminal domain. The com-
parison of the RdRp 3D structures between SV and LV 
groups (inferred with SWISS-MODEL) indicated that the 
amino acid changes Lys-338-Arg and Lys-641-Arg did 
not produce any evident structural change. On the con-
trary, the change Gly-387-His, caused by changes in the 
three nucleotide positions of the codon, induced a struc-
tural modification. The presence of a 387-Gly in SV group 
resulted in the formation of an α-helix between residues 
384–388 and reduced the positive charge at the opposite 
side of the active centre of the protein, where  Mg2+ mol-
ecules bind (Figure 4).

In GP2, the three amino acid changes identified, 
namely Gln-146-Arg, Val-151-Ala and His-184-Arg, fell 
in the ectodomain, slightly downstream the linear B-cell 
epitopes proposed by De Lima et al. [27] and Oleksiewicz 
et al. [28]. The amino acid changes reported for this pro-
tein implied more positively charged residues in LV com-
pared to SV group.

Finally, the last two amino acid changes, Asp-10-
Asn and Stop-25-Tyr, were located in the short stretch 
exposed at the virion surface in the N-terminal ectodo-
main of protein M, encoded by ORF6. Those positions, 
especially the Asp-10-Asn, were close to the residue 
8-Cys that forms a disulphide bond with the 50-Cys of 
GP5 protein. The 10-Asp-Asn implies a charge modifica-
tion from neutral (LV) to negative (SV).

Discussion
With the introduction of NGS technologies, the experi-
mental analysis of viral genetic diversity has changed 
dramatically. Due to its massively parallel approach, NGS 
generates millions of reads that cover every nucleotide 
position. Hence, low-frequency variants within viral 
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quasi-species can be adequately detected and character-
ized [29] and it is possible to see variations that, although 
significant, would remain unnoticed using Sanger 
sequencing. However, the usefulness of NGS for viral 
diversity estimations depends crucially on the quality of 
the sample and on the procedure to prepare it [30]. In the 
present work we applied a tailor-made NGS method to 
characterize the diversity of PRRSV quasi-species with-
out the need of primers. The method omitted the PCR 
amplification step and used instead a single passage in 
PAM when needed because of the low amount of virus 
present in many of the samples. By using PAM, the same 
cells that support viral replication in the host, a low bias 
was generated in a single passage, and the error rate pro-
duced was also very low. This approach could be useful 
for other viruses that cannot be analysed directly by NGS 
from biological samples because of the low titres present.

As stated, virus populations may face bottlenecks dur-
ing the infection cycle [1]. When transmission takes place 
through a mucosal portal of entry, infection is usually 
initiated by a limited number of viral particles compared 
to the total number of particles reaching that portal [4]. 
Besides population bottlenecks, there are many exam-
ples of extreme genetic bottlenecks in RNA viruses such 
as HIV (see reviews by [4, 31], HCV [32–34] and Simian 
immunodeficiency virus [35].

In most of the experimentally inoculated pigs and the 
animals infected in a quasi-natural way by contact with 
infected seeder pigs, viral diversity was reduced during 
transmission, supporting the existence of a bottleneck 

during PRRSV infection. The nature of such a bottle-
neck is more difficult to determine. The changes in the 
nucleotide diversity were not scattered randomly across 
the viral genome but focused in a few targets. Before-
hand, one could think that the structural proteins inter-
acting with the target cells would be the most affected 
ones, since they are the first interacting with the mucosa 
surface. Interestingly, this was the case with GP5, the 
viral glycoprotein establishing the first interaction with 
porcine sialoadhesin, one of the viral receptors on the 
macrophage surface [36]. The preferentially transmitted 
variant introduced a change in position 36 favouring an 
Asp, a more acidic amino acid. It is difficult to interpret 
this result, but it is located close to a potential glycosyla-
tion site and adjacent to the neutralization epitope in GP5 
[37]. It is tempting to hypothesize a potential increased 
interaction between GP5 and sialoadhesin favoured by 
the higher polarity of the 36-Asp variant. It is also worth 
noting that all but one of the other favoured changes 
affected non-structural proteins, pointing towards the 
selection of variants with different replication charac-
teristics, although the result of the precise amino acid 
changes could not be ascertained from the literature.

After the initial diversity reduction during the trans-
mission event, the viral diversity of the circulating quasi-
species increased in most cases, as expected in an initial 
expansion of a viral population in a naïve animal. After-
wards, in later stages, diversity could increase or fall but 
since a detailed characterisation of the immune response 
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Figure 4 Structural differences between RNA‑dependent RNA polymerases. 3D‑structures of the PRRSV1 RdRp based on the translated 
sequences of nsp9 from the viral quasi‑species of the inoculum (A), long (A) and short (B) viraemic pigs. The NTP and template channels, the dsRNA 
exit, and the amino acid residue 387 are indicated.
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at each timepoint was not performed, the causes are not 
clear.

The third objective of this work was to analyse the 
quasi-species differences between two groups of vac-
cinated pigs developing short and long viraemia. In the 
present work, the duration of the viraemia was corre-
lated with the titres of neutralizing antibodies against 
the virus; LV pig titres ranged between 2 and 3 log2, 
while the observed values for SV pigs moved between 
4 and 6 log2 [10]. Therefore, beforehand, main changes 
were expected to be located in potential targets for the 
neutralizing antibodies. Neutralizing antibodies for 
PRRSV have been reported to be induced by GP2, GP3, 
GP4, GP5 and M proteins [16, 38]. In the present case 
most of the changes in SV occurred in nsp9, followed by 
ORF2 that encodes GP2 (Figure 3). The 3D modelling of 
nsp9 (RdRp, Figure 4) showed that the introduction of a 
387-Gly-His after mutations in the three nucleotides of 
the codon, produced a change in the folding of the pro-
tein, from linear to α-helix. This change resulted in the 
absence of a positively charged group opposite to the site 
of union of  Mg2+, and would probably cause a modifica-
tion in the electrostatic forces involved in the interaction 
with the NTP channel. It can be hypothesized that such 
a change would affect the efficiency of RNA synthesis; 
thus resulting in lower expression of the viral epitopes as 
a mechanism of escape. Unfortunately, with the analyses 
performed, this hypothesis cannot be proven.

Regarding the changes in the ORF2, the variants 
found in SV also resulted in a less charged protein. GP2 
is known to build a complex with GP3 and GP4 that 
interacts with CD163 [39], the essential cell receptor for 
PRRSV [40, 41]. Again, it cannot be established if the 
changes in GP2 polarity reported modify any of these 
interactions, either with GP4 or CD163.

Apart from the aforementioned changes in nsp9 and 
ORF2, an additional interesting change was observed in 
the M protein encoded by ORF6. In the present study, 
for SV pigs, the mutation 10-Asp introduced a negative 
charge close to the residue 8-Cys that establishes a disul-
phide bond with the residue 50-Cys of GP5 [42]. GP5 
and M form a heterodimer that interacts with heparan 
sulphate during PRRSV attachment; and later on, with 
sialoadhesin during the internalization of the virus [36, 
43, 44]. The disruption of this bond correlated with the 
loss of viral infectivity in other members of the Arteri-
viridae family, such as Lactate dehydrogenase-elevating 
virus [45] and Equine arteritis virus [46]. The negative 
charge present in 10-Asp (SV) may interfere in the disul-
phide bond between GP5 and M. Therefore, potential 
weaker interactions with heparan-sulphate and siaload-
hesin may be induced in the variants present in SV pigs. 
Another study showed that a single deletion adjacent to 

this disulphide bond produces the escape from a neutral-
izing antibody targeting an epitope located in GP5 [47]. It 
is tempting to think that this may be a similar case.

Interestingly, in both groups of vaccinated animals, 
compared to the initial inoculum a significant change 
favouring 106-Lys instead of 106-Gly was observed. The 
position 106 in PRRSV1 corresponds to 104 in PRRSV2. 
Fan et al. [48] showed that a substitution of 104-Gly by 
104-Arg resulted in a decreased susceptibility to neu-
tralization. Both Arg and Lys are hydrophilic amino 
acids of alkaline pK positively charged, while Gly is a 
non-charged amino acid. Therefore, it is reasonable to 
think that the change 106-Lys in PRRSV1 may act simi-
larly to the 104-Arg in PRRSV2 and results in an escape 
mechanism in the presence of neutralizing antibodies.

Most of the mutations reported between LV and SV 
groups (10 out of 12) are commonly present among the 
PRRSV1 complete genomes available in GenBank, except 
the mutations 387-Gly in nsp9 and 25-Stop in ORF6—
characteristic of the SV group—that are rarely reported.

In the context of animals with higher titres of neutral-
izing antibodies, as observed in the SV group [12], the 
changes reported in GP2 and M could be understood 
as escape mutations. The lower antibody titres in the 
LV group probably prevented those changes from being 
positively selected, and the major variants present in the 
initial inoculum remained the commonest. In contrast, 
changes in 106 of GP5 seem to be common to all ana-
lysed animals. It was proposed that T-cell responses con-
tributed to partial levels of cross-protection in PRRSV, 
and therefore, the changes observed in nsp9 could be 
seen as escape variants [49], or as a means of escaping 
by producing very low levels of antigen. Potential T-cell 
epitopes for PRRSV have been proposed for nsp9 [50], as 
well as for the RdRp of other Nidovirales [51, 52]. It could 
be conjectured that those changes in nsp9, GP2 and M 
may result in less efficient viral variants for, either inter-
action with the cell receptor, or replication. This scenario 
would imply that in animals with higher levels of immu-
nity, the variants escaping the immune system would not 
be fit enough to maintain a viable quasi-species cloud, 
and consequently, the viral population would collapse. 
Accordingly, nsp9, GP2 and M would be clear targets for 
new vaccine development. These results highlight the 
importance of the immune system of the host, and spe-
cifically the neutralizing antibodies, to efficiently com-
bat and clear PRRSV infection. The role of neutralizing 
antibodies as a correlate of protective immunity against 
PRRSV is well known (reviewed in [16]).

In summary, the present report shows a feasible 
approach to study transmission events and changes in 
viral quasi-species during the course of an infection in 
pigs. The results were compatible with the existence of 
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a transmission bottleneck for PRRSV and showed some 
targets for understanding the effects of the immune 
response on viral diversity. This pig model could be used 
to study human diseases such as influenza and to gain 
understanding of how transmission of RNA virus occurs.
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