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Abstract 14 

The relationship between flow dynamics and biological communities becomes especially 15 

relevant in Mediterranean rivers. Given their natural variability and growing anthropogenic 16 

pressures, their low sections are subjected to multiple impacts. The definition of 17 

ecohydrological relationships in Mediterranean rivers may constitute a useful management tool. 18 

Historically, fishes were the first group used to assess community-level ecological quality, and 19 

different indices and metrics have been proposed. However, up to date many of these indicators 20 

have showed to be insensitive to flow regime changes or hydrological alteration. There is 21 

therefore a need to deepen into the ecohydrological relationships between such indicators and 22 

flow regimes in Mediterranean (and other) rivers. This study presents an analysis of the 23 

relationship between interannual flow regimes in the lower section of the Ebro River, defined 24 

using a set of daily and hourly hydrologic indices, and ecological quality based on fish 25 

community, assessed through indices designed to fulfill the Water Framework Directive (WFD) 26 

in Europe: the Indices of Biotic Integrity in Catalan rivers (IBICAT2010 and IBICAT2b) and 27 
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the new European Fish Index (EFI+). In order to identify spatiotemporal patterns, hydrologic 28 

indices were computed using time periods of different amplitude and ecological quality was 29 

obtained in different transects along the river section, even within the same water units or ‘water 30 

masses’ (subdivisions of surface waters to fulfill the WFD in Spain). Our results showed that 31 

IBICAT2010 was the most correlated with hydrologic indices, followed by IBICAT2b and 32 

EFI+. The latter showed an almost null correlation with hydrologic indices, which may be due 33 

to issues associated with the sampling technique, the definition of transects and because it does 34 

not uses stream typologies.. Correlations among some hydrological and biological indices were 35 

observed, with temporal and spatial patterns. On one hand, daily hydrological indices showed 36 

relationship with ecological quality when they were computed using between 9 and 36 months 37 

of flow records (previous to the sampling date) whereas subdaily indices responded better to 38 

periods between 3 and 9 months of records. On the other hand, some sampling transects showed 39 

clearer relationships than others, even within the same water mass, which suggests an influence 40 

of the hydromorphologic variability on the obtained ecological quality scores. 41 
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Highlights 46 

Interannual flow variability produces changes in fish-based ecological quality 47 

Spatial and temporal scales may determine the ability to observe shifts in fishes 48 

Observing ecohydrological relationships requires a screening of the indices to use 49 

Potential breakpoints in ecological quality may guide water management  50 
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1. Introduction 51 

The ‘natural flow regime paradigm’ (Poff, 1997) defined flow dynamics as one of the main 52 

drivers of ecological properties of rivers and streams. Therefore, hydrologic alteration is a 53 

potential risk for aquatic ecosystems, as it has effects on aquatic communities (Poff & 54 

Zimmerman, 2010) that may alter their characteristics even at evolutionary time scales (e.g. 55 

Mims & Olden, 2012). Specially in Mediterranean streams and rivers, subjected to a high 56 

natural hydrological variability (Gasith & Resh, 1999; Caiola et al. 2001a,b) and to many 57 

pressures frequently associated with agricultural activities, such as flow regulation by dams and 58 

water extraction for irrigation (Ferreira et al., 2007b). 59 

The Water Framework Directive (WFD; 2000/60/EC) established the objective to achieve a 60 

‘good ecological status’ in the water bodies of the European Union (including those artificial 61 

and heavily modified). With the aim of achieving this objective, the Directive requires the sub-62 

division of surface waters into ‘discrete and significant elements’ or ‘water bodies’ (in Spain, 63 

‘water masses’). However, the Directive does not provide explicit guidance on how to identify 64 

the elements that should be regarded as ‘discrete and significant’ and, as a consequence, the 65 

different water bodies may present relatively heterogeneous characteristics such as the length of 66 

the stream section. 67 

Whereas classical approaches have focused on target species to define ecohydrological 68 

relationships (e.g. Instream Flow Incremental Methodology, IFIM; Bovee & Milhous, 1978), 69 

the WFD focuses on the assessment of community-based ecological integrity. Some studies 70 

have focused on macroinvertebrates (Buffagni et al., 2005; Bennett et al., 2011; Birk and 71 

Hering, 2006, 2009), macrophytes (Birk et al., 2006; Birk and Willby, 2010) or diatoms (Birk 72 

and Hering, 2009), but the first method to assess the biotic integrity of rivers was developed 73 

specifically for fishes (e.g., Karr, 1981; Fausch et al., 1984). Fishes not only possess a higher 74 

direct socio-economic impact than other aquatic organisms but also are key indicators of 75 

ecological condition in rivers. In comparison with other taxa, they tend to be more responsive to 76 

hydromorphological disturbances (Birk et al., 2012; Marzin et al., 2012), connectivity loss 77 
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(Schiemer, 2000; Sindilariu et al., 2006) and other stressors that act at wide spatial and temporal 78 

scales (Harris, 1995; Simon, 1999). 79 

The first attempt to develop fish-based methods for ecological assessment in streams and rivers 80 

across the whole European Mediterranean basin, and fulfill the Water Framework Directive 81 

(WFD), was made within the EU-funded FAME (Development, Evaluation and Implementation 82 

of a Standardized Fish-based Assessment Method for the Ecological Status of European Rivers; 83 

http://fame.boku.ac.at) and EFI+ (Improvement and Spatial extension of the European Fish 84 

Index; http://efi-plus.boku.ac.at/index.htm) projects. The main output of these two projects was 85 

the new European Fish Index (EFI+), the first standardized fish-based assessment applicable 86 

across nearly the whole range of European rivers (Pont et al., 2006, 2007). It is a predictive 87 

multimetric index that derives reference conditions of individual sites from abiotic 88 

environmental characteristics and quantifies the deviation between the predicted and the 89 

observed fish assemblages (Pont et al., 2006). The metrics that integrate the index are based on 90 

functional guilds that describe the main ecological and biological characteristics of fish 91 

assemblages (Logez et al., 2013). Although such index was reasonably accurate at the European 92 

scale, its applicability varied among different biogeographical regions and countries (Pont et al., 93 

2007; Urbanic and Podgornik, 2008; Logez et al., 2010). In Spanish Mediterranean rivers, the 94 

Mediterranean Index of Biotic Integrity or IBIMED is used as a fish-based assessment method 95 

suitable for the evaluation of ecological quality. First developed for Catalan rivers under the 96 

designation of IBICAT (Index of Biotic Integrity for Catalan rivers; Sostoa et al., 2004), an 97 

improved version of this index was developed in 2010 (IBICAT2010; Sostoa et al., 2010) 98 

before being adapted to the rest of Mediterranean Spanish rivers under the designation of 99 

IBIMED. IBICAT2010 and IBIMED are similar in the Ebro River, except for the different 100 

species, ecological guilds and thresholds of the Ecological Quality Ratio (EQR) classes. They 101 

follow a type-specific method based on eight environmental variables that were selected as the 102 

best descriptors of a river classification based on historical fish distribution. More details on the 103 

EFI+ and IBIMED may be found in Segurado et al., (2014). Finally, a type-specific variant of 104 

http://fame.boku.ac.at/
http://efi-plus.boku.ac.at/index.htm
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IBICAT (IBICAT2b) uses between 4 and 8 metrics depending on river type and has been 105 

validated with environmental pressures both throughout Catalonia and the whole Ebro River 106 

Basin (Sostoa et al., 2010). IBICAT, its variant (IBICAT2b) and EFI+ have been described as 107 

correlated in the Ebro basin (García-Berthou & Bae, 2014). 108 

Despite aquatic communities are in general strongly affected by hydrology, most of the methods 109 

developed for the assessment of biological quality elements are largely insensitive to flow 110 

regime changes or hydrological alteration (e.g. Poff & Zimmerman, 2010; Demars et al., 2012; 111 

Friberg 2014). For example, only 40% of the methods developed for fishes are sensitive to flow 112 

modifications (Rinaldi et al., 2013). There is a need for development of biological methods to 113 

provide metrics sensitive to hydrological pressures and alteration of flow components 114 

(European Commission, 2015), which means that further investigation of the relationships 115 

between current biological indices (and metrics) and hydrologic regimes results essential. 116 

Defining ecohydrological relationships in Mediterranean (and other) rivers constitutes a 117 

powerful tool for water management, in consonance with frameworks such as the Ecological 118 

Limits of Hydrological alteration (ELOHA; Poff et al., 2010). 119 

Spatial and temporal scaling phenomena should be considered when establishing a monitoring 120 

program. The dimensions of variation change along spatial/temporal gradients of salinity, 121 

habitat complexity and productivity and among different levels of biological organization. 122 

Without an adequate evaluation of such variation, representative samples cannot be taken 123 

(Livingstone, 1987). In this context, for example, studies on juvenile salmonids and other fishes 124 

suggest that more than 5 years before and later are needed to detect significant changes in fish 125 

abundance after physical habitat shifts (e.g. caused by hydrological variations) unless the 126 

magnitude of change in fish abundance is large (>threefold) or the treatments and controls are 127 

extensively replicated (Bisson et al., 1997; Roni et al., 2003). Attention must be paid also to 128 

temporal resolution, as the use of hourly records together with daily flows may allow 129 

distinguishing effects caused by particular flow regime characteristics such as hydro-peaking 130 

(e.g. Macnaughton et al., 2017). 131 
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The aim of this study was to test the ability of different hydrological indices to explain changes 132 

in ecological quality assessed through fishes in the lower section of a Mediterranean river (Ebro 133 

from Flix to Tortosa). IBICAT2010, IBICAT2b and EFI+ were employed in order to compare 134 

their relationship with hydrology. The relationships between IBICAT2010 and its metrics were 135 

also assessed. Different time scales (from months to years) and data resolutions (daily and 136 

hourly) were employed for the computation of the hydrologic indices. We hypothesized a 137 

similar relationship among the three ecological indices and the hydrologic indices used (based 138 

on García-Berthou & Bae, 2014). In addition, we expected daily hydrological indices computed 139 

with the shortest time scales (counted since the moment in which the sample was taken) not to 140 

show a relationship with ecological quality given that, as stated above, previous authors 141 

highlighted the necessity of relatively long series to detect changes in fishes after habitat shifts 142 

(Bisson et al., 1997; Roni et al., 2003). Subdaily (hourly) indices were expected to respond 143 

within shorter periods than daily indices. 144 

2. Material and methods 145 

2.1 Study area 146 

The study was conducted in the low Ebro River, located in the NE of the Iberian Peninsula 147 

(Catalonia, Spain; Fig. 1). The study area extends from the reservoir furthest downstream (Flix) 148 

to the upper limit of the estuary (Tortosa), where the river is about 80 km long and 150 m wide. 149 

The Ebro River is 928 km long and has a drainage area of 85 550 km2. It is the Spanish River 150 

with the highest mean annual flow and one of the most important tributaries to the 151 

Mediterranean Sea. The main land use in the basin is agricultural with more than 10 000 km2 of 152 

irrigation, which corresponds to approximately 90% of the water usage in the basin. The whole 153 

basin is strongly regulated by nearly 200 dams, most of them built between 1940 and 1970 154 

(Ibáñez et al., 2012a; Nebra et al., 2011). The lower Ebro hydrology, geomorphology and 155 

ecology are strongly impacted by the existence, features and operation of such dams (Ibáñez et 156 

al., 2012a, b). Apart from the Flix reservoir, upstream of the studied section, two weirs are 157 

located in the lower Ebro: Ascó and Xerta. The former is aimed to provide water for 158 
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refrigeration for a nuclear plant whereas the latter is intended for irrigation. The Flix reservoir 159 

derives most of the water income through a channel that avoids the meander located directly 160 

below the dam. Only reduced water volumes are liberated intermittently to the meander, when 161 

flow overcomes the maximum allocated to produce electricity. 162 

163 
Fig. 1 Study area showing the sampling transects and gauging stations located on the water units (masses) 164 
of the low Ebro River (dams and weirs are also showed) 165 

This river section is composed by four water masses (Fig. 1) according to the current Ebro’s 166 

Water Plan: ES091463 (from the Xerta weir to Tortosa), ES091461 (from Ascó to Xerta Weir), 167 

ES091460 (from Flix to Ascó) and ES091459 (Flix meander). The water mass ES091461 is by 168 

far longer than the others (Fig. 1).  169 
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2.2 Fish and habitat data 170 

Electrofishing data taken in six sampling transects between 2006 and 2015 allowed 171 

characterizing fish communities in the low Ebro River (Fig. 1). The sampling transects were 172 

selected randomly to avoid biases, ensuring that they covered all the hydromorphological 173 

variability in the river section observed using aerial photographs (for more details, see Caiola et 174 

al., 2014). They also provided a weighed representation of the water units or masses in the study 175 

area (as the greatest number of transects was located in the longest water mass): ES091463 176 

(transect 1), ES091461 (transects 2, 3 and 4), ES091460 (transect 5) and ES091459 (transect 6). 177 

Transects from 1 to 5 were located in the main channel whereas transect 6 was located in the 178 

meander, directly downstream the Flix reservoir. One sample per year was taken between 179 

summer and early autumn. As the river width varies between 150 and 200 m, and CEN 180 

standards for fishing with electricity (CEN, 2003) advice that the sampling transect length 181 

should be around ten times the river width, each sampling transect had 2 km. They were 182 

sampled in 10 equidistant points located in the littoral zone (left or right bank, selected 183 

randomly). The catches of the 10 sampling points within each 2 km transect were aggregated, as 184 

the cumulative number of species in the 10 points have showed to constitute an adequate 185 

sampling effort (Caiola et al., 2014). In each transect, fish were caught with a boat-based 186 

electrofishing gear that generated up to 400 V and 10 A pulsed DC working from downstream 187 

to upstream direction. A constant distance to the river bank (5 m) and fishing time (5 min) was 188 

always maintained. Fishes from each point were kept in plastic tanks with river water for its 189 

immediate processing before the next point. The specimens were then sorted, identified to 190 

species level and counted (keeping record, if necessary, on the presence of deformities or other 191 

anomalies). Native species were returned to the river, whilst introduced alien species were 192 

eliminated with an excess of anesthetic (MS-222). The mortality of native fishes during the 193 

sampled period was negligible, restricted to only a few small individuals. 194 

In each sampling point, habitat descriptors (depth, water velocity and riverbed dominant 195 

substrate) were recorded. Three readings of each variable were carried out. Depth was recorded 196 
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with a measuring rod; water velocity was measured at a 0.6-depth with a Valeport m.001 197 

current-meter; riverbed dominant substrate was determined visually according to a modified 198 

Wentworth scale using categories 4-10 (sand to boulder) out of the 13 particle size categories of 199 

this scale. The habitat descriptors recorded in each sampling point were expressed at transect 200 

level using the most frequent category (dominant substrate) or averaging their values (depth and 201 

water velocity). Although the former involves the loss of information, such step was necessary 202 

because one of the indices computed (EFI+) requires the dominant substrate (see details on 203 

metrics and indices below). 204 

2.3 Fish metrics and indices 205 

All diadromous species were removed, as the Xerta weir prevents their movement upstream and 206 

these species can only be found in the lowermost sampling transect (Fig. 1). By doing so, we 207 

ensured that this transect was comparable with the rest. Then, for each sampling transect, the 208 

IBICAT2010, IBICAT2b and EFI+ were computed. In addition, all the metrics of the 209 

IBICAT2010 based on freshwater species richness (species) and abundance (individuals) were 210 

calculated, not only those applicable to this river type (type 6). The IBICAT2b and EFI+ were 211 

calculated using the Excel templates that may be found online 212 

(http://www.invasiber.org/GarciaBerthou/ibicat2b-fish-index/ and http://efi-213 

plus.boku.ac.at/software/insert_data.php, respectively). All indices and metrics obtained are 214 

shown in Table 1. They were also computed combining the transects 2, 3 and 4 in order to test 215 

ecohydrological relationships at a greater spatial scale for the water mass ES091461 (given its 216 

greater length) aggregating the captures collected in the three transects and correcting the result 217 

by the sampled area (to take into account the greater sampling effort). By doing so, we tested if 218 

such alternative approach may produce more accurate results in long water masses.  219 

http://www.invasiber.org/GarciaBerthou/ibicat2b-fish-index/
http://efi-plus.boku.ac.at/software/insert_data.php
http://efi-plus.boku.ac.at/software/insert_data.php
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Type Acronym Description 

Index 

IBICAT2010 Index of Biotic Integrity in Catalan Rivers (2010) 

IBICAT2b Index of Biotic Integrity in Catalan Rivers (2b) 

EFI+ European Fish Index 

Metric 

CPUEI Density of alien individuals 

NIN_Pis Density of native piscivorous individuals 

NIT_Inv Density of invertiborous individuals 

NIT_Omn Density of omnivorous individuals 

NIT_Rhe Density of reophilic individuals 

NSI_Tol Number of alien tolerant species 

NSN_Int Number of native intolerant species 

NSN_Lit Number of native litophilous species 

PIT_DELT Percentage of individuals with deformities/lesions/parasites 

Pit_Int Percentage of intolerant individuals 

PIT_Omn Percentage of omnivorous individuals 

PII_Inv Percentage of alien invertiborous individuals 

PSN_Lit Percentage of native litophilous species 

PSN_Tol Percentage of native tolerant species 

Table 1 220 
Indices and metrics (which belong to IBICAT2010) computed to assess ecological quality 221 

2.4 Hydrologic records 222 

Flow series for the period 2000-2015 were obtained by request to the automatic network of 223 

gauging stations (SAIH, ‘Sistema Automático de Información Hidrológica’) in the Ebro Basin. 224 

The series consisted on 15-minutal records belonging to two stations (Fig. 1): Tortosa (A027) 225 

and Ascó (A163); and daily data belonging to one station: Flix (E002). Using these series, 226 

hourly and daily series were generated in order to compute hydrologic indices to define the 227 

main characteristics of flow regimes. Tortosa (A027) was assigned to the water mass ES091463 228 

(transect 1), Ascó (A163) was assigned to the water masses ES091461 (transects 2, 3 and 4) and 229 

ES091460 (transect 5) and Flix (E002) was assigned to the water mass ES091459 (transect 6). 230 

2.5 Hydrologic indices 231 

A set of hydrologic indices (based on Olden & Poff, 2003) were computed from daily data to 232 

characterize flow regimes (Table 2). Such indices were complemented with other indices 233 

important to examine the ecological response of fish community, based on hourly data 234 

(Bevelhimer at al., 2014). All hydrologic indices were computed using 12 months previous to 235 
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sampling and, then, sequentially smaller or broader periods of hydrological records (3, 6 and 9 236 

or 24, 36 and 48 months since the sampling date, respectively). Given their more accurate 237 

temporal resolution, those indices based on hourly data were also computed using a 1-month 238 

period of records. Finally, both daily and hourly indices were calculated using the flow records 239 

of the hydrological year (October-September) in which the samples were taken, as they are used 240 

as standard temporal frame for water management. 241 

2.6 Relationships between hydrological regimes and ecological quality 242 

First, Pearson correlations were used to search relationships among flow regimes, represented 243 

through the set of hydrologic indices (Table 2) and variables (water velocity and depth), and fish 244 

communities, characterized using fish indices (Table 1). The hydrologic indices computed with 245 

12 months of records were used for this step, in order to encompass the previous annual cycle of 246 

the sampled fish communities. Pearson correlations between the IBICAT2010 and its metrics 247 

(Table 1) were also calculated in order to explore their relationship. Only correlations greater 248 

than 70% were retained in both cases. Second, using only the hydrologic indices retained in the 249 

previous step and the fish index that showed most of these correlations (the most sensitive), 250 

General Linear Models (GLMs) were employed in order to test the significance of 251 

ecohydrological relationships. Correlations between the most sensitive fish index and the 252 

hydrological indices computed with all periods of record were also computed to validate the 253 

choice of the selected period. The adjustment of the GLMs and the relationships between 254 

independent and dependent variables were examined to validate the results and determine the 255 

presence of potential breakpoints. The assumptions of Gaussian models were verified. 256 

All analyses were developed in R (R Core Team, 2017). 257 
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Data Acronym Name Meaning 

Daily 

MA3 Variability in daily flows Coefficient of variation in daily flows 

MA44 Variability across annual flows Difference between percentiles 90 and 10 divided by median 

ML13 Variability across minimum monthly flows Coefficient of variation in minimum monthly flows 

ML14 Mean of annual minimum flows Mean of the lowest annual daily flow divided by median 

ML23 Low flow discharge Mean of the percentile 25 divided by median daily flows 

MH20 Mean annual maximum flows Mean of the annual maximum flows 

FL1 Low flood pulse count Number of drops below the percentile 25 

FL3 Frequency of low flow spells Total number of low spells (5% of mean daily flow) 

FH3 High flood pulse count Average of daily flows above 3 times the median daily flow 

FH5 Flood frequency Number of flow events greater than the median per year 

DL1 Annual minima of daily discharge Magnitude of minimum annual daily flow 

DL13 Mean of 30-day minima of daily discharge Mean annual 30-day minimum divided by median flow 

DH12 Means of 7-day maxima of daily discharge Mean annual 7-day maximum divided by median flow 

TL1 Julian date of annual minimum Julian date of annual minimum 

RA8 Reversals Number of changes between rising and falling periods 

MA5 Skewness in daily flows Mean daily flows divided by median daily flows 

MA12 Mean October flow Average flow in October 

MA13 Mean November flow Average flow in November 

MH1 Mean October high flow Maximum monthly flow in October 

MH2 Mean November high flow Maximum monthly flow in November 

Table 2 258 
Hydrologic indices used to characterize flow regimes  259 
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Data Acronym Name Meaning 

S
u

b
d

a
ily

 

dmin Daily minimum Lowest measured flow during a 24-h period 

dmax Daily maximum Highest measured flow during a 24-h period 

dD Daily delta or range Difference between daily minimum and maximum 

dSD Daily standard deviation Standard deviation of the 24 hourly flow values 

dramp Maximum hourly ramp rate Greatest hourly incremental change during 24 hours 

dpath Daily path length Sum of the absolute values of hour-to-hour changes in flow 

drev Reversals Number of changes between rising and falling periods 

drf Rise and fall counts difference Difference between the number of hours of rising and falling flow 

dstD Daily standardized delta Daily delta divided by the daily mean over each 24-h period 

dAstD Annually standardized delta Daily delta divided by the mean annual daily flow 

dCv Coefficient of variation Daily standard deviation divided by mean annual daily flow 

dstMHramp Standardized maximum hourly ramping rate Maximum daily ramp rate divided by the mean annual daily flow 

dflash Richard's Barker flashiness index Daily path length of oscillations divided by the daily mean 

Table 2 (cont.) 260 
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3. Results 261 

3.1 Fish indices and metrics 262 

Eighteen fish species were caught in the study area, most of them belonging to the families 263 

Cyprinidae, Poeciliidae and Angillidae (Annex I). Both IBICAT2010 and IBICAT2b showed 264 

values that oscillated between the two worst categories (‘poor’ and ‘bad’) for all transects and 265 

years, although the range of the numeric values obtained was different (from 1.17 to 7.29 for the 266 

former and from 1 to 2 for the latter). The EFI+ does not have categories but, taking into 267 

consideration that an undisturbed transect would have an index value close to 0.80 whereas a 268 

highly disturbed transect would show a value lower than the 25% quantile of the index 269 

distribution for undisturbed transects, it may be inferred that all transect and years can be 270 

considered as disturbed. All values were lower than 0.20. Finally, the correlation between 271 

IBICAT2010 and the other two indices (IBICAT2b and EFI+) was negligible (0.11 and -0.10, 272 

respectively) whereas the correlation between them was slightly greater and negative (-0.43). 273 

Among the three metrics that must be used in this type of river (type 6) to calculate the 274 

IBICAT2010, no native intolerant species (NSN_Int) was found. The percentage of individuals 275 

of invertivorous alien species (PII_Inv) was correlated with the IBICAT2010 in all transects 276 

(Table 3) whereas the density of individuals belonging to alien species (CPUEI) only was 277 

correlated in transect 5. Beyond these metrics, the density of invertivorous (NIT_Inv) was 278 

correlated with IBICAT2010 in all transects except transect 2, whereas the percentage of 279 

omnivorous (PIT_Omn) showed correlation in all transects except transects 1 and 6. Other 280 

metrics showed correlation only in a few transects, such as the percentage of tolerant native 281 

species (PSN_Tol), whereas the density of native piscivorous (NIN_Pis), the percentage of 282 

individuals with deformities (PIT_DEL) and the percentage of native lithophyte species 283 

(PSN_Lit) did not show any correlation with the IBICAT2010. 284 
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Acronym Description Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 2, 3 & 4 

CPUEI Density of alien individuals -0,58 0,00 0,33 0,19 -0,83 -0,43 0,46 

NIN_Pis Density of native piscivorous individuals -0,17 -0,17 0,20 -0,18 0,42 0,49 -0,24 

NIT_Inv Density of invertiborous individuals -0,92 -0,57 -0,90 -0,79 -0,84 -0,95 -0,81 

NIT_Omn Density of omnivorous individuals -0,09 0,25 0,65 0,54 0,24 0,03 0,77 

NIT_Rhe Density of reophilic individuals -0,29 0,57 0,30 0,75 0,55 0,39 0,80 

NSI_Tol Number of alien tolerant species 0,02 -0,37 -0,03 0,11 0,24 0,23 0,03 

NSN_Lit Number of native litophilous species 0,11 0,01 0,25 0,85 0,31 0,74 0,23 

PIT_DELT Percentage of individuals with deformities/lesions/parasites 0,02 0,31 0,36 -0,05 -0,19 -0,31 -0,07 

PIT_Omn Percentage of omnivorous individuals 0,34 0,84 0,80 0,80 0,72 0,26 0,89 

PII_Inv Percentage of alien invertiborous individuals -0,96 -0,95 -0,99 -0,98 -0,98 -0,97 -0,97 

PSN_Lit Percentage of native litophilous species 0,31 0,49 0,41 0,61 0,51 0,66 0,62 

PSN_Tol Percentage of native tolerant species 0,39 -0,33 0,12 0,24 0,75 0,76 -0,34 

Table 3 285 
Pearson correlations between the IBICAT2010 and its metrics in the sampled transects. Correlations greater than 70% are marked in bold. Correlations for the two indices 286 
based on intolerant species or individuals are not showed because they were absent in samples 287 
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3.2 Ecohydrological relationships 288 

Among the transects located in the main channel (transects from 1 to 5), the transect 4 showed 289 

the best relationships between IBICAT2010 and hydrologic indices (calculated using the 12 290 

months previous to fish sampling), as the majority of the correlations were greater than 70% 291 

(Table 4). Such indices were the variability across minimum monthly flows (ML13), the mean 292 

of annual minimum flows (ML14), the low flow discharge (ML23), the high flood pulse count 293 

(FH3) and the standardized maximum hourly ramping rate (dstMHramp). All of them were 294 

negatively related to the IBICAT2010 except ML13 and FH3. The rest of transects in the main 295 

channel also showed correlations with some of these indices. Among them, the other transects 296 

located in water mass ES091461 (transects 2 and 3) showed a lower presence of elevated 297 

correlations. Transect 2 only showed correlation with the skewness in daily flows (MA5), 298 

whereas transect 3 did not show any correlation greater than 70%. Transect 1 did not show any 299 

correlation beyond such threshold either. Not all indices could be calculated in the transect out 300 

of the main channel (transect 6, located in the Flix meander), given its particular flow regime 301 

(with many days with extremely low flows). However, ML13 and FH3 were also correlated 302 

with IBICAT2010, together with the variability in daily flows (MA3), the variability across 303 

annual flows (MA44), the mean annual maximum flows (MH20) and the number of reversals 304 

(RA8). 305 



17 
 

Acronym Name Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 2, 3 & 4 

z Depth 0,59 -0,09 -0,60 -0,86 -0,08 -0,84 -0,72 

v Velocity 0,40 0,62 -0,49 -0,08 -0,23 -0,29 0,03 

MA3 Variability in daily flows -0,37 0,42 0,36 0,03 0,52 -0,75 0,23 

MA44 Variability across annual flows -0,05 0,52 0,54 0,33 0,57 0,71 0,51 

ML13 Variability across minimum monthly flows 0,14 0,35 0,19 0,82 0,76 0,77 0,60 

ML14 Mean of annual minimum flows -0,22 -0,40 -0,30 -0,93 -0,59 N/A -0,71 

ML23 Low flow discharge -0,49 -0,38 -0,24 -0,88 -0,61 N/A -0,63 

MH20 Mean annual maximum flows -0,20 0,51 0,40 0,24 0,69 0,97 0,37 

FL1 Low flood pulse count -0,43 0,34 0,41 0,33 0,26 N/A 0,42 

FL3 Frequency of low flow spells N/A N/A N/A N/A N/A N/A N/A 

FH3 High flood pulse count 0,01 0,67 0,50 0,78 0,78 0,79 0,81 

FH5 Flood frequency -0,03 0,05 0,24 0,21 -0,03 -0,51 0,17 

DL1 Annual minima of daily discharge 0,49 0,26 0,31 0,55 0,08 N/A 0,52 

DL13 Mean of 30-day minima of daily discharge -0,26 0,24 0,18 -0,37 0,18 0,31 0,03 

DH12 Means of 7-day maxima of daily discharge -0,18 0,36 0,44 -0,29 0,15 0,50 0,05 

TL1 Julian date of annual minimum -0,41 0,32 0,60 -0,01 0,02 -0,48 0,30 

RA8 Reversals 0,26 -0,34 -0,06 -0,17 -0,21 0,76 -0,30 

MA5 Skewness in daily flows -0,45 -0,73 -0,60 -0,24 -0,42 N/A -0,65 

MA12 Mean October flow -0,53 0,30 0,40 0,53 0,20 0,22 0,57 

MA13 Mean November flow 0,04 0,16 0,25 0,59 0,17 -0,23 0,46 

MH1 Mean October high flow 0,58 -0,39 -0,34 0,51 0,14 0,22 -0,10 

MH2 Mean November high flow -0,40 0,06 0,20 -0,13 0,14 -0,23 0,07 

Table 4 306 
Pearson correlations between the IBICAT2010 and hydrologic variables (habitat descriptors, daily and subdaily indices, respectively) computed using 12 months of records. 307 
Correlations greater than 70% are marked in bold. Indexes not computed due to absent or constant flow records are marked as ‘N/A’  308 
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Acronym Name Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 2, 3 & 4 

dmin Daily minimum 0,52 0,25 0,16 0,67 0,28 N/A 0,57 

dmax Daily maximum -0,31 0,40 0,23 -0,09 0,55 N/A 0,16 

dD Daily delta or range 0,13 0,34 0,56 0,63 0,22 N/A 0,64 

dSD Daily standard deviation 0,15 0,36 0,57 0,66 0,23 N/A 0,67 

dramp Maximum hourly ramp rate -0,13 -0,13 -0,14 -0,64 -0,01 N/A -0,46 

dpath Daily path length 0,11 0,28 0,52 0,55 0,13 N/A 0,58 

drev Reversals 0,16 0,27 0,49 0,54 0,21 N/A 0,57 

drf Rise and fall counts difference 0,32 -0,12 -0,08 0,15 -0,21 N/A 0,04 

dstD Daily standardized delta -0,07 0,17 0,50 0,41 -0,04 N/A 0,45 

dAstD Annually standardized delta 0,17 -0,07 0,37 -0,06 -0,40 N/A 0,07 

dcv Coefficient of variation 0,16 -0,05 0,41 -0,01 -0,41 N/A 0,13 

dstMHramp Standardized maximum hourly ramping rate -0,19 -0,41 -0,43 -0,90 -0,46 N/A -0,75 

dflash Richard's Barker flashiness index -0,15 0,10 0,45 0,27 -0,16 N/A 0,35 

Table 4 (cont.) 309 
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Finally, when transect 2, 3 and 4 were combined to represent the water mass ES091461, an 310 

intermediate number of indices presented high correlations: the mean of annual minimum flows 311 

(ML14), the high flood pulse count (FH3) and the standardized maximum hourly ramping rate 312 

(dstMHramp). Water depth was correlated with IBICAT2010 in transects 4 and 6, as well as in 313 

the combination of transects 2, 3 and 4. 314 

Despite the low correlation found, IBICAT2b showed patterns similar to IBICAT2010 in terms 315 

of the hydrologic indices that were correlated with the index but there were fewer correlations 316 

greater than 70% (Annex II). The EFI+ practically did not show correlations with the selected 317 

hydrologic variables greater than 70%, except a couple of indices (MA12 and MH1) in the 318 

transect out of the main channel (transect 6). 319 

Given the stated results, the hydrological variables selected because of their high correlation 320 

with fish indices (depth, ML13, ML14, ML23, FH3, dstMHramp) were introduced in General 321 

Linear Models (GLMs) one at a time, as they were also correlated among them, using the 322 

IBICAT2010 as predicted variable. Statistically significant results and a degree of adjustment 323 

that varied between 50 and 75% were obtained for most hydrological variables in transects 4 324 

and 5, as well as in the combination of transects 2, 3 and 4 (Table 5). In the main channel, the 325 

significant models presented significant intercepts only when they showed an inverse 326 

relationship between the IBICAT2010 and the considered variable. In particular, water depth, 327 

the mean of annual minim flows (ML14), the low flow discharge (ML23) and the standardized 328 

maximum hourly ramping rate (dstMHramp). These variables showed potential breakpoints in 329 

transect 4 (Fig. 2): depth ≈ 2; ML14 ≈ 0.6; ML23 ≈ 0.7 and dstMHramp ≈ between 3 and 4. 330 

Such breakpoints would allow, moreover, identifying a threshold between the two different 331 

ecological categories observed (‘poor’ and ‘bad’). 332 
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Acronym Name Model Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 2, 3 & 4 

z Depth p 0,11  0,81 0,07 ***0,00  0,82 *0,02 *0,02 

  
R2 0,20 -0,12 0,28 0,71 -0,12 0,66 0,47 

  
p_int 0,59 *0,03 ***0,00 ***0,00  0,13 ***0,00 ***0,00 

    slope + - - - - - - 

ML13 Variability across  p   0,92 0,32   0,59 ***0,00 **0,01 *0,04 0,06 

 
minimum monthly R2 -0,12 0,01 -0,08 0,63 0,52 0,51 0,29 

 
flows p_int ***0,00 **0,01 **0,01 0,43 0,10 **0,01 *0,03 

    slope + + + + + + + 

ML14 Mean of annual p 0,34 0,25 0,40 ***0,00 0,08 N/A *0,02 

 
minimum flows R2 0,00 0,05 -0,03 0,86 0,26 N/A 0,45 

  
p_int ***0,00 **0,01    0,02* ***0,00 ***0,00 N/A ***0,00 

    slope - - - - - N/A - 

ML23 Low flow p 0,09 0,28  0,51 ***0,00 0,06 N/A *0,05 

 
discharge R2 0,23 0,04 -0,06 0,75 0,30 N/A 0,32 

  
p_int ***0,00   0,03*  0,07 ***0,00 **0,01 N/A ***0,00 

  
 

slope - - - - - N/A - 

FH3 High flood pulse p   0,87 *0,04 0,14 **0,01 **0,01 *0,03 ***0,00 

 
count R2 -0,12 0,37 0,15 0,56 0,57 0,55 0,62 

  
p_int *0,02 0,60 0,38 0,34 0,64 0,20 0,84 

    slope + + + + + + + 

dstMHramp Standardized p  0,55 0,24 0,21 ***0,00 0,18 N/A **0,01 

 
maximum hourly R2 -0,07 0,06 0,09 0,78 0,11 N/A 0,51 

 
ramping rate p_int ***0,00 ***0,00 ***0,00 ***0,00 ***0,00 N/A ***0,00 

    slope - - - - - N/A - 

Table 5 333 
GLM models between the IBICAT2010 and hydrologic variables (p: p value; R2: coefficient of determination; p_int: p value of the intercept; slope: sign of the coefficient). 334 
Significant p-values are highlighted with asterisks (*: ≤0,05; **: ≤0,01; ***: ≤ 0,001). Indexes not computed due to absent or constant flow records are marked as ‘N/A’ 335 
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336 
Fig. 2 Potential ecological quality breakpoints detected through the Index of Biotic Integrity in Catalan 337 
rivers 2010 (IBICAT2010), using the transect 4 and the 12-month period. The horizontal line separates 338 
the ‘poor’ and ‘bad’ status 339 

3.3 Effects of temporal scale on ecohydrological relationships 340 

Daily hydrologic indices that showed a correlation greater than 70% with IBICAT2010 when 341 

they were calculated with the 12 months previous to the sampling date also did when they were 342 

computed using the previous 9 months, the hydrologic year and, to a lesser extent, the previous 343 

24 and 36 months (Annex III). Most of these correlations were found in transect 4. No 344 

correlation greater than 70% was found for any of these indices when they were computed using 345 

the 48 months previous to the sampling date, except when ML13 was computed combining 346 

transects 2, 3 and 4. Some subdaily indices (dpath and drev) also showed correlations greater 347 

than 70% (or close) when they were computed using flow series of 3, 6 and 9 months, but not 348 

using 1 month, the hydrologic year or greater periods (24, 36 and 48 months). Within the 3-349 

month period, the number of subdaily hydrological indices with a correlation greater than 70% 350 

with IBICAT2010 was greatest (as also included dstD, dAstD, dCV and dflash). 351 
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Apart from these general patterns, other indices showed isolated correlations using other periods 352 

of computation (for example, RA8 using the 36 months previous to the sampling date or dAstD 353 

and dCV using the previous 36 and 48 months). 354 

4. Discussion 355 

This study analyzes the relationship between flow regimes and fish-based ecological quality in 356 

the low Ebro River, a Mediterranean watercourse subjected to severe anthropogenic stress. The 357 

approach used has several advantages: 1) it allowed comparing the results of different fish 358 

indices and their degree of response to specific hydrological indices; 2) the effect of taking into 359 

consideration distinct temporal scales and resolution for the hydrologic indices was tested. Such 360 

information may constitute a valuable tool to provide sustainable management rules for this 361 

river in particular and for similar rivers in Mediterranean (or other) areas, within a type-specific 362 

management based on frameworks such as the Ecological Limits of Hydrologic Alteration 363 

(ELOHA; Poff et al., 2010). 364 

4.1 Quality indices and their response to hydrological regimes 365 

Contrary to expected, the three fish indices showed different responses to hydrologic regimes. 366 

The correlation among IBICAT2010, IBICAT2b and EFI+ and the lowest performance of 367 

IBICAT2010 in the Ebro Basin highlighted by García-Berthou & Bae (2014) disappeared when 368 

only the lower Ebro was considered. The IBICAT2010 showed to be the most effective index to 369 

find relationships with flow regime. Its wider range of values may have contributed to find 370 

statistical relationships with hydrological indices more effectively. Similar values within a 371 

narrower range made more difficult the detection of statistical relationships using IBICAT2b. 372 

EFI+ showed the lowest performance, as practically no relationship with hydrologic indices was 373 

found. This may be due to three possible reasons. First, EFI+ must be used with caution when 374 

transects have been sampled by boating, especially for cyprinids such as in this case (EFI+ 375 

CONSORTIUM, 2009). Second, transect selection criteria are exigent in terms of the length that 376 

must be sampled. For a large river such as the Ebro (catchment >1000 km2), the index may 377 



23 
 

require sampling transects in river segments with a length of 10 kilometers (EFI+ 378 

CONSORTIUM, 2009), which was not done in this case because sampling was developed 379 

following CEN standards (CEN, 2003). Segments five times longer would have been a logistic 380 

problem to develop the sampling procedure. In fact, EFI+ values may decrease with increasing 381 

sampling area despite the higher observed richness, as the expected values of metrics are higher 382 

(Almeida et al., 2017). Third, this index is based on a predictive model built on environmental 383 

variables, instead of in river typologies, makes more likely the presence of ‘noise’ (e.g. 384 

assessing the substrate dominance in sampling sites). On the contrary, a regional fish index does 385 

not depend on the sampled area, because it does not use a predictive model (Almeida et al., 386 

2017). The low performance of the EFI+ observed in this study seems to indicate that it is not 387 

suitable for the lower Ebro. This deserves further research, as the corresponding water agency 388 

(‘Confederación Hidrográfica del Ebro’) has used this index to evaluate the ecological status of 389 

streams and rivers (http://www.chebro.es). 390 

The degree of correlation between IBICAT2010 and the metrics that must be employed in the 391 

corresponding river type (type 6) depends on the considered metric. The percentage of 392 

individuals of invertivorous alien species (PII_Inv) is responsible for most of the variation in the 393 

values obtained for the IBICAT2010. Similarly, the density of invertivorous (NIT_Inv) also 394 

showed a great correlation with the index. This importance of invertivorous to assess ecological 395 

quality is coherent with studies that highlighted their sensitivity to disturbance both in Iberian 396 

(Ferreira et al., 2007a) and non-Iberian (e.g. Tejerina-Garro & Merona, 2010) rivers. Similarly, 397 

the fact that another metrics conceived to be calculated in other river types, such as the 398 

percentage of omnivorous (PIT_Omn), was also correlated with IBICAT2010 shows their 399 

potential to be used also in this river type (type 6), under the assumption that disturbance 400 

promotes opportunistic omnivorous diets (e.g. Tejerina-Garro & Merona, 2010). 401 

The fact that ecohydrological relationships performed differently in different transects, even 402 

within the same water mass, indicates differences in the ability of the different transects to 403 

properly represent the ecological status of the water masses and to assess the relationships 404 

http://www.chebro.es/
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between such status (IBICAT2010) and hydrologic regimes. In this context, assessing the 405 

potential effect of spatial and temporal scales results essential. 406 

4.2 Spatial and temporal scales and their effect on the assessment of ecohydrological 407 

relationships 408 

This study supports the conclusion that temporal and spatial dimensions of a given sampling 409 

effort can have a decisive effect on the evaluation of physical, chemical and biological factors 410 

(Livingstone, 1987). The relationships among ecological and hydrological indices herein 411 

presented provide an evaluation of spatiotemporal variation in ecohydrological relationships 412 

that may result useful in low sections of Mediterranean (or other) rivers. In addition, it allows 413 

completing previous studies that did not find spatial differences among transects using 414 

macroinvertebrate and diatom communities (Quevedo et al., 2018) or assessed the effect of 415 

spatial variation on fish community whereas they stated that more effort should be put into 416 

sampling replicate sites and understand scales of temporal variation (Gray et al., 2009). Details 417 

on the spatial and temporal patterns detected in our study area are discussed below. 418 

The fact that the number of hydrologic indices correlated with IBICAT2010 varied among 419 

transects, even in those transects within the same water mass, evidences the spatial dependence 420 

of results. Transects were selected to be representative of the hydro-geomorphic variability of 421 

the lower Ebro River (Caiola et al. 2014), and the differences in the correlations obtained could 422 

be related to physical habitat. Intricate patterns of habitat complexity among other factors 423 

(recruitment features of individual species, predator-prey interactions and competition; 424 

Livingston et al. 1985) may have influenced the different results obtained in each transect. 425 

Depending on the objective of the corresponding monitoring program, assessing the ecological 426 

quality of long water masses through the combination of more than one transect may produce 427 

more representative results at water mass level. In this study, combining the transects 2, 3 and 4 428 

produced ecohydrological relationships more representative of the water mass ES091461. 429 

Although such approach results more accurate at water mass level, understanding the responses 430 

of the integrant transects and the specific patterns of habitat complexity that mediate such 431 
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relationships results essential. This is particularly important considering the potential 432 

breakpoints observed in the transect 4. 433 

The relationships between flow regimes and ecological properties may be assessed at distinct 434 

temporal scales (monthly or annually) and resolutions (using daily or subdaily hydrologic 435 

indices), which becomes essential for water management (especially in regulated rivers). 436 

Whereas previous studies established that a minimum of five years is required to observe 437 

changes in fish abundance after habitat shifts (Bisson et al., 1997; Roni et al., 2003), our results 438 

indicate that shorter temporal scales (9-36 months, including the hydrologic year) are 439 

accompanied by changes in ecological quality scores (although not necessarily in ecological 440 

categories). Subdaily indices influence fish indices in shorter periods (some months of flow 441 

records), as they operate at a finer temporal resolution. The fact that indices computed with 442 

subdaily data provided significant ecohydrological relationships is relevant for managing 443 

activities such as hydropower generation, which causes flow variations within this temporal 444 

resolution. According to our results, these subdaily ecohydrological relationships will be more 445 

robust during the trimester previous to sampling, although they may be observed before. 446 

4.3 Relevance for the establishment of ecological flow regimes in the Ebro Basin 447 

Our study supports previous publications stating that the effect of flow regimes on biological 448 

communities is due mainly to the magnitude and variability of flows (see Belmar et al., 2013a 449 

for an example with macroinvertebrates), given that flow extremes, their relationship with mean 450 

flows and the period in which such variations take place showed to be related to fish-based 451 

ecological quality. Flow regime extremes are important for fish communities because they are 452 

responsible for the instability of habitat conditions, which plays in favor of opportunistic 453 

species. In fact, a recent study (Sabo et al., 2017) has used flow variance to design an algorithm 454 

for a managed hydrograph to explore the effect of designed flows on fishery yield. Our study 455 

shows that attention must be paid to the specific hydrologic metrics used. Less than half a dozen 456 

(depending on the considered transect) out of the 19 daily indices showed a correlation greater 457 

than 70%. Similarly, two out of 13 subdaily indices provided such correlations with different 458 
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time scales. Therefore, the choice of the specific indices to assess ecohydrological relationships 459 

results critical for water management. In this context, the hydrologic indices used to define 460 

environmental flows by the Water Administration (‘Confederación Hidrográfica del Ebro’) may 461 

require revision. The study developed in the Ebro Basin (MARM, 2008) used six hydrologic 462 

indices based on the magnitude and variability of flows. Although such study involved the use 463 

of habitat simulation in a posterior stage, this relatively reduced number of hydrologic 464 

indicators was not tested against ecological data, as they are variations of simple metrics 465 

available in bibliography. 466 

4.4 Future challenges 467 

Further research may allow improving the way to predict composition and structure of aquatic 468 

communities from hydrologic variables. Changes on ecosystems caused by external forces tend 469 

to occur in synchrony rather than as individual pressures (Ormerod et al., 2010). Therefore, 470 

there is a need to improve our knowledge of the links between changes in flow, channel 471 

morphology and water quality, and to assess whether impacts are additive, synergistic or 472 

antagonistic. This may be achieved in future extending field data collection to incorporate more 473 

sites where single and multiple pressures exist or undertaking manipulative experiments in 474 

which single variables are changed whilst others are held constant (Acreman et al., 2014). In 475 

addition, given that alterations to single external pressures (such as flow) may interact in 476 

complex ways with internal processes (such as biotic interaction and trophic relationships that 477 

govern flows of energy and carbon and thus also control ecosystem type, health and status), 478 

there is a need to address the challenges of combining flow effects with internal ecosystem 479 

dynamics. Finally, the consequences of extreme hydrological events must also be taken into 480 

consideration. Flood and low flow events may cause greater impacts in river ecosystems than 481 

changes in flow means (Woodward et al., 2016), as the magnitude and frequency of high and 482 

low flows regulate numerous ecological processes (Poff et al., 1997). By being able to define 483 

relationships between hydrologic extremes and fish community, we could also establish 484 

relationships with other factors. For example, Belmar et al., (2018) showed that mature forests 485 
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were associated with less extreme flow events, which might allow defining connections between 486 

land cover at catchment scale and fish communities. 487 

From a management perspective, the set of hydrologic indices presented in this study may be 488 

used to estimate the effectiveness of environmental flow regimes already designed or to propose 489 

management strategies. Nevertheless, the assessment and implementation of environmental flow 490 

regimes in low river sections and estuaries would require broader analyses to take into 491 

consideration additional factors (Ibáñez & Prat, 2003) such as other organisms (e.g. birds), 492 

impacts on socioeconomic activities (e.g. coastal fisheries) and even other types of flows (solid 493 

flows or sediments). In this context, hydrologic series estimated under different scenarios based 494 

on forecasted climatic tendencies and management strategies would allow anticipating future 495 

values of hydrologic indices and, therefore, changes in ecological quality and socioeconomic 496 

activities.  497 
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Annex I CPUEs or captures per effort unit (individuals/hectare) of the fish species sampled, sorted by 691 
family (in bold letter) 692 

  CPUEs 

Anguillidae 2064 

Anguilla anguilla 2064 

Atherinidae 85 

Atherina boyeri 85 

Blenniidae 391 

Salaria fluviatilis 391 

Centrarchidae 570 

Lepomis gibbosus 545 

Micropterus salmoides 25 

Cyprinidae 16028 

Alburnus alburnus 12056 

Carassius auratus 70 

Cyprinus carpio 373 

Gobio lozanoi 152 

Luciobarbus graellsii 85 

Pseudorasbora parva 982 

Rutilus rutilus 1517 

Sander lucioperca 378 

Scardinius erythrophthalmus 71 

Squalius laietanus 344 

Poeciliidae 6261 

Gambusia holbrooki 6261 

Siluridae 184 

Silurus glanis 184 
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Annex II Pearson correlations between the hydrologic variables computed using 12 months of records and 694 
a) IBICAT2b or b) EFI+ (correlations greater than 70% are in bold letter). Meaning of indices in Table 2. 695 
Indexes not computed due to absent or constant flow records are marked as ‘N/A’ 696 

a) IBICAT2b 

Hydrologic 
variable 

Transect 
1 

Transect 
2 

Transect 
3 

Transect 
4 

Transect 
5 

Transect 
6 

Transect  
2, 3 & 4 

Depth 0.03 -0.44 -0.01 -0.80 -0.43 -0.40 -0.44 

Velocity -0.11 -0.48 0.07 0.09 -0.45 0.01 0.03 

MA3 0.00 -0.63 -0.57 -0.15 -0.17 -0.93 -0.65 

MA44 0.44 -0.12 -0.33 0.13 0.23 0.85 -0.18 

ML13 0.71 0.34 -0.23 0.74 0.57 0.40 -0.01 

DL1 -0.66 0.53 0.51 0.31 0.33 N/A 0.45 

ML14 -0.29 -0.57 -0.20 -0.86 -0.53 N/A -0.32 

ML23 -0.07 -0.44 -0.14 -0.78 -0.42 N/A -0.20 

MH20 0.26 -0.52 -0.49 0.04 -0.07 0.59 -0.51 

FL1 0.45 -0.04 0.10 0.31 -0.15 N/A 0.26 

FH3 0.30 0.20 0.00 0.65 0.45 0.74 -0.08 

FH5 0.25 -0.04 -0.01 -0.17 -0.04 -0.56 0.11 

DL13 0.67 -0.21 -0.29 -0.21 0.27 0.70 -0.30 

DH12 0.55 -0.49 -0.08 -0.41 -0.30 0.78 -0.04 

TL1 0.22 -0.27 -0.10 -0.13 -0.25 -0.10 0.16 

RA8 -0.30 -0.28 -0.43 -0.29 -0.38 0.67 0.11 

MA5 0.25 -0.19 -0.65 -0.31 -0.13 N/A -0.34 

MA12 -0.52 0.28 0.11 0.37 0.28 0.17 0.18 

MA13 -0.22 0.32 0.16 0.42 0.15 -0.79 0.30 

MH1 0.02 0.26 -0.25 0.55 -0.03 0.18 0.35 

MH2 -0.38 -0.42 -0.74 -0.16 -0.08 -0.79 -0.54 

dmin -0.57 0.77 0.46 0.81 0.65 N/A 0.57 

dmax 0.34 -0.61 -0.55 -0.13 -0.04 N/A -0.68 

dD 0.14 0.43 0.16 0.50 0.26 N/A 0.54 

dSD 0.08 0.46 0.17 0.51 0.30 N/A 0.54 

dramp -0.34 -0.87 -0.59 -0.57 -0.58 N/A -0.57 

dpath 0.12 0.42 0.16 0.45 0.21 N/A 0.55 

drev 0.19 0.39 0.03 0.51 0.26 N/A 0.49 

drf 0.67 0.65 0.52 0.10 0.39 N/A 0.65 

dstD 0.10 0.34 0.09 0.27 0.11 N/A 0.52 

dAstD -0.31 0.08 -0.01 -0.08 -0.24 N/A 0.45 

dCV -0.32 0.15 0.04 -0.09 -0.16 N/A 0.47 

dstMHramp -0.25 -0.61 -0.22 -0.71 -0.54 N/A -0.39 

dflash 0.09 0.29 0.09 0.18 0.04 N/A 0.51 
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Annex II (cont.) 698 

b) EFI+ 

Hydrologic 
variable 

Transect 
1 

Transect 
2 

Transect 
3 

Transect 
4 

Transect 
5 

Transect 
6 

Transect 
 2, 3 & 4 

Depth 0.00 -0.04 0.10 0.69 0.58 0.51 0.13 

Velocity 0.00 0.35 0.24 0.14 0.24 -0.34 0.63 

MA3 0.00 0.50 0.06 -0.16 -0.26 0.41 -0.03 

MA44 0.00 0.48 0.29 -0.45 -0.41 -0.52 -0.28 

ML13 0.00 0.38 0.35 -0.35 -0.11 -0.67 0.29 

DL1 0.00 -0.02 0.00 -0.32 0.08 N/A -0.08 

ML14 0.00 -0.13 0.03 0.46 0.13 N/A -0.38 

ML23 0.00 -0.14 0.07 0.34 0.05 N/A -0.41 

MH20 0.00 0.61 0.04 -0.20 -0.25 -0.17 0.01 

FL1 0.00 0.58 -0.04 -0.03 0.14 N/A 0.41 

FH3 0.00 0.34 0.02 -0.53 -0.35 -0.51 0.29 

FH5 0.00 0.10 -0.20 -0.34 -0.02 0.65 -0.52 

DL13 0.00 0.16 0.40 -0.25 -0.66 -0.57 -0.48 

DH12 0.00 0.37 -0.12 -0.09 -0.36 -0.62 -0.60 

TL1 0.00 0.51 -0.06 -0.30 -0.21 0.57 -0.20 

RA8 0.00 0.43 0.22 0.23 0.39 -0.26 -0.22 

MA5 0.00 -0.36 0.14 0.15 0.35 N/A 0.33 

MA12 0.00 0.19 -0.01 -0.49 -0.11 0.73 0.11 

MA13 0.00 0.24 0.02 -0.21 0.24 -0.11 0.30 

MH1 0.00 0.20 0.01 0.23 0.52 0.73 0.48 

MH2 0.00 0.52 0.55 -0.08 -0.01 -0.11 0.15 

dmin 0.00 -0.02 0.08 -0.39 -0.18 N/A 0.29 

dmax 0.00 0.47 0.12 -0.11 -0.38 N/A -0.06 

dD 0.00 0.36 0.14 -0.48 -0.08 N/A 0.06 

dSD 0.00 0.34 0.13 -0.53 -0.11 N/A 0.03 

dramp 0.00 0.48 0.12 0.50 0.16 N/A 0.02 

dpath 0.00 0.33 0.15 -0.43 -0.03 N/A 0.09 

drev 0.00 0.45 0.31 -0.38 -0.04 N/A 0.18 

drf 0.00 -0.24 0.19 -0.07 0.08 N/A -0.47 

dstD 0.00 0.27 0.13 -0.43 -0.02 N/A -0.07 

dAstD 0.00 0.20 0.09 -0.18 0.06 N/A -0.07 

dCV 0.00 0.11 0.06 -0.29 0.00 N/A -0.20 

dstMHramp 0.00 -0.10 -0.06 0.60 0.17 N/A -0.10 

dflash 0.00 0.23 0.14 -0.37 0.00 N/A -0.07 
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Annex III Correlations between the IBICAT2010 and the hydrologic indices computed for 3, 6, 9, 24, 36 701 
and 48 months of records, as well as for the hydrologic year (values greater than 70% are in bold type; 702 
daily and subdaily indices are separated by double line). Hydrologic indices (meaning in Table 2) are 703 
followed by a termination that indicates the period used. Indices not computed due to absent or constant 704 
flow records are marked as ‘N/A’ 705 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

MA3_3 -0.06 0.06 0.01 -0.07 0.23 -0.48 -0.14 

MA44_3 -0.11 0.04 -0.06 -0.04 0.26 0.07 -0.11 

ML13_3 -0.24 -0.07 -0.12 -0.33 0.11 N/A -0.31 

DL1_3 0.45 0.65 0.44 0.38 0.41 N/A 0.59 

ML14_3 0.10 0.24 0.28 -0.05 -0.20 N/A 0.27 

ML23_3 0.04 0.24 0.23 -0.15 -0.10 N/A 0.27 

MH20_3 -0.19 -0.02 -0.10 -0.28 0.17 -0.09 -0.26 

FL1_3 0.20 0.29 0.30 0.58 0.52 N/A 0.56 

FH5_3 -0.24 0.50 0.44 0.56 0.49 -0.44 0.72 

DL13_3 -0.25 0.38 0.40 0.01 0.06 N/A 0.40 

DH12_3 -0.33 0.33 0.43 -0.13 0.08 0.17 0.21 

TL1_3 -0.55 0.18 -0.01 -0.46 0.24 -0.48 -0.13 

RA8_3 0.13 0.13 0.20 0.14 0.02 -0.49 0.17 

MA5_3 -0.30 -0.26 -0.06 -0.07 -0.30 N/A -0.22 

MA12_3 -0.53 0.30 0.40 0.53 0.20 0.22 0.57 

MA13_3 0.04 0.16 0.25 0.59 0.17 -0.23 0.46 

MH1_3 0.58 -0.39 -0.34 0.51 0.14 0.22 -0.10 

MH2_3 -0.40 0.06 0.20 -0.13 0.14 -0.23 0.07 

MA3_6 -0.11 0.26 0.14 -0.33 0.15 -0.64 -0.11 

MA44_6 0.01 0.29 0.22 -0.10 0.15 0.14 0.03 

ML13_6 0.60 -0.12 -0.20 0.42 0.28 N/A 0.02 

DL1_6 0.64 0.44 0.31 0.59 0.26 N/A 0.63 

ML14_6 -0.33 0.09 0.18 -0.44 -0.33 N/A -0.02 

ML23_6 -0.22 -0.12 0.00 -0.21 -0.30 N/A -0.09 

MH20_6 0.07 0.24 0.11 -0.19 0.22 -0.11 -0.06 

FL1_6 -0.24 0.41 0.38 0.66 0.53 N/A 0.65 

FH5_6 -0.35 0.22 0.34 0.17 0.04 -0.66 0.26 

DL13_6 -0.46 0.28 0.27 -0.30 -0.08 0.30 0.16 

DH12_6 -0.45 0.29 0.37 -0.45 -0.13 0.22 -0.07 

TL1_6 0.50 0.01 -0.07 -0.19 0.15 -0.48 -0.06 

RA8_6 0.02 0.03 0.18 0.08 0.08 -0.04 0.09 

MA5_6 N/A -0.32 -0.14 -0.20 -0.27 N/A -0.18 

MA12_6 -0.53 0.30 0.40 0.53 0.20 0.22 0.57 

MA13_6 0.04 0.16 0.25 0.59 0.17 -0.23 0.46 

MH1_6 0.58 -0.39 -0.34 0.51 0.14 0.22 -0.10 

MH2_6 -0.40 0.06 0.20 -0.13 0.14 -0.23 0.07 
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Annex III (cont.) 707 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

MA3_9 -0.55 0.40 0.37 -0.04 0.48 -0.64 0.21 

MA44_9 -0.62 0.39 0.47 0.17 0.47 0.66 0.41 

ML13_9 0.05 0.26 0.16 0.77 0.70 0.60 0.52 

DL1_9 0.57 0.29 0.26 0.55 0.09 N/A 0.53 

ML14_9 -0.54 -0.28 -0.19 -0.87 -0.48 -0.25 -0.55 

ML23_9 -0.70 -0.21 -0.10 -0.80 -0.46 -0.25 -0.44 

MH20_9 -0.20 0.51 0.40 0.24 0.69 0.97 0.37 

FL1_9 -0.36 0.06 0.06 0.32 -0.05 N/A 0.13 

FH5_9 -0.62 0.21 0.32 0.05 0.06 -0.73 0.25 

DL13_9 -0.74 0.00 0.00 -0.68 -0.10 -0.08 -0.27 

DH12_9 -0.76 0.20 0.30 -0.60 -0.04 0.56 -0.18 

TL1_9 -0.28 0.43 0.68 -0.01 0.05 -0.48 0.40 

RA8_9 0.33 -0.18 -0.02 -0.28 -0.14 0.48 -0.30 

MA5_9 N/A -0.52 -0.40 -0.06 -0.12 N/A -0.31 

MA12_9 -0.53 0.30 0.40 0.53 0.20 0.22 0.57 

MA13_9 0.04 0.16 0.25 0.59 0.17 -0.23 0.46 

MH1_9 0.58 -0.39 -0.34 0.51 0.14 0.22 -0.10 

MH2_9 -0.40 0.06 0.20 -0.13 0.14 -0.23 0.07 

MA3_year -0.38 0.48 0.42 0.13 0.56 -0.75 0.32 

MA44_year -0.10 0.60 0.58 0.45 0.62 0.71 0.61 

ML13_year 0.14 0.42 0.26 0.90 0.75 0.90 0.69 

DL1_year 0.37 0.27 0.29 0.61 0.16 N/A 0.57 

ML14_year -0.29 -0.40 -0.33 -0.88 -0.63 N/A -0.69 

ML23_year -0.54 -0.42 -0.31 -0.68 -0.53 N/A -0.56 

MH20_year -0.20 0.51 0.40 0.24 0.69 0.97 0.37 

FL1_year -0.34 0.02 0.16 0.60 0.13 N/A 0.36 

FH3_year 0.05 0.62 0.44 0.75 0.82 0.80 0.75 

FH5_year -0.47 -0.06 0.24 0.21 -0.19 -0.56 0.18 

DL13_year -0.25 0.29 0.11 -0.42 0.10 0.30 -0.02 

DH12_year -0.27 0.50 0.51 0.15 0.52 0.75 0.38 

TL1_year -0.70 0.20 0.55 0.05 -0.25 N/A 0.30 

RA8_year 0.18 -0.24 0.13 -0.28 -0.43 0.75 -0.22 

MA5_year 0.11 -0.66 -0.46 -0.19 -0.42 N/A -0.53 

MA12_year -0.53 0.30 0.40 0.53 0.20 0.22 0.57 

MA13_year 0.04 0.16 0.25 0.59 0.17 -0.17 0.46 

MH1_year 0.58 -0.39 -0.34 0.51 0.14 0.22 -0.10 

MH2_year -0.40 0.06 0.20 -0.13 0.14 -0.23 0.07 
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Annex III (cont.) 709 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

MA3_24 -0.29 0.52 0.42 0.22 0.44 N/A 0.44 

MA44_24 0.12 0.68 0.56 0.47 0.48 N/A 0.71 

ML13_24 0.13 0.53 0.51 0.75 0.56 N/A 0.79 

DL1_24 0.79 0.25 0.24 0.17 0.35 N/A 0.29 

ML14_24 -0.09 -0.11 -0.20 -0.72 -0.35 N/A -0.43 

ML23_24 -0.43 -0.27 -0.31 -0.63 -0.52 N/A -0.47 

MH20_24 -0.45 0.39 0.47 0.30 0.32 N/A 0.41 

FL1_24 -0.43 0.22 0.31 0.48 0.33 N/A 0.45 

FH3_24 0.16 0.56 0.48 0.85 0.76 N/A 0.79 

FH5_24 -0.26 -0.23 0.12 -0.06 -0.27 N/A -0.13 

DL13_24 -0.04 0.50 0.33 0.06 0.19 N/A 0.41 

DH12_24 -0.36 0.70 0.68 0.06 0.29 N/A 0.50 

TL1_24 0.02 -0.11 -0.14 -0.21 0.15 N/A -0.30 

RA8_24 0.06 -0.61 -0.31 -0.61 -0.58 N/A -0.67 

MA5_24 -0.70 -0.34 -0.10 0.02 -0.18 N/A -0.11 

MA12_24 0.08 -0.29 -0.23 0.32 0.07 N/A -0.06 

MA13_24 -0.01 -0.29 -0.15 0.20 0.05 N/A -0.09 

MH1_24 0.26 -0.34 0.09 -0.35 -0.64 N/A -0.23 

MH2_24 -0.72 -0.16 -0.20 -0.12 -0.15 N/A -0.19 

MA3_36 -0.22 0.66 0.43 0.47 0.62 N/A 0.59 

MA44_36 -0.02 0.86 0.67 0.67 0.72 N/A 0.89 

ML13_36 -0.04 0.57 0.44 0.68 0.55 N/A 0.77 

DL1_36 0.65 0.33 0.38 -0.14 0.12 N/A 0.26 

ML14_36 0.19 0.04 -0.18 -0.58 -0.16 N/A -0.32 

ML23_36 -0.02 -0.14 -0.31 -0.55 -0.23 N/A -0.46 

MH20_36 -0.57 -0.08 -0.12 0.42 0.33 N/A 0.04 

FL1_36 0.10 -0.33 -0.06 -0.40 -0.36 N/A -0.32 

FH3_36 -0.04 0.53 0.58 0.78 0.62 N/A 0.77 

FH5_36 -0.08 -0.21 0.13 -0.34 -0.23 N/A -0.23 

DL13_36 -0.02 0.71 0.39 0.35 0.55 N/A 0.62 

DH12_36 0.20 0.45 0.43 -0.10 0.09 N/A 0.17 

TL1_36 -0.36 0.02 0.04 -0.44 -0.09 N/A -0.23 

RA8_36 0.44 -0.63 -0.46 -0.86 -0.67 N/A -0.86 

MA5_36 -0.72 -0.38 -0.18 -0.15 -0.29 N/A -0.24 

MA12_36 0.73 -0.13 0.14 -0.45 -0.40 N/A -0.24 

MA13_36 0.36 -0.01 0.21 -0.56 -0.42 N/A -0.27 

MH1_36 -0.13 -0.45 -0.61 -0.59 -0.45 N/A -0.60 

MH2_36 0.63 -0.12 -0.02 0.21 -0.23 N/A -0.06 
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Annex III (cont.) 711 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

MA3_48 N/A 0.72 0.69 0.61 0.65 N/A 0.73 

MA44_48 N/A 0.66 0.54 0.42 0.66 N/A 0.65 

ML13_48 N/A 0.53 0.40 0.59 0.59 N/A 0.70 

DL1_48 N/A 0.39 0.20 -0.12 0.31 N/A 0.18 

ML14_48 N/A 0.22 -0.11 -0.35 0.09 N/A -0.10 

ML23_48 N/A -0.18 -0.33 -0.62 -0.35 N/A -0.49 

MH20_48 N/A -0.11 0.26 -0.15 -0.26 N/A -0.17 

FL1_48 N/A -0.33 -0.06 -0.40 -0.36 N/A -0.32 

FH3_48 N/A 0.42 0.65 0.57 0.37 N/A 0.57 

FH5_48 N/A -0.21 0.13 -0.34 -0.23 N/A -0.23 

DL13_48 N/A 0.74 0.47 0.42 0.68 N/A 0.72 

DH12_48 N/A 0.38 0.40 -0.16 0.08 N/A 0.11 

TL1_48 N/A -0.09 -0.27 -0.51 -0.16 N/A -0.47 

RA8_48 N/A -0.55 -0.40 -0.92 -0.73 N/A -0.83 

MA5_48 N/A -0.22 0.03 -0.16 -0.22 N/A -0.15 

MA12_48 N/A -0.01 -0.14 -0.77 -0.22 N/A -0.41 

MA13_48 N/A -0.22 -0.39 -0.55 -0.07 N/A -0.46 

MH1_48 N/A 0.55 0.34 0.05 0.31 N/A 0.36 

MH2_48 N/A -0.44 -0.36 -0.08 -0.08 N/A -0.34 

dmin_1 0.70 0.24 0.18 0.48 0.14 N/A 0.35 

dmax_1 0.27 0.17 -0.02 0.31 0.49 N/A 0.20 

dD_1 0.51 0.02 -0.16 0.55 0.57 N/A 0.19 

dSD_1 0.54 -0.02 -0.18 0.54 0.56 N/A 0.16 

dramp_1 0.21 0.16 0.00 0.30 0.43 N/A 0.22 

dpath_1 0.53 0.05 -0.12 0.60 0.58 N/A 0.24 

drev_1 0.35 0.14 -0.03 0.58 0.63 N/A 0.33 

drf_1 0.38 -0.17 -0.07 0.15 -0.21 N/A 0.04 

dstD_1 0.21 0.20 0.02 0.67 0.70 N/A 0.41 

dAstD_1 0.21 0.21 0.03 0.71 0.71 N/A 0.43 

dCV_1 0.27 0.16 -0.02 0.70 0.69 N/A 0.39 

dstMHramp_1 0.09 0.28 0.12 0.38 0.47 N/A 0.36 

dflash_1 0.17 0.23 0.06 0.73 0.70 N/A 0.46 
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Annex III (cont.) 713 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

dmin_3 0.42 -0.14 -0.21 0.44 0.04 N/A 0.60 

dmax_3 -0.12 -0.08 -0.13 -0.21 0.14 N/A -0.12 

dD_3 0.19 -0.07 -0.15 0.41 0.39 N/A 0.04 

dSD_3 0.22 -0.07 -0.15 0.42 0.37 N/A 0.03 

dramp_3 0.04 0.15 0.11 -0.02 0.27 N/A 0.06 

dpath_3 0.21 0.01 -0.10 0.56 0.50 N/A 0.14 

drev_3 0.29 0.25 0.08 0.80 0.72 N/A 0.34 

drf_3 0.15 0.09 0.20 0.15 -0.05 N/A -0.01 

dstD_3 0.18 0.33 0.21 0.86 0.73 N/A 0.34 

dAstD_3 0.14 0.53 0.44 0.86 0.74 N/A 0.55 

dCV_3 0.22 0.49 0.41 0.82 0.69 N/A 0.53 

dstMHramp_3 0.13 0.42 0.42 0.06 0.25 N/A 0.20 

dflash_3 0.14 0.43 0.33 0.92 0.74 N/A 0.42 

dmin_6 0.74 -0.13 -0.22 0.44 0.03 N/A 0.61 

dmax_6 0.01 0.13 -0.06 -0.19 0.20 N/A -0.14 

dD_6 0.18 0.24 0.16 0.65 0.49 N/A 0.35 

dSD_6 0.19 0.21 0.15 0.64 0.46 N/A 0.33 

dramp_6 -0.15 0.02 -0.25 -0.26 0.20 N/A -0.23 

dpath_6 0.13 0.29 0.24 0.71 0.54 N/A 0.45 

drev_6 0.16 0.41 0.34 0.84 0.68 N/A 0.57 

drf_6 0.11 -0.07 -0.07 0.29 0.01 N/A 0.01 

dstD_6 -0.14 0.43 0.38 0.63 0.61 N/A 0.44 

dAstD_6 -0.36 0.49 0.45 0.46 0.54 N/A 0.46 

dCV_6 -0.37 0.46 0.43 0.43 0.50 N/A 0.32 

dstMHramp_6 -0.40 0.01 -0.24 -0.38 0.01 N/A -0.30 

dflash_6 -0.31 0.47 0.46 0.53 0.57 N/A 0.54 

dmin_9 0.66 0.00 -0.08 0.39 -0.08 N/A 0.57 

dmax_9 -0.31 0.35 0.27 0.23 0.63 N/A 0.18 

dD_9 0.32 0.32 0.43 0.77 0.41 N/A 0.54 

dSD_9 0.35 0.27 0.41 0.72 0.32 N/A 0.57 

dramp_9 -0.34 -0.11 -0.27 -0.27 0.26 N/A -0.37 

dpath_9 0.28 0.32 0.50 0.73 0.33 N/A 0.50 

drev_9 0.35 0.35 0.50 0.75 0.35 N/A 0.55 

drf_9 0.27 -0.01 0.05 0.37 -0.04 N/A -0.01 

dstD_9 0.02 0.27 0.42 0.52 0.36 N/A 0.31 

dAstD_9 0.27 -0.09 0.24 -0.09 -0.27 N/A -0.07 

dCV_9 0.35 -0.14 0.18 -0.13 -0.31 N/A -0.02 

dstMHramp_9 -0.33 -0.39 -0.54 -0.74 -0.33 N/A -0.64 

dflash_9 -0.18 0.19 0.41 0.30 0.21 N/A 0.25 
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Annex III (cont.) 715 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

dmin_year 0.43 -0.35 -0.35 0.22 -0.25 N/A 0.60 

dmax_year -0.31 0.35 0.27 0.23 0.63 N/A 0.16 

dD_year 0.15 0.38 0.59 0.63 0.34 N/A 0.63 

dSD_year 0.17 0.35 0.58 0.59 0.28 N/A 0.66 

dramp_year -0.12 -0.38 -0.24 -0.67 -0.24 N/A -0.47 

dpath_year 0.13 0.35 0.59 0.54 0.26 N/A 0.56 

drev_year 0.18 0.39 0.57 0.58 0.33 N/A 0.55 

drf_year 0.38 0.44 0.37 0.54 0.27 N/A 0.03 

dstD_year -0.03 0.26 0.55 0.37 0.20 N/A 0.41 

dAstD_year -0.02 -0.02 0.36 0.21 -0.06 N/A 0.26 

dCV_year 0.02 -0.05 0.35 0.17 -0.11 N/A 0.30 

dstMHramp_year 0.03 -0.31 0.11 -0.24 -0.31 N/A -0.14 

dflash_year -0.10 0.21 0.50 0.19 0.08 N/A 0.33 

dmin_24 0.74 0.05 0.03 0.52 0.17 N/A 0.38 

dmax_24 -0.50 0.30 0.27 0.16 0.24 N/A 0.27 

dD_24 -0.09 0.05 0.26 0.32 0.14 N/A 0.28 

dSD_24 -0.08 0.07 0.27 0.36 0.16 N/A 0.31 

dramp_24 -0.09 0.10 0.06 -0.32 -0.10 N/A -0.15 

dpath_24 -0.14 0.00 0.21 0.28 0.08 N/A 0.23 

drev_24 -0.07 -0.01 0.19 0.31 0.07 N/A 0.25 

drf_24 0.33 0.03 -0.04 -0.02 0.16 N/A 0.02 

dstD_24 -0.29 -0.18 0.10 0.01 -0.14 N/A -0.03 

dAstD_24 -0.20 -0.50 -0.24 -0.55 -0.58 N/A -0.55 

dCV_24 -0.13 -0.49 -0.25 -0.56 -0.55 N/A -0.56 

dstMHramp_24 -0.20 -0.34 -0.40 -0.79 -0.50 N/A -0.67 

dflash_24 -0.41 -0.22 0.05 -0.03 -0.19 N/A -0.06 

dmin_36 0.61 0.21 0.17 0.28 0.18 N/A 0.40 

dmax_36 -0.53 -0.05 -0.09 0.44 0.34 N/A 0.06 

dD_36 -0.22 0.04 0.33 -0.05 -0.06 N/A 0.11 

dSD_36 -0.17 0.06 0.34 0.01 -0.02 N/A 0.16 

dramp_36 0.07 -0.25 -0.32 0.00 0.05 N/A -0.34 

dpath_36 -0.23 0.02 0.30 -0.07 -0.10 N/A 0.11 

drev_36 -0.23 0.03 0.27 0.03 -0.08 N/A 0.18 

drf_36 -0.15 0.35 0.31 -0.25 0.11 N/A 0.20 

dstD_36 -0.45 -0.16 0.15 -0.37 -0.29 N/A -0.18 

dAstD_36 -0.06 -0.47 -0.27 -0.87 -0.67 N/A -0.70 

dCV_36 -0.07 -0.47 -0.31 -0.88 -0.68 N/A -0.69 

dstMHramp_36 -0.01 -0.40 -0.53 -0.46 -0.26 N/A -0.63 

dflash_36 -0.57 -0.15 0.14 -0.40 -0.33 N/A -0.16 
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Annex III (cont.) 717 

Hydrologic index 
Transect 

1 
Transect 

2 
Transect 

3 
Transect 

4 
Transect 

5 
Transect 

6 
Transect 
2, 3 & 4 

dmin_48 N/A 0.42 0.23 0.26 0.32 N/A 0.50 

dmax_48 N/A -0.07 0.29 -0.15 -0.25 N/A -0.14 

dD_48 N/A 0.15 0.32 -0.40 -0.10 N/A -0.07 

dSD_48 N/A 0.17 0.36 -0.34 -0.07 N/A -0.01 

dramp_48 N/A -0.31 0.00 -0.42 -0.47 N/A -0.46 

dpath_48 N/A 0.17 0.33 -0.38 -0.10 N/A -0.02 

drev_48 N/A 0.23 0.35 -0.20 -0.01 N/A 0.15 

drf_48 N/A 0.43 0.18 -0.05 0.39 N/A 0.24 

dstD_48 N/A 0.02 0.19 -0.69 -0.27 N/A -0.27 

dAstD_48 N/A -0.23 -0.08 -0.90 -0.58 N/A -0.58 

dCV_48 N/A -0.17 0.02 -0.84 -0.47 N/A -0.47 

dstMHramp_48 N/A -0.44 -0.27 -0.52 -0.58 N/A -0.60 

dflash_48 N/A 0.04 0.20 -0.64 -0.29 N/A -0.21 

 718 

 719 




