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Abstract 

Cyclic imines constitute a quite recently discovered group of marine biotoxins that act on neural 

receptors and that bioaccumulate in seafood. They are grouped together due to the imino group 

functioning as their common pharmacore, responsible for acute neurotoxicity in mice. Cyclic imines 

(CIs) have not been linked yet to human poisoning and are not regulated in Europe, although the 

European Food Safety Authority (EFSA) requires more data to perform conclusive risk assessment for 

consumers. Several commercial samples of bivalves including raw and processed samples from eight 

different countries (Italy, Portugal, Slovenia, Spain, Ireland, Norway, The Netherlands and Denmark) 

were obtained over 2 years. Emerging cyclic imine concentrations in all the samples were analysed on 

a LC-3200QTRAP and LC-HRMS QExactive mass spectrometer. In shellfish, two CIs, pinnatoxin G 

(PnTX-G) and 13-desmethylspirolide C (SPX-1) were found at low concentrations (0.1 to 12 µg/kg 

PnTX-G and 26 to 66 µg/kg SPX-1), while gymnodimines and pteriatoxins were not detected in 

commercial samples (raw and processed samples). In summary, SPX-1 (n: 47) and PnTX-G (n: 96) 

were detected in 9.4% and 4.2% of the samples, respectively, at concentrations higher than the limit 

of quantification (LOQ), and in 7.3% and 31.2% of the samples at concentrations lower than the LOQ 

(25µg/kg for SPX-1 and 3µg/kg for PnTX-G), respectively. For the detected cyclic imines, the 

average exposure and the 95th percentile were calculated. The results obtained indicate that it is 

unlikely that a potential health risk exists through the seafood diet for CIs in Europe. However, further 

information about CIs is necessary in order to perform a conclusive risk assessment. 
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Introduction  

 

Cyclic imines (CIs) constitute a quite recently discovered group of marine biotoxins that act on neural 

receptors and bioaccumulate in seafood. In 2010 the European Food Safety Authority (EFSA) Panel 

on Contaminants in Food Chain assessed the risks to human health related to the consumption of 

spirolides (SPXs), gymnodimines (GYMs), pinnatoxins (PnTXs) and pteriatoxins (PtTXs) in shellfish 

[1]. 

These toxins are macrocyclic compounds with imine (carbon-nitrogen double bond) and spiro-linked 

ether moieties. They are grouped together due to the imino group functioning as their common 

pharmacore, responsible for acute neurotoxicity in mice. CIs have not been linked yet to human 

poisoning and are not regulated in Europe, although the EFSA requires more data to perform 

conclusive risk assessment for consumers [1]. Spirolides (SPXs) are the largest group of CIs in 

shellfish that together with gymnodimines (GYMs) are best characterized, comprising more than 

twenty different analogues with a similar structure. SPXs are produced by the dinoflagellate 

Alexandrium ostenfeldii [2, 3], GYMs are also produced by A. ostenfeldii and by Karenia selliformis 

[4]. The dinoflagellate Vulcanodinium rugosum produces PnTXs [5]. Pteriatoxins (PtTXs) are 

suggested to be bio-transformed from PnTXs in shellfish [6]. The toxicological information for CIs is 

limited, comprising mostly acute toxicity studies [1]. In addition, not all CIs are equally potent: SPX-

1 showed about 300 fold more activity than GYM-A on equimolar basis in an in vivo study about 

neuromuscular excitability in mice [7]. Oral toxicity of SPXs is much lower (10-100 times less toxic 

orally, depending on the toxin and how the toxins are administered). In contrast to spirolides, PnTXs 

have proven to be almost as toxic via oral dosing as they are by intraperitoneal (i.p.) injection to mice. 

Levels of toxicity of spirolide C and pinnatoxin E+F in feed were 500 and 60 (LD50, mice, µg/kg), 

respectively [8].   

In recent years much effort has been dedicated to the development and validation of the LC-MS/MS 

method for multi-toxin analysis of lipophilic toxins, being the reference method in the EU since July 

1st, 2011 [9]. CIs can be identified and quantified with the LC-MS/MS multitoxin method. Previously, 

when the MBA method was the official method for lipophilic toxins, CIs interfered with it and were 

responsible for false positives. As there is no Maximum Permitted Level (MPL) for CIs established in 

Europe, it is expected to find CIs in the market shellfish. The information about the presence of CIs in 

commercial samples in Europe is still limited, the magnitude of the potential arrival of CIs in the 

market is difficult to assess [1].  

This group of emerging toxins can be addressed easily in the lipophilic method on LC-MS/MS and 

LC-HRMS instruments [10, 11]. Alternative analysis methods have recently been developed for CIs 

[12]. A fluorescent polarization assay was developed for analysis of 13-desmethyl SPX-C and GYM-

A in shellfish [13]. Different receptor-based methods have also been developed for CIs [14-16]. 

Recently the receptor-binding assay based on Torpedo-nicotinic acetylcholine receptors has been 
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patented and commercialized by Abraxis using the colorimetric approach [15]. So far, LC-MS/MS has 

been the detection method of choice for the analysis of CIs in shellfish [17, 18]. 

In the EFSA report, France, Italy, the Netherlands, and Spain provided data on the occurrence of CIs 

in shellfish. The results for a total of 1821 samples (20 from Spain, 635 Italy, 314 the Netherlands, 

852 from France) over 2002-2008 were analyzed by LC-MS/MS. In addition, PnTX G were detected 

in blue mussel in Norway [18] however EFSA did not include these results in the set of occurrence 

data of the report in 2010 [1] . Gymnodimines were not detected. 13-Desmethyl-SPX C was the SPX-

analogue most often reported together with SPX A, SPX B and 13-desmethyl SPX D with a 

concentration range of 4-226 µg/ kg shellfish. In 2010, PnTX G was detected in mussel samples in the 

range of 5 to 30 µg/kg, but also higher levels up to 115 µg/kg were found [18]. 

In this study, several commercial samples of bivalves (mussels, oysters, clams, scallops and cockles), 

raw and processed, from eight European countries were evaluated for emerging CIs. This work aimed 

to study the presence and concentrations of CIs found in the commercial samples, increasing the 

database on levels of these toxins in shellfish and consequently, to perform a risk assessment in order 

to determine the potential health risk for CIs through shellfish consumption.  

 

Materials and methods  

2.1. Standards and reagents 

Certified reference material of okadaic acid (OA), dinophysistoxin-1 (DTX-1), dinophysistoxin-2 

(DTX-2), yessotoxin (YTX), homoyessotoxin (hYTX), pectenotoxin-2 (PTX-2), azaspiracid-a (AZA-

1), azaspiracid-2 (AZA-2), azaspiracid 3 (AZA-3), gymnodimine-A (GYM-A, 5.0 ± 0.2 μg mL-1), 13-

desmethyl spirolide C (SPX-1, 7.0 ± 0.4 μg mL-1) and pinnatoxin G (PnTX-G, 7.0 ± 0.4 μg mL-1) 

were purchased from the National Research Council of Canada (NRC, Halifax, NS, Canada). 

Pinnatoxin A was obtained from Armen Zakarian, University of California, Santa Barbara, CA, USA. 

Pinnatoxins E and F  were obtained from Andrew I. Selwood, Cawthron Institute, Nelson, New 

Zealand. 

 

HPLC methanol (MeOH) was used for extraction. For LC-MS/MS analyses, hypergrade acetronitrile 

(ACN) was used for separation and gradient grade. Both were purchased from Fisher Scientific, 

Loughborough, UK. Ultrapure water (resistivity>18 MΩ·cm) was obtained from a Milli-Q water 

purification system (Millipore Ltd., Billerica, MA, USA). Ammonium hydroxide solution eluent 

additive for LC-MS/MS (≥25% in H2O) was purchased from Fluka (Steinheim, Germany).  

For LC-HRMS analyses, MeCN Optima® LC/MS grade and Water Optima® LC/MS were used (both 

from Fisher Chemical/ Fisher Scientific, Loughborough, UK). Formic acid (HCO2H) was purchased 

from Sigma-Aldrich (Oslo, Norway) 
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2.2. Sampling species 

The criteria used for selecting the target species were the following: most common species consumed 

in the study area, potential to accumulate high concentrations of toxins, wide geographic distribution, 

easy identification, abundance, easy capture, large enough to provide adequate tissue for analyses, 

found in different habitats, from extra-EU or from EU production and from wild or farmed origin. 

A total of 96 samples of seafood consumed in Europe were collected including 46 fresh samples and 

50 processed samples (imported seafood, i.e. frozen or canned) from eight European countries (Italy 

(Goro, Caleri and La Spezia), Portugal (Lisbon), Slovenia (Maribor), Spain (Sant Carles de la Ràpita 

and Castelló), Norway (Oslo), Ireland (Dublin), Netherlands (Ijmuiden) and Denmark (Soeborg)). 

Two sampling campaigns were carried out in 2014 and 2015. At each location, at least 3 fresh 

samples from local seafood and 3 processed samples were sampled at reaching a minimum of 100 g of 

edible tissue. Fresh samples were frozen at -20ºC and shipped to the analytical laboratory with ice by 

fast couriers.  

The 46 fresh shellfish samples included pacific oysters (Magallana gigas), flat oyster (O. edulis), 

japanese clams (V. philippinarum), clams (R. decussatus), surf-clams (S. solida), mussels (M. 

galloprovincialis), blue mussels (M. edulis), cockles (C. edule), scallop (A. irradians) and razor-clams 

(E. arcuatus). A total of 24 samples were obtained from the Mediterranean Sea and 22 samples from 

the north-east Atlantic Ocean. 

From the 50 processed shellfish collected, 23 from South Europe (Portugal, Spain, Slovenia and 

Portugal) while 27 samples were from North Europe (Norway, Ireland, Denmark and the 

Netherlands). These samples included 13 mussels (M. galloprovincialis) of which, 5 were frozen, 1 

smoked & canned, 3 mussels were conditioned in pickle sauce, 2 mussels in brine and 2 mussels in 

tomato, 12 of which from the Mediterranean Sea and 1 from South America. Mussels also included 12 

blue mussel (M. edulis) of which 8 were frozen, 2 in brine, and 2 canned; and 9 were from North-East 

Atlantic Ocean and 3 from South America, in addition to 1 green-shell mussels frozen from New 

Zealand. Furthermore, processed samples included 7 oysters 4 of which were frozen and 3 smoked 

and canned and their origin was from the Mediterranean Sea and 5 from the Pacific Ocean. Sampling 

also included 12 clams distributed in 10 frozen, 1 clams in brine and 1 canned baby clams which 5 are 

from the Mediterranean Sea, 5 from Pacific Ocean (Vietnam, Zebra, Japanese) and 1 from Pacific 

Ocean, 1 clams from South America. Other species such as 2 frozen Pacific scallops were from the 

north-east Atlantic Ocean, 1 cockle sample was canned, 1 razor clam was canned and 1 Vietnam crab 

was canned. 

 

2.3. Sample preparation 

For fresh shellfish, a triple-step extraction with methanol (10mL) was performed on whole 

homogenate tissues (1g) according to the procedure proposed by Gerssen et al. [19] which was also 



6 
 

intra-laboratory validated by our group [20] and accredited by the Spanish accreditation body 

following the standard ISO 17025. Crude extracts were filtered though polytetrafluoroethylene 

(PTFE) 0.2µm membrane syringe filters.  

Processed shellfish samples were treated according to the EURLMB SOP [9]. There were four 

different processed shellfish: (1) packed in oil, sauce, broth and water; (2) packed in brine and other 

non-edible sauces; (3) cooked steamed mussels and (4) processed mussels in vacuum packed bags. It 

is important to take into account the known water losses during each different processing. Three 

different processed shellfish protocols were used. 

For samples in sauce, broth and water, if the ratio solid/liquid was high (i.e >50/50) and /or 

heterogenic slurry was obtained, a known amount of water was added to the slurry and this was taken 

into account as dilution factor. After this step, the same protocol of extraction for fresh shellfish was 

used. 

For samples packed in brine or other non-edible sauces, mussels were separated from the liquid, 

rinsed with water. After this mussels were drained and weighted. Then, homogenate shellfish tissue 

was reconstituted with 50/50 tissue/deionised water. After this step, the same protocol of extraction 

for fresh shellfish was used. 

For samples cooked and steamed, mussels were weighted and reconstituted in 70/30 tissue/deionised 

water. After the homogenisation of the tissue and water, the same protocol of extraction for fresh 

shellfish was used. 

 

2.4. Instrumental analysis (LC-MS Analysis) 

Two detection methods were used for the analysis. All samples from Spain, Portugal, Slovenia and 

Italy were analysed by Method A. In addition, all samples from Ireland, The Netherlands, Denmark 

and Norway were analysed by Method B.  

 

Method A. Samples were analyzed under alkaline elution conditions according to Garcia-Altares et al. 

2013 [20]. Briefly, an Agilent 1200 LC (Agilent Inc. Palo Alto, CA) coupled to a 3200 QTRAP mass 

spectrometer (AB Sciex, Concord, ON, Canada) was used. Analytical separation was performed on a 

X-Bridge C8 column (2.1 x 50 mm, 3.5µm) protected with a pre-column (2.1 x 10mm, 3.5µm) from 

Waters (Milford, MA, USA). A binary gradient was programmed with water (mobile phase A) and 

acetonitrile/water (mobile phase B) both containing 6.7mM of ammonium hydroxide. CIs were 

monitored with two Multiple Reaction Monitoring (MRM) transitions at 694.5 > 676.4 and 694.5 > 

164.1 for PnTX-G, 508.4 > 490.4 and 508.45 > 392.4 for GYM-A, and 692.5 > 444.2 and 692.5 > 

164.1 for SPX-1 in positive mode, [M+H]+; two multiple reaction monitoring (MRM) transitions were 

monitored; identification was supported by toxin retention time and  MRM ion ratios.  Data was 

processed with Analyst 1.6.3 software and MultiQuant TM 3.0.1. software (AB Sciex, Concord, ON, 
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Canada). For method A, LOD and LOQ were 5 µg/kg and 25µg/kg for SPX-1 and GYM-A, and 0.1 

µg/kg and 3µg/kg for PnTX-G, respectively. 

 

Method B. A new LC-HRMS method was developed with an Orbitrap-Exactive HCD (Thermo Fisher 

Scientific, Bremen, Germany). Chromatography is performed on a suitable reverse phase (e.g. C-18) 

HPLC column, using gradient elution with ACN–H2O containing 0.1% v/v HCO2H. The form of the 

gradient can be varied depending on the analytes being investigated, but is typically from 20–80% 

ACN over 20 minutes. The resolution was 50,000 (m/z 200, FWHM) at a scan rate of 2Hz. 

Parameters were optimised to: spray voltage of 3.25 kV, capillary temperature of 375 °C, heater 

temperature of 250 °C, sheath gas flow rate of 45 (arbitrary units) and auxiliary gas flow rate of 15 

(arbitrary units). In positive electrospray ionisation (ESI), capillary voltage of 77.5 V, tube lens 

voltage of 175 V and skimmer voltage of 32 V were used. Data was processed with Xcalibur 3.1 

software (ThermoFisher Scientific, Bremen, Germany). Peaks were identified by retention time, exact 

mass, fragment and isotope ion, and mass accuracy (±5 ppm) and they were quantified with the most 

stable fragment ion, which corresponds to the formation of the proton adduct [M+H]+. Full scan data 

is typically acquired in positive ion mode with 70K resolution over m/z 300–1000, and MS/MS or AIF 

scan data with normalised collision energy (NCE) of 40 at 70K resolution and m/z 100–1000. For 

method B, LOD and LOQ were 0.1 µg/kg and 3µg/kg for PnTX-G and PnTX-E, 0.1 µg/kg and 

10µg/kg for PnTX-F and 0.1 µg/kg and 30µg/kg for PnTX-A, respectively. 

Matrix components might influence identification parameters, such as product ion ratio, but it was not 

the case in our study. Product ion ratios were very reproducible in the calibration curves and the 

influence of the matrices fell in the tolerances ranges proposed by the Commission Decision 

2002/657/EC (± 25% variation allowed) in both methods. 

 

2.5. Risk assessment 

2.5.1. Exposure assessment 

To estimate human exposure to CIs, the approach from EFSA (2010a) [1] was applied, assuming a 

triangular distribution for shellfish consumption, characterised by three values, the minimum (0g), the 

most probable (modal value) (100g) and the maximum (400g) [1]. In order to express human 

exposure per kg body weight, an average body weight (b.w) of 60kg was applied. The consumption 

distribution was divided by this average body weight. Next, this consumption distribution (expressed 

in kg shellfish per kg bodyweight) was combined with concentration data of CIs in shellfish 

(expressed in µg per kg shellfish).  

 

The CIs concentration data used in this exposure assessment resulted from analyses in raw and 

processed (frozen and imported) shellfish samples of commercial importance in Europe. Distribution 
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fitting to the concentration data did not result in a good fit, hence a mean concentration value was 

considered (deterministic approach). Non-detects (<LOD) and non-quantified (<LOQ) were 

considered as zero and LOD or LOQ for LB (lower bound) and UB (upper bound) scenarios, 

respectively. 

Combination of consumption data and concentration data to calculate the human exposure was done 

using the software package @RISK version 6 (Palisade Corporation, US) for Microsoft Excel. First 

order Monte Carlo simulations were performed considering 100,000 to estimate the CIs intake 

through shellfish consumption for the two scenarios (LB and UB). 

 

2.5.2. Risk characterisation 

To evaluate the potential health risks of the assessed human CI exposure, there are no health based 

guidance values available yet that can be applied [1]. Therefore, a margin of exposure (MOE) 

approach was used for the risk characterisation of exposure to these toxins. The MOE value was 

obtained by dividing the lowest lethal dose (LD50) value by the estimated 95th percentile of exposure 

from shellfish consumption. The LD50 values, applied in this study, amount 50 µg/kg b.w. and 500 

µg/kg b.w. for SPXs and 150 µg/kg b.w. and 400 µg/kg b.w. for PnTXs when they were administered 

by gavage or in the feed, respectively [1, 6].  

 

 

3. Results and Discussion  

3.1. Occurrence of CIs in marine organisms 

Taking into account the 96 raw and processed samples, CIs were detected in 52% of them at low 

concentrations from 0.1 to 12 µg/kg for PnTX-G and 26 to 66 µg/kg for SPX-1. Other pinnatoxins, 

spirolides, gymnodimine and pteriatoxins analogues were not detected in any of the commercial 

shellfish samples during 2014 and 2015. Figure 1 shows the total ion chromatogram (TIC) profile of 

lipophilic toxin  reference standard material and a processed mussel sample obtained by LC-MS/MS, 

as an example. Results are summarized in Table 1 and Table 2 for fresh and processed/imported 

samples, respectively. Both tables include information about the concentrations of the samples and 

their sampling location. 

Figure 1 

 

Table 1 

 

Table 2 

 

Results from commercial shellfish sampled in 2014, showed that only 5 samples (1 from Portugal, 2 

from Slovenia and 2 from Spain) presented SPX-1, which 4 samples were at low concentrations (25-

28 µg/kg) and one sample at traces level. Moreover, PnTX-G was detected at low levels (3-12 µg/kg) 

in 6 samples (1 from Italy, 2 from Slovenia and 3 from Spain). 
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Processed mussels showed higher concentrations of PnTX-G (12 µg/kg) than raw mussels. In 

addition, 6 blue mussel samples (1 from Ireland, 1 from Denmark, 1 from The Netherlands and 3 from 

Norway) showed trace levels of PnTX-G during 2014. Concentrations of PnTX-G between 0.1 to 0.4 

µg/kg were detected. 

During the second sampling round (2015), five samples (mussels, cockles and clams from Portugal, 

mussels from Slovenia and Spain) contained SPX-1 at low levels (34-65 µg/kg), in addition traces of 

SPX-1 were detected in 6 more samples (mussels and oysters from Italy, mussels and clams from 

Portugal, and mussels and oysters from Spain). Moreover, PnTX-G was detected in three samples, 5 

µg/kg in mussels in tomato sauce and 3 µg/kg in frozen mussels from Slovenia, and 3 µg/kg in frozen 

imported mussels from Italy however traces of PnTX G were also detected in 5 other samples 

(mussels and clams from Portugal and Spain). In addition, in 2015 higher concentrations at 0.1-

5.1µg/kg levels of PnTX-G were detected from commercial samples (Ireland, Norway, the 

Netherlands and Denmark) in comparison with 2014 (0.1-0.4 µg/kg). PnTX-G was detected at trace 

levels of 0.1 to 0.3 µg/kg in clams, oysters, scallops and cockles from Ireland, Denmark, and the 

Netherlands. In blue mussel samples from all four countries (Ireland, Denmark, the Netherlands and 

Norway), PnTX-G was detected in concentrations between 0.1 to 5.1 µg/kg, the highest concentration 

was found in a fresh blue mussel sample from Norway. Moreover, trace level of 0.3 µg/kg of PnTX-A 

was detected in a fresh blue mussel from Ireland. The introduction of high resolution mass 

spectrometry instruments may enhance the capabilities of confirmation of different CI analogues 

which no reference standard is commercially available. 

 

3.2. Differences between species and locations 

Even though mussels was the species more sampled in all locations (42 from 96 samples), CI was 

detected in the 69% of the mussel samples, followed by oysters (17 from 96 samples) 29% and clams 

(25 from 96 samples) 24%. The frequency of detection depends on the cyclic imine group, SPX-1 was 

detected in higher frequency in oysters species (23%) followed by mussels (21%) in comparison with 

PnTX-G which was detected in higher frequency by mussels species (61%) followed by clams (23%). 

SPX-1 was found in 13% and 8.5% of fresh and processed sample mussels, respectively.  In addition, 

PnTX-G was found in 11.5% and 13.5% of fresh and processed sample mussels, respectively. 

 

Regarding concentrations in fresh samples (outliers excluded), surf-clams showed the highest mean 

values for SPX-1 (63 µg/kg) doubling the other species, except for cockles (57 µg/kg).  Blue mussels 

showed the highest values for PnTX-G (5.1 µg/kg). 

Regarding concentrations in processed samples (outliers excluded), mussels in pickle sauce showed 

the highest mean values for SPX-1 (66 µg/kg). Mussels in tomato showed the highest values for 

PnTX-G (12 µg/kg) more than doubling the other species. 
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When fresh samples are grouped by location (Atlantic Ocean (Portugal), n = 5; NE Atlantic Ocean 

and North Sea, n = 22; Mediterranean Sea, n = 19), the Atlantic Ocean seafood showed the highest 

concentrations for SPX-1 (63 µg/kg in surf clams) and the North Sea showed the highest 

concentrations for PnTX-G (5.1 µg/kg in blue mussels). 

When processed/imported samples are grouped by location (South Europe, n = 23 and North Europe, 

n = 27), the Atlantic Ocean seafood showed the highest concentration for SPX-1 (66 µg/kg in mussels 

in pickle sauce from Portugal) and the Mediterranean Sea showed the highest concentration for 

PnTX-G (12 µg/kg in mussels in tomato from Slovenia and imported from Spain). 

The presence of SPX-1 and PnTX-G at lower and higher levels of their LOQs in the fresh and 

processed samples from South Europe (Spain, Portugal, Slovenia and Italy) and North Europe 

(Ireland, Norway, the Netherlands and Denmark) are summarized in Figure 2. 

 

Figure 2. Presence of CIs in seafood in fresh and processed samples 

 

Spirolides were only analyzed in South European countries (n = 47). Their presence was found in 

concentrations lower than LOQ at 7.3% and higher than LOQ at 9.4%. Fresh samples showed higher 

percentages 10.6% and 14.9% than processed samples 4.3% and 4.3% for concentrations <LOQ and 

>LOQ, respectively.  

Pinnatoxins were analysed in 96 samples from North and South European countries. Their presence 

was found in concentrations lower than LOQ at 31.2% and higher than LOQ at 4.2%. Fresh samples 

showed higher percentages 16.7% and 3.13% than processed samples 14.6% and 1.04% for 

concentrations <LOQ and >LOQ, respectively.  

 

3.3. Effect of processing  

The limits set by authorities for the presence of chemical contaminants and toxins in food products 

(Maximum permissible concentrations) and risk assessment analysis are mostly evaluated in raw 

products, despite most food products are cooked before consumption. The fact that food cooking, 

processing and eating habits are generally not considered by authorities is likely due to the diversity 

of cooking preparations and industrial procedures. Nevertheless neglecting their effect on seafood 

may lead to over- or underestimation of the risk for consumers and to misleading dietary advice [21]. 

Information on the effects of processing on emerging toxins is scarce.. In this study, fresh samples 

from different species and processed samples from different species obtained by different 

manufacturing processes such as canned shellfish in sauce (pickle or tomato sauce), in brine, cooked 

steamed shellfish and processed shellfish in vacuum packed bags were evaluated. 
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Cyclic imines were present in higher frequency in fresh samples (46 fresh from 96 samples) 65% in 

comparison with processed samples 40%, where PnTX-G showed the highest presence in both, fresh 

and processed samples, 39% and 32%, respectively. Processed mussels showed higher concentrations 

of PnTX-G (12 µg/kg) than fresh mussels. Effects of the industrial steaming and of the industrial 

canning on the toxicity of mussels contaminated with DSP toxins have been already evaluated by 

Blanco et al [22, 23].  

Regarding the different species analyzed, processed mussels present a higher frequency of detection 

in mussels (30%) followed by clams (2%). This trend was similarly observed in fresh samples for 

PnTX-G (24% mussels and 6% clams). For spirolides (SPX-1), a higher frequency in mussels was 

also observed in both processed (6%) and fresh samples (13%) followed by oysters (2% and 6%, 

respectively). It is known that cooking or, in general, thermal processing of molluscs produces 

dehydration of the meat and consequently a weight decrease, while the degradation of lipophilic 

toxins is zero or very limited [23, 24]. In this sense, an increase in the concentration of lipophilic 

toxins due to industrial steaming should be expected. However, the increments observed by the food 

processing industries were too high as to be explained only by dehydration [24]. 

Regarding the effect of industrial steaming, it can be expected that mussels with toxicities below the 

regulatory limit could easily surpass that level after industrial steaming, thus producing important 

losses for food processor [24]. In addition, the effect of canning in pickled sauce and autoclaving was 

also evaluated by Blanco et al. for DSP toxins. Autoclaving produced a reduction of the weight of the 

canned mussels. The weight loss is important (average 25.5%) but smaller than the one that took place 

by steaming (around 30%). During the sterilization process, the toxin content of the mussels was 

reduced. Only a small part of this reduction is due to the transfer of the toxins in the sauce. Therefore, 

the analysis of the whole can content or the mussel meat once rehydrated seems to be the most 

equivalent to the raw mussel controls. In this study EURLMB SOP annex regarding processed 

shellfish samples was followed [9] in order to compare the raw and the processed samples in the most 

similar conditions as possible. Even though, CIs are lipophilic toxins and the highest concentrations 

found for SPX-1 (12 µg/kg) and PnTX-G (66µg/kg) were in mussels in sauce (pickle sauce and in 

tomato). 

 

3.4. Spirolides and pinnatoxins exposure 

The concentration data from raw, frozen and imported samples reported in Table 1 and 2 were used to 

perform the exposure assessment for spirolides (SPX1) and pinnatoxins (PnTX-G) (with exclusion of 

the concentration data for “mussels in pickle sauce”). Several species were considered, namely 

mussels, oysters, cockles and clams from different geographical origins. For spirolides, the mean 

value of the concentration data for the lower-bound (LB) scenario is equal to 21 µg/kg shellfish meat, 

and the mean value for the upper-bound (UB) scenario amounts 32 µg/kg shellfish meat. Based on 

these mean concentration values and based on a triangular distribution for consumption as described 
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above, the spirolides distribution of exposure for the LB scenario is described by a mean value of 0.06 

µg/kg bw and a 95th percentile of 0.11 µg/kg bw. The distribution of exposure for the UB scenario is 

described by a mean value of 0.09 µg/kg bw and a 95th percentile of 0.17 µg/kg bw. 

Regarding pinnatoxins, the mean value of the concentration data for the LB scenario is equal to 1.09 

µg/kg shellfish meat, and the mean value for the UB scenario amounts 1.33 µg/kg shellfish meat. 

Based on these pinnatoxin mean concentration values and based on a triangular distribution for 

consumption as described above, the distribution of exposure for the LB scenario is described by a 

mean value of 0.003 µg/kg bw and a 95th percentile of 0.006 µg/kg bw. The distribution of exposure 

for the UB scenario is described by a mean value of 0.004 µg/kg bw and a 95th percentile of 0.007 

µg/kg bw. 

 

3.5. Risk characterisation 

Risk managers should be informed about the magnitude of a MOE that could be considered to 

represent a low priority for risk management actions. In general it can be stated that the higher the 

MOE, the lower the degree of concern. Here we consider the MOE described by the EFSA 

representing a low priority for risk management for the different CIs toxins [1]. In EFSA report, it was 

concluded that a MOE range, based on the estimated exposure to SPXs,  of 1000-10000 does not raise 

concern for the health of the consumer. 

When performing a MOE approach on the data of SPXs available from Table 1 and 2, and when 

considering the lowest LD50 value of 50 µg/kg b.w. and the estimated 95th percentile of exposure 

(0.11-0.17 µg/kg bw), the calculated MOE values amount were 294 – 455. When considering the 

highest LD50 value of 500 µg/kg bw, the calculate MOE values amount were 2941 – 4545. Hence, 

the resulted MOE values in this study are within a smaller range than the range of 1000-10000 

mentioned in the EFSA report. 

Due to the fact that toxicity data is very limited, it is difficult to determine a “threshold MOE” value 

for which no health concern can be concluded. But it is of importance that with the available recent 

data, the MOE values are substantially lower than reported by EFSA. However, it is stated that the 

LD50 following administration of SPXs in the feed (500 µg/kg bw) is more likely to be of relevance 

for the risk assessment through consumption of shellfish contaminated with SPXs. Based on this 

assumption, and hence based on the MOE range of 2941 – 4545, it may be concluded that it is 

unlikely that a health risk exists due to the exposure to SPXs through shellfish consumption.  

 

EFSA was not able to estimate the exposure to PnTXs based on the occurrence data officially 

submitted to EFSA (2010a). As data on PnTXs was collected within the present study, an attempt is 

made to assess the health risk due to PnTX G exposure via seafood consumption. A similar approach 

as for SPXs is used. The oral LD50 values for PnTX G in mice were in the region of 150 µg/kg bw 
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and 400 µg/kg bw when PnTX G was administered by gavage in fed mice or in the feed, respectively 

[6].  

When considering the lowest LD50 value of 150 µg/kg bw and the estimated 95th percentile of 

exposure (0.006-0.007 µg/kg bw), the calculated MOE values amount were 21429 – 25000. Hence, 

the resulted MOE values, based on the lowest LD50 value, in this study are substantially higher than 

the range of 1000-10000 mentioned in the EFSA report. Therefore based on the available data and 

based on this approach, it may be concluded that it is unlikely that a health risk exists due to the 

exposure to PnTX G through shellfish consumption. 

 

Conclusions 

The presence of CIs was evaluated in 96 samples from eight European countries (Spain, Portugal, 

Italy, Slovenia, Ireland, The Netherlands, Denmark and Norway). SPX-1 and PnTX-G were detected 

in 7.3% and 31.2% at lower concentrations than LOQ (25µg/kg for SPX-1 and 3µg/kg for PnTX-G) 

and, 9.4% and 4.2% at higher concentrations than LOQ, respectively.  

A risk assessment study was performed based on the methodology described by EFSA. It may be 

concluded that it is unlikely that a health risk exists due to the exposure to SPXs and PnTXs through 

shellfish consumption. These results and conclusions are based on the available data. However, more 

data on toxicity and processed samples would be necessary to complete the risk assessment study for 

CIs requested by EFSA. Thus, CIs should be included in the shellfish safety monitoring programmes 

of lipophilic marine toxins by LC-MS methods, even if they are not regulated, to better assess their 

presence in shellfish and favour exposure studies that would enable a reliable risk analysis for 

consumers.  
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Figure 1. Total Ion Chromatogram of transition monitored obtained following the analysis of 

lipophilic toxins including cyclic imines by LC-MS/MS. a) lipophilic standards (including OA, 

DTX-1,DTX-2, YTX, hYTX, AZA-1, AZA-2, AZA-3, GYM-A, SPX-1, PTX-2 and PnTX-G) 

and b) mussel processed sample. 
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Figure 2. Presence of CIs in seafood in fresh and processed samples 

 



Table 1 

Cyclic imine concentrations in raw samples (µg/kg)  

2014 (n = 21)   

Species SPX-1 

(n:47) 

PnTX-G 

(n:96) 

PnTX-A 

(n:96) 

Origin 

(nº samples) 

Mussel (n = 3) 

(M. galloprovincialis) 

nd, 26, 28 

 

nd, nd, 4 

 

nd 

 

Italy (1), Slovenia (1) and Spain 

(1) 

Blue mussels (n = 5) 

(M. edulis) 

nd 

 

 nq, nd, 

nq, nq, nq 

nd 

 

Ireland (1), Denmark (2) and 

Norway (2) 

Flat oyster (n = 5) 

(O. edulis) 

nd, nd, 

27, nq, nd 

nd, nd, 4, 

nd, nd 

nd 

 

Portugal (1), Italy  (1), Slovenia 

(1) Spain (1), and Denmark (1) 

Pacific oyster (n=1) 

(C. gigas) 

nd nd nd Ireland (1) 

Clams (n = 1) 

(R. decussatus) 

nd 

 

4 

 

nd 

 

Italy (1) 

Japanese Clams (n = 3)  

(V. philippinarum) 

nd 

 

nd 

 

nd 

 

Portugal (1), Spain (1) and 

Slovenia (1) 

Surf-clams (n = 1) 

(S. solida) 

nd 

 

nd 

 

nd 

 

Denmark (1) 

Cockles (n = 2) 

(C. edule) 

nd 

 

nd 

 

nd 

 

Ireland (1) and Norway (1) 

2015 (n = 25)   

Mussel (n = 4) 

(M. galloprovincialis) 

nq, nq, 

34, 33 

nd, nd, 

nq, nd 

nd 

 

Italy (1), Portugal (1), Spain (1), 

and Slovenia (1) 

Blue mussels (n = 5) 

(M. edulis) 

nd 

 

4.6, nq, 

nq, 5.1, 

3.5 

nq, nd, 

nd, nd, nd 

Ireland (1), Denmark (1),  The 

Netherland (1) and Norway (2)  

Flat oyster (n = 1) 

(O. edulis) 

nd 

 

nd 

 

nd 

 

Italy (1)  

Pacific oyster (n = 3) 

(C. gigas) 

nq, nd, nd nd, nd, nq nd 

 

Spain (1), Ireland (1) and 

Denmark (1) 

Clams (n = 3) 

(R. decussatus) 

nd, nq, nd 

 

nd, nq, nd 

 

nd 

 

Italy (1), Portugal (1) and The 

Netherlands (1) 

Japanese Clams (n = 2) 

(V. philippinarum) 

nd 

 

nd 

 

nd Spain (1) and Slovenia (1) 

Surf-clams (n = 2) 

(S. solida) 

63, nd 

 

nd, nq 

 

nd 

 

Portugal (1) and Ireland (1)  

Cockles (n = 2) 

(C. edule) 

57, nd 

 

nd, nq 

 

nd 

 

Portugal (1) and The Netherlands 

(1) 

Scallop (n = 2) 

(A. irradians) 

nd 

 

nd, nq 

 

nd 

 

Slovenia (1) and Denmark (1) 

Razor clam (n = 1) 

(E. arcuatus) 

nd 

 

nd 

 

nd 

 

The Netherlands (1) 

ªnd = below LOD; nq = below LOQ 

 



Table 2 

Cyclic imine concentrations in processed samples (µg/kg) 

2014 (n = 26)   

Species SPX-1 

(n:47) 

PnTX-G 

(n:96) 

Origin 

(nº samples) 

Mussel frozen/canned (n = 3) 

(M. galloprovincialis) 

nd 

 

4, 4, nd Italy (1), Spain (1) and Ireland (1) 

Mussel in tomato (n = 1) 

(M. galloprovincialis) 

nd 

 

12 Slovenia (1) 

Mussel in brine (n = 1) 

(M. galloprovincialis) 

nd 

 

6 

 

Spain (1) 

Mussel in pickle sauce (n = 1) 

(M. galloprovincialis) 

26 

 

nd 

 

Portugal (1) 

Blue mussels 

frozen/smoked&canned  

(n = 7) (M. edulis) 

nd 

 

nd,  nq, 

nd, nd, 

nd, nd, nq 

Denmark (1), Netherlands (5) and 

Norway (1) 

Oyster frozen/smoked&canned 

(n = 3) (C. gigas) 

nd 

 

nd 

 

Italy (1), Denmark (1) and Ireland 

(1) 

Clams frozen/canned (n = 5) 

(R. decussatus) 

nd 

 

nd 

 

Portugal (2), Italy (1), Spain (1) 

and Denmark (1) 

Surf-clams (n = 1) 

(S. solida) 

nd 

 

nd 

 

Slovenia (1) 

Scallops ( n = 2) 

(A. irradians) 

nd nd Norway (1) and Denmark (1) 

Cockles canned (n = 1) 

(C. edule) 

nd 

 

nd 

 

The Netherlands (1) 

Razor clam (n = 1) 

(E. arcuatus) 

nd 

 

nd 

 

The Netherlands (1) 

2015 (n = 24)   

Mussel frozen/canned (n = 3) 

(M. galloprovincialis) 

nd 

 

3, nd, 3 

 

Italy (1), Portugal (1), Slovenia 

(1) 

Mussel in tomato (n = 1) 

(M. galloprovincialis) 

nd 

 

5 

 

Slovenia (1) 

Mussel in pickle sauce (n = 2) 

(M. galloprovincialis) 

66, nq 

 

nq, nq 

 

Portugal (1) and Spain (1) 

Blue mussels frozen/canned/in 

brine (n = 5) (M. edulis) 

nd 

 

nd, nq, nq, 

nq, nq 

The Netherlands (1) and Norway 

(4) 

Green mussels frozen (n = 1) 

(Perna canaliculus) 

nd 

 

nq 

 

The Netherlands (1) 

Oyster frozen/smoked&canned  

(n = 4) (C. gigas) 

nq 

 

nd 

 

Italy (1), Ireland (1), Denmark 

(2),  

Clams frozen (n = 6) 

(R. decussatus) 

nd 

 

nd, nq, nd, 

nd, nd, nd 

 

Italy (1), Portugal (1), Spain (1), 

Slovenia (1), Ireland (1) and The 

Netherlands (1) 

Clams in brine (n = 1) 

(V. philippinarum) 

nd nd Spain (1) 

Crab shredded & canned (n = 1) nd nd Ireland (1) 

ªnd = below LOD; nq = below LOQ 

 




