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Abstract  15 

The European Water Framework Directive requires the integration of body size characters as an 16 

important part of fish-based bioassessment tools for freshwaters ecological status determination. 17 

The study of the entire fish community size-structure provides valuable information about food web 18 

capacity, food web stability and ecological efficiency of aquatic ecosystems. One of the most used 19 

representations of community size structure is the Normalized Abundance Spectra (NAS) that 20 

provides an approximation of the total fish abundance and food web capacity (through the 21 

parameter y-intercept) and an estimation of food web efficiency (through the slope of the linear 22 

regression). In this study we explored NAS of the lower Ebro River fish community by integrating 23 

data from monthly electrofishing samplings during a whole year (November 2014- October 2015). 24 

We found that the percentage of total alien and alien-prey individuals were directly related with y-25 

intercept and inversely related with slope of NAS. This is because the bulk of the community consists 26 

of introduced species of small body length. Furthermore, we detected significant relationships 27 

between NAS-related parameters and the hydrological variables describing diel flow oscillations and 28 

daily flow variability. Based on this, we suggest that high flow variability conditions and, above all, 29 

high hydro-peaking conditions, caused a diminution of the total abundance of fish and a decrease of 30 

the proportion of small sized fish (i.e. lower y-intercept and flatter slopes of NAS, respectively). 31 

Finally, a significant interaction between hydro-peaking and the percentage of alien-predators 32 

suggests that high hydro-peaking conditions benefit predation by facilitating predator-prey 33 

encounters. This is reflected by strong linear relationship between NAS parameters and percentage 34 

of piscivorous at high hydropeaking conditions that disappears at low hydro-peaking fluctuations. 35 

We concluded that the high proportion of alien fishes and the presence of a hydropower generation 36 

plant that operates by hydro-peaking are important factors determining fish size structure in the 37 

lower Ebro River.  38 

Key words 39 

Size Structure, fish community, Ebro River, hydro-peaking, alien species, size spectra  40 

Highlights 41 

1- Small sized species of alien fish dominate the lower Ebro River fish community. 42 

2- Normalized Abundance Spectra (NAS) of fish were evaluated monthly for one year. 43 

3- NAS reflected hydro-peaking impacts on the fish community. 44 

4- High hydro-peaking conditions may increase predatory efficiency of piscivorous fish. 45 

  46 
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1. Introduction 47 

Since the implementation of the European Water Framework Directive (WFD) (European 48 

Community, 2000) a huge effort has been done to find suitable bioassessment tools for the 49 

assessment of freshwater ecosystems health. Indeed, the WFD requires the use of size 50 

characteristics as a normative condition for fish-based bioassessment tools (Murphy et al., 2013; 51 

Reyjol et al., 2014), and it is certainly true that size structures of aquatic communities are shaped by 52 

biotic interactions and environmental factors, and may therefore reflect changes occurred on the 53 

surrounding conditions, whether of anthropogenic or natural origin (Blanchard et al., 2017; Emmrich 54 

et al., 2014; Murry and Farrell, 2014; Sprules and Barth, 2016). There are many approaches to 55 

visualize the size distribution of organisms in a sample that have become increasingly popular since 56 

the formulation of the biomass size spectrum theory in the mid-1960s. This theory states that in 57 

aquatic ecosystems, the sum of biomass is approximately constant across equal logarithmic intervals 58 

of body size from the smallest to the biggest organism (Sprules and Barth, 2016). From this idea 59 

emerged the Normalized Abundance Spectra (NAS) that can be adjusted to a linear model and 60 

provide information about food-web capacity (through the y-intercept of the spectrum) and 61 

ecological efficiency of communities (through the slope of the spectrum) (Daan et al., 2005; Mehner 62 

et al., in press; Rice and Gislason, 1996). Size structure approaches have been extensively used to 63 

study the ecosystems in marine environments (Andersen and Beyer, 2006; Blanchard et al., 2017, 64 

2005; Kimmel et al., 2006; Platt and Denman, 1977; Sheldon et al., 1972), and in lakes and lagoons 65 

(Arranz et al., 2015; Brucet et al., 2010, 2005, Emmrich et al., 2014, 2011). But there are very few 66 

studies on rivers (Benejam et al., 2018, 2015; Broadway et al., 2015; Murry and Farrell, 2014). In this 67 

study we analysed Normalized Abundance Spectra (NAS) of the fish community of the lower Ebro 68 

River, a Mediterranean large river in the Iberian Peninsula, to test their ability to detect 69 

environmental and biotic disturbances.  70 

The Ebro River is affected by several human impacts: water abstraction, dam regulation with 71 

subsequent altered hydrological regime (Batalla et al., 2004) and low suspended sediments (Rovira 72 

et al., 2007), industrial pollution (Benejam et al., 2010; Huertas et al., 2016), thermal pollution (Prats 73 

et al., 2012, 2010), proliferation of macrophytes (Ibáñez et al., 2012) and introduction of many alien 74 

fish species (Caiola et al., 2014; Elvira, 1995a, 1995b), among others. It is well known that non-native 75 

fish introductions can result in local decline and even extinction of native species through different 76 

mechanisms such as genetic introgression, introduction of parasites and diseases, competition for 77 

habitat, habitat alteration and predation (García-Berthou, 2007). Specifically in the lower Ebro River, 78 

where this study is focused, some of the new introduced species are voracious piscivorous (e.g. 79 

Silurus glanis) that can cause critical changes in the original fish populations because many 80 



 

4 
 

indigenous species have evolved in communities with none native piscivorous fishes (Carol et al., 81 

2009; Ribeiro and Leunda, 2012). Another important source of alteration from the natural ecological 82 

status in the lower Ebro River is the presence of a hydroelectric generation power plant that 83 

operates by hydro-peaking. This is the procedure by which hydroelectricity is produced to cover the 84 

daily fluctuating demands of the energy market and it results on a daily peaking flow regulation that 85 

affects the biological dynamics of downstream communities. Many authors reported adverse 86 

impacts of hydro-peaking on fish caused by, inter alia, stranding, habitat abandonment, downstream 87 

displacement, inhibition of spawning, migration obstruction, habitat modification, increase of 88 

physiological stress and depleted food production (Almeida et al., 2017; Boavida et al., 2015; 89 

Schmutz et al., 2015; Young et al., 2011). Among all the mentioned environmental disturbances, we 90 

looked for potential causes of alteration on NAS through an extensive sampling of fish stocks by 91 

electrofishing.  92 

The main objective of the present paper is to identify the natural and anthropogenic factors 93 

affecting size structure of fish community in a large Mediterranean river. In this way, we want to 94 

evaluate the potential of Normalized Abundance Spectrum parameters as size-related bioindicators 95 

to complement the fish-based indices currently in use.  96 

 97 

2. Material and methods  98 

2.1. Study area  99 

The Ebro River is located in the NE of the Iberian Peninsula (Fig. 1a). With a total drainage area 100 

of 85.569 km2 and a mean annual flow of 294 m3·s-1, provides valuable ecosystem services to people 101 

such as water for agriculture uses (irrigation area of 906.000 ha), urban supply (basin population of 102 

3.176.091) and hydro-power generation (458 stations) (Confederación Hidrográfica del Ebro, 2009).  103 

In terms of hydrology the study area can be divided in two regions: the river section upstream 104 

from Xerta weir that comprises the stations E05 to E02 where the mean annual flow is of 105 

approximately 320 m3·s-1, and the reach after Xerta weir that comprises sampling station E01. This 106 

weir is the last human obstacle before the river mouth and its function is to divert water for 107 

agricultural uses and human consumption. The mean annual flow in station E01 is about 280m3·s-1. 108 

Hydro-peaking oscillations generated in a hydroelectrical power plant located in Flix dam are 109 

perceptible in all the study area (Figs. 1 and 2).  110 

  111 
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Figure 1. (a) Location of the Ebro River and (b) the five sampling stations.  112 

 113 

2.2. Sampling  114 

Data of fish species abundance and body size were collected by electro-fishing in 5 stations on 115 

the lower Ebro River (Fig. 1). The stations were randomly selected to cover all the 116 

hydromorphological variability of the study area (for more details see Caiola et al., 2014). Each 117 

station consisted in a 2 km length stretch to fulfil the requirements of EN 14011 European standard 118 

(CEN. European Committee for Standardization, 2003) that establishes a minimum sampling stretch 119 

length of ten times the river width (in the study area the mean width is ca. 180 m). Ten equidistant 120 

points located in the littoral zone were sampled within each station, randomly alternating left and 121 

right banks, with a total length sampled at each sampling station of about 200m. A boat based 122 

electro-fishing gear (Model: EL63IIGI, HANS GRASSL GmbH, Schönau am Königssee, Germany) was 123 

used at 600 V and 10 A pulsed D.C.  The fish were collected with a dip net of 2.5 m long, 47 cm of 124 

diameter and 7 mm of mesh size. The specimens were identified to species level, counted, measured 125 

and weighted. Native specimens were returned to the river and alien fishes were sacrificed with an 126 

overdose of anesthetic (MS-222). We normalized abundances dividing by fished area and time of 127 

fishing, obtaining catches per unit effort (CPUE: individuals·ha-1·min-1) and biomass per unit effort 128 

(BPUE: kg·ha-1·min-1). 129 

  130 
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In addition to fish community metrics, we measured several environmental factors and habitat 131 

variables: water temperature (°C), conductivity (mS·cm-1), dissolved oxygen (mg·l-1) and total 132 

dissolved solids (mg·l-1) were measured with a multi-parameter probe (YSI model 556 MPS); water 133 

depth (m) was measured using a portable depth-meter (Hondex model PS-7) and water flow velocity 134 

(m·s-1) was measured with a current-meter (Global Water model FP101). The presence, absence and 135 

area covered by macrophytes was recorded by visual approximation following the recommendations 136 

for macrophytes assessment of the STAR project (Dawson, 2002). Daily and diel flow data series 137 

available at the Ebro Water Authority (CHE) web site (http://www.chebro.es/) were used to 138 

calculate hydrological indices (see section 2.5. Hydrological variables calculation). 139 

Monthly sampling campaigns were conducted between November 2014 and October 2015. Due 140 

to safety questions, we avoided sampling on December 2014, February and March 2015, when the 141 

water flow at the study area was higher than 500 m3·s-1 and it was impossible to guarantee the 142 

safety of the crew. 143 

 144 

Figure 2. Hydrographs on gauging station A163 (upper figure) and on gauging station A027 (lower figure) 145 

during the study period November 2014 – October 2015. Arrows indicate sampling dates. Note the 146 

hydropeaking oscillations. 147 

  148 
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2.3. Fish size spectrum calculation 149 

For each station and sampling period we modeled the Normalized Abundance Spectrum (NAS) 150 

with body lengths of the entire fish community. NAS is obtained through a binning method in which 151 

body size measurements are grouped into logarithmic size intervals and the abundance of 152 

individuals is represented for each size class in a log2-log2 plot. We standardized abundance by 153 

dividing it by the linear width of the size interval as described on Sprules and Barth (2016). The linear 154 

size spectra was calculated from NAS as the linear regression between the log2 midpoint of size 155 

classes (abscissas) and the log2 of normalized abundance per size class (ordinates) (Fig. 3). We 156 

considered six size classes following a log2 scale (1st class, ≤26=64 mm; 2nd class, >26=64 mm to 157 

27=128 mm; 3rd class, >27=128 mm to 28=256 mm; 4th class, >28=256 mm to 29=512 mm; 5th class, 158 

>29=512 mm to 210=1024 mm; 6th class, >210=1024 mm to maximum length). Electro-fishing has been 159 

shown as a suitable method to estimate size structure of fish in rivers (Benejam et al., 2015). 160 

However, although it has been demonstrated to be less selective than other sampling methods, it 161 

can imply an underestimation of small fish in some species due to the fact that the electric field has 162 

greater effects on large fish (Barbour et al., 1999; Borgstrøm and Skaala, 1993; Millar et al., 2016). 163 

For this reason, the smallest size classes were grouped in the first class (<64mm) (Benejam et al., 164 

2015). We estimated the intercept and the slope for each linear size spectrum of the entire fish 165 

community. The y-intercept of the linear size spectrum can be interpreted as an approximation of 166 

food web capacity (Gaedke and Straile, 1994; Murry and Farrell, 2014) whereas the slope equals to a 167 

measure of energy transfer or ecological efficiency (Emmrich et al., 2011, Mehner et al. in press). We 168 

only considered for the analysis the size distributions that fit a linear spectrum, so we discarded 3 169 

regressions with p values >0.1 (Arranz et al., 2015) from a total of 45 (5 stations per 9 sampling 170 

campaigns).  171 

2.4. Hydrological variables calculation 172 

There are two official gauging points for water flow measurement in the study area: the gauging 173 

stations A163 in Ascó and A027 in Tortosa (Fig. 1). They belong to the Automatic System for 174 

Hydrological Information (SAIH) of the Ebro River (Confederación Hidrográfica del Ebro, 2002) and 175 

provide a flow measurement every 15 minutes. We used the A027 series as an approximation of the 176 

flow on sampling station E01 and the A163 series for the sampling stations E02, E03, E04 and E05. 177 
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 178 

Figure 3. Examples of Abundance Frequency Distributions and Normalized Abundance Spectrum: Sampling campaign of April 2015; sites E01-E05. The linear parameters 179 

a (slope) and b (y-intercept) are shown, as well as their r and p values.180 
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 181 

Table 1 – Hydrological indices adapted from Olden & Poof (2003) and Bevelhimer et al (2014) for a period 182 

of one month before date of sampling. Daily indices were calculated from a daily data series and sub-daily 183 

indices from an hourly data series. 184 

A collection of hydrological indices adapted from literature was calculated (Table 1). The set of 185 

daily indices were described in Olden and Poff (2003) as key variables to characterize the 186 

hydrological regime for our type of river (with snow and rain influence) while avoiding redundancy. 187 

We included adapted descriptors of magnitude of flow events (MA3, MA44, ML13, ML14, MH17 and 188 

MH20), frequency of flow events (FL1 and FH5), duration of flow events (DH12) and the rate of change 189 

in flow conditions (RA8). We also included the skewness in daily flows (MA5), described by Kinsolving 190 

and Bain (1993) as important in the response of fish to anthropogenic flow alterations. Sub-daily 191 

indices were proposed by Bevelhimer et al. (2014) as good descriptors of diel flow variations such as 192 

the produced by power generation plants. Among them, there are two descriptors of magnitude 193 

(dmin and dmax) and one descriptor of the frequency of oscillations (drev). The rest are different 194 

ways of expressing the amplitude of flow fluctuations (dD, dSD, dramp, dpath, drf, dAstD, dCV, 195 

Index Calculation 

Daily indices 

MA 3 Coefficient of variation in daily flows 

MA 44 Variability in daily flows divided by median monthly flow, where variability is calculated as 
90th-10th percentile 

ML 13 Coefficient of variation in minimum flows 

ML 14 Lowest monthly flow divided by median monthly flow 

MH 17 25th percentile from the flow duration curve divided by median daily flow 

MH 20 Monthly maximum flow 

FL1 Number of occurrences during which the magnitude of flow remains below the 25th percentile 

FH5 Number of occurrences during which the magnitude of flow remains above the median daily 
flow 

DH12 Mean 7-day maximum divided by median flow 

RA8 Number of negative and positive changes in water conditions from one day to the next 

MA5 Skewness in daily flows: Mean daily flows divided by median daily flows 

Subdaily indices 

dmin Daily minimum 

dmax Daily maximum 

dD Daily delta or range 

dSD Daily Standard deviation 

dramp Maximum hourly ramp rate 

dpath Daily path length (the geometric distance of the daily hydrograph of flow versus time 

Drev Number of changes between rising and falling periods) 

Drf Rise and fall counts difference 

dAstD Annually standardized delta (monthly mean of daily delta divided by annual mean) 

dCV Coefficient of variation (daily standard deviation divided by the mean monthly daily flow) 

dstMHramp Standardized maximum hourly ramping rate (maximum daily ramp rate divided by the mean 
monthly daily flow 

dflash Richards-Baker flashiness index (daily path length of oscillations divided by the daily mean 
over each 24-h period) 
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dstMHramp, dflash). We adapted all the indices to assess flow variations in a short temporal scale 196 

and calculated them for the period of one month before each sampling. 197 

2.6. Biotic factors 198 

To assess how the presence of alien species affects the size structure of the community, three 199 

biotic factors were considered: percentage of alien individuals, percentage of alien-piscivorous 200 

individuals (over total catches) and percentage of alien-prey individuals (over total catches). It 201 

should be noted that the only native piscivorous fish that we found was the sea bass (Dicentrarchus 202 

labrax), a marine species that occasionally migrate between freshwater and the sea (in both 203 

directions), for feeding purposes. We only fished 12 individuals of this species, always in the transect 204 

E01 (the station furthest downstream), so we could say that the piscivorous population is almost 205 

entirely constituted by alien fish (Table 2).  206 

To calculate the number of piscivorous, juvenile individuals considered too young to feed on 207 

fish, were subtracted for each predator species. That is: only individuals greater than 120 mm were 208 

considered piscivorous for Perca fluviatilis (Kottelat and Freyhof, 2007) and Sander lucioperca 209 

(Aparicio et al., 2016), while this threshold was 50 mm for Silurus glanis (Copp et al., 2009) and 210 

Micropterus salmoides (García-Berthou, 2002). To determine the percentage of alien-prey 211 

individuals, all the non-piscivorous alien fishes were considered susceptible to predation, so we 212 

calculated it as the subtraction of percentage of alien minus percentage of alien-piscivorous. 213 

2.7. Statistical Analyses 214 

To check for relationships between the response variables y-intercept of NAS (food web 215 

capacity) and slope of NAS (food web efficiency) and the potential explanatory variables 216 

(macrophyte coverage, water temperature, conductivity, dissolved oxygen, total dissolved solids, 217 

water depth, water velocity, percentage of alien fish, percentage of alien-piscivorous, percentage of 218 

alien-prey and the hydrological indices on Table 1), we performed simple lineal regressions with 219 

autocorrelation structures for time and space when necessary. The large number of explanatory 220 

variables that we wanted to include in the analysis prevented us from applying multiple regressions 221 

and thus, we performed simple lineal regressions in this first step. As our sampling design consists of 222 

several observations along time within each river stretch, it results on a data set with a possible lack 223 

of independence, both spatial and temporal. To deal with this limitation we used Mixed Effects 224 

Models with river reach as random factor and tested the inclusion of temporal auto-correlation 225 

structures to improve the models as described in Zuur et al. (2009). Firstly, we tested 5 types of auto 226 

correlation structures: AR-1, linear correlation, Gaussian correlation, exponential correlation and  227 
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Species Common name   Reproduction Spawning time Migration Habitat Feeding Status 
First 
detected 

 Total CPUE BPUE 

Anguilla anguilla Eel   Pelagophilic3 late winter or 
spring7 

Diadromous1,2 Eurytopic1 Omnivorous1 N -  1879 321.2 75.45·103 

Dicentrarchus labrax Seabass   Pelagophilic5 January-March7 Amphidromous5 Limnophilic7 Piscivorous5 N -  12 1.7 0.88·103 

Gobio lozanoi Iberian gudgeon   Polyphilic5 May-July7 Resident1 Rheophilic2 Invertivore2 N -  332 54.6 0.11·103 

Undetermined 
Mullet 

Mullet   Pelagophilic5 - Amphidromous5 Limnophilic7 Detritivorous5 N -  398 56.1 8.14·103 

Luciobarbus graellsii Ebro barbel   Litophilic5 May-July7 Potamodromous5 Limnophilic5 Omnivorous5 N -  85 10.9 2.72·103 

Salaria fluviatilis Freshwater 
blenny 

  Litophilic2,3 May-August7  Eurytopic5 Invertivore2,3 N -  746 200.9 1.49·103 

Squalius laietanus Catalan chub   Litophilic2 April-July7 Potamodromous5 Rheophilic2 Omnivorous2 N -  1371 203.1 2.95·103 

Alburnus alburnus Bleak   Litophilic4 April-June7 Potamodromous5 Limnophilic5 Omnivorous2 A 1992  18567 2661.9 113.95·103 

Carassius auratus Goldfish   Phytophilic2,3 May-July7 Potamodromous6 Limnophilic5 Omnivorous2,3 A s.XVII  174 24.5 10.49·103 

Cyprinus carpio Common carp   Phytophilic2,3 May-July7 Resident1 Limnophilic1 Omnivorous1,2,3 A s. XVI  343 48.4 188.34·103 

Gambusia holbrooki Eastern 
mosquitofish 

  Ovoviviparous3 May-
September7 

Resident1 Limnophilic1,2 Invertivorous2,3 A 1921  1448 273.8 0.33·103 

Lepomis gibbosus Sunfish   Polyphilic3 May-June7 Resident1 Limnophilic1,2 Invertivorous1,2,3 A 80’s  113 15.0 0.44·103 

Micropterus 
salmoides 

Largemouth 
black bass 

  Polyphilic3 late spring or 
early summer7 

Resident1 Limnophilic1,2 Piscivorous1,2,3 A 1955  1 0.1 0.04·102 

Pseudorasbora 
parva 

Razbora   Polyphilic5 April-June7  Limnophilic7 Omnivorous2 A 1999  1118 157.7 0.82·103 

Perca fluviatilis European perch   Phytophilic5 April-May7 Resident5 Limnophilic5 Piscivorous2 A 1970  35 4.9 0.16·103 

Rutilus rutilus Roach   Polyphilic7 April-June7  Limnophilic5 Omnivorous2 A 80’s  528 74.5 4.48·103 

Scardinius 
erythrophthalmus 

Rudd   Phytophilic2 April-June7  Limnophilic2 Omnivorous2 A 1910-13  79 11.1 0.60·103 

Silurus glanis Wels catfish   Phytophilic2,7 April-June7  Limnophilic7 Piscivorous2 A 1974  213 30.0 101.37·103 

Sander lucioperca Zander   Litophilic5 March-April7 Potamodromous5 Limnophilic5 Piscivorous5 A 1990  203 28.6 2.37·103 

Table 2 – Latin names, common names, reproductive, migratory, habitat and feeding behaviours, status refereed to the Ebro River (N=native; A=alien), total catches, 228 

mean CPUEs and mean BPUEs. Blank means no classified (1-Alexandre et al, 2013; 2- Garcia-Berthou et al, 2015; 3- Magalhaes et al, 2008; 4- Pinder AC, 2001; 5- Odreix et 229 

al, 2014; 6- Riede K, 2004; 7- Aparicio et al, 2016) 230 
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spherical correlation. Once we knew the best temporal auto-correlation expression we proceeded to 231 

choose the best model comparing: a) a linear regression model without any autocorrelation; b) a 232 

linear regression model with the best autocorrelation structure for time; c) a mixed effects model 233 

with river reach as random factor and d) a mixed effects model with river reach as random factor 234 

and the best autocorrelation structure for time. The models were adjusted using the R package nlme 235 

(Pinheiro et al., 2017; R Core Team, 2016) and compared with the Akaike Information Criterion (AIC) 236 

(Akaike, 1974). The most parsimonious model (with the lowest AIC) was selected each time.   237 

In a second step, from the initial set of hydrological variables, we considered only those that 238 

were significantly related with size spectra parameters in the previous analysis to investigate 239 

possible multiplicative effects between hydrology and biotic factors. To avoid redundant tests, we 240 

first calculated the correlation matrix for all factors and discarded correlated hydrological indices 241 

with r > 0.6. Then, interactions were tested for all the possible combinations between the three 242 

biotic factors (percentage of alien, percentage of alien-prey and percentage of alien-piscivorous) and 243 

the three uncorrelated hydrological indices (dAstD, FL1 and MA5), with models of the type:  244 

Response variable ~ hydrological factor + biotic factor + hydrological factor : biotic factor 245 

Were “response variable” refers to y-intercept of NAS (food web capacity) and slope of NAS 246 

(food web efficiency). To avoid multicollinearity, the predictors were centered before the calculation 247 

of the interaction term by subtracting their means. We applied the same model selection procedure 248 

than before.  249 

 250 

3. Results 251 

3.1. Fish community composition  252 

The study area was clearly dominated by alien fishes, with an average of 79.7% of alien 253 

individuals and 82.2% of alien biomass abundances. The bleak (Alburnus alburnus) was the most 254 

abundant species in number of individuals, followed by the European eel (Anguilla anguilla). 255 

Common carp (Cyprinus carpio) and again, the bleak, were the most abundant in terms of biomass. 256 

In regards to feeding functional group, most of the fish were omnivorous (86.4%), followed by the 257 

invertivorous (10.2%), the piscivorous (1.8%) and the detritivorous (1.5%) (Table 2). 258 

Concerning average fish size, native individuals were on average 42.93 ± 3.77 mm bigger than 259 

the community mean, while alien fish were 15.47 ± 2.57 mm smaller. As expected, alien-piscivorous 260 

had a large mean body length, 344.97 ± 25.07 mm above average, and alien-preys had a mean size 261 

26.16 ± 2.2 mm below average. 262 
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3.2. Effects of environmental and biotic variables on size structure  263 

As shown on Table 3, y-intercept of NAS (food web capacity)  was negatively related with 264 

hydrological indices describing the amplitude of sub-daily flow oscillations (dD, dSD, dpath, and 265 

dAstD) and their frequency (drev), hydrological variables estimating high (FH5) and low (FL1) flow 266 

events frequency and the skewness in daily flows (MA5). Thus, the greater the flow variability, the 267 

lower the y-intercept of NAS (food web capacity), indicating a fewer total abundance of fish in the 268 

entire community when hydrological oscillations were high. Furthermore, y-intercept of NAS was 269 

also negatively related with the percentage of alien piscivorous fish. This has a direct interpretation, 270 

since we can expect that a higher number of piscivorous would imply higher prey consumption, and 271 

so, a diminution of total abundance (i.e. y-intercept or food web capacity). In the other hand, y-272 

intercept was positively related with the percentage of total alien individuals and percentage of 273 

alien-prey, indicating that these groups of organisms contribute to increase the total number of fish, 274 

and so, the amount of energy available in the ecosystem.  275 

Response variable Predictor AIC0 AICf Model Estimate SE p_value R2 

y-intercept of NAS 
(food web capacity) 

dD 219.53 201.72 M2 -0.034 0.011 <0.01 0.52 

dSD 217.37 199.96 M2 -0.091 0.030 <0.01 0.53  
dpath 220.93 200.82 M2 -0.019 0.005 <0.001 0.54  
drev 217.37 202.24 M2 -0.074 0.024 <0.01 0.56  
dAstD 207.17 189.76 M2 -13.461 4.360 <0.01 0.52  
FL1 219.25 202.18 M2 -0.100 0.022 <0.001 0.40  
FH5 219.57 204.37 M2 -0.087 0.018 <0.001 0.31  
MA5 204.75 184.90 M2 -15.056 3.326 <0.001 0.63  
% alien  205.95 183.58 M3 0.118 0.022 <0.001 0.31  
% alien prey 205.98 183.52 M3 0.113 0.021 <0.001 0.22  
% alien piscivorous 212.06 195.00 M3 -0.724 0.333 <0.05 0.05 

slope of NAS (food 
web efficiency)  

dD 55.14 43.57 M2 0.004 0.001 <0.01 0.49 

dpath 56.63 44.45 M4 0.002 0.001 <0.05 0.01  
drev 53.71 41.96 M4 0.006 0.003 <0.05 0.52  
dAstD 43.02 31.45 M2 1.672 0.570 <0.01 0.49  
FL1 54.57 40.91 M4 0.011 0.005 <0.05 0.00  
MA5 43.04 29.96 M2 1.289 0.439 <0.01 0.53  
% alien  45.87 28.13 M4 -0.014 0.003 <0.001 0.22  
% alien prey 45.95 28.39 M4 -0.013 0.003 <0.001 0.22 

 276 

Table 3 – Results of the models adjusted between single predictors and the response variables y-intercept 277 

of NAS (food web capacity) and slope of NAS (food web efficiency). Only significant models are shown. The 278 

column “Model” indicates: M2) Mixed Effects Model with river reach as random factor and an autocorrelation 279 

structure for time; M3) Generalized Least Squares Model with a corLin autocorrelation structure for time and 280 

M4) Generalized Least Squares Model with an AR-1 autocorrelation structure for time. AIC, Akaike information 281 

criteria; SE, Standard error. R2 corresponds to a linear regression of fitted versus real values. 282 

 283 



 

14 
 

The slope of NAS (food web efficiency) was significantly and positively related with some 284 

hydrological indices describing the amplitude (dD, dpath and dAstD), and frequency (drev) of sub-285 

daily flow oscillations and daily flow variability (FL1 and MA5) (Table3), suggesting a diminution of the 286 

proportion of small sized fishes when flow variability was high. The slope (food web efficiency) was 287 

strongly and negatively related with the percentage of total alien individuals and percentage of 288 

alien-prey that means that a higher percentage of these groups lead to higher relative abundances 289 

of small fishes, and so, steeper slopes of NAS. 290 

3.3. Interactions between hydrological and biotic factors  291 

In the second part of the analysis, we investigated possible multiplicative effects between 292 

hydrology and biotic factors. To avoid redundant tests and given the high degree of autocorrelation 293 

among variables shown in Table  4, we selected dAstD as a descriptor of sub-daily flow, and FL1 and 294 

MA5 as indicators of daily regime flow and discarded dD, dSD, dpath, drev and FH5 for being highly 295 

correlated with the first. 296 

 dD dSD dpath drev dAstD FL1 FH5 MA5 % alien % alien prey 
% alien 
piscivorous 

dD - 0 0 0 0 0.709 0.718 0.002 0.54 0.667 0.284 

dSD 0.948 - 0 0 0 0.994 0.551 0.009 0.88 0.996 0.26 

dpath 0.942 0.869 - 0 0 0.11 0.137 0 0.926 0.953 0.363 

Drev 0.788 0.747 0.860 - 0 0.082 0.051 0 0.337 0.368 0.311 

dAstD 0.987 0.922 0.915 0.773 - 0.715 0.683 0.001 0.281 0.37 0.377 

FL1 0.061 -0.001 0.257 0.278 0.060 - 0 0 0.262 0.246 0.122 

FH5 0.059 -0.097 0.239 0.310 0.067 0.711 - 0.005 0.069 0.077 0.076 

MA5 0.485 0.407 0.625 0.628 0.495 0.596 0.434 - 0.404 0.444 0.721 

% alien -0.100 -0.025 -0.015 -0.156 -0.175 -0.182 -0.290 -0.136 - 0 0 

% alien prey -0.070 -0.001 0.010 -0.146 -0.146 -0.188 -0.283 -0.124 0.996 - 0 

% alien 
piscivorous 

-0.174 -0.182 -0.148 0.164 -0.143 0.249 0.284 0.058 -0.616 -0.652 - 

 297 

Table 4– Correlation matrix of the independent variables that showed significant relationship with size 298 

related variables in simple models. The shaded matrix contains Spearman’s r values; the open matrix contains p 299 

values. In bold significantly correlated coefficients (r>0.6 and p<0.05).  300 
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As shown in Table 5, a highly significant multiplicative effect was found between dAstD and the 301 

percentage of alien-piscivorous fish when modelling their effects on the response variables derived 302 

from NAS (y-intercept or food web capacity and slope or food web efficiency). These results mean 303 

that the level of one factor (in this case dAstD that describes hydropeaking) modifies the way in 304 

which the other factor (here, percentage of alien-piscivorous) affects the response variable. To 305 

visualize these results, we represented in Figure 4 the y-intercept of NAS (food web capacity) and 306 

slope of NAS (food web efficiency) as a function of the percentage of alien-piscivorous grouping data 307 

in high dAstD (values above their mean) and low dAstD (values bellow their mean). The variables 308 

dAstD and percentage of alien-piscivorous interact in such a way that in situations of high dAstD that 309 

indicate high hydropeaking oscillations, the relationship between the percentage of piscivorous and 310 

the y-intercept of NAS (trophic chain capacity) was strong (p<0.01 and R2=0.44), whereas under low 311 

dAstD conditions (i.e. low diel oscillations of flow), the linearity between these two parameters was 312 

lost. Similarly, the slope of NAS (trophic chain efficiency) presented a significant linearity with the 313 

percentage of piscivorous in high dAstD conditions (p<0.01 and R2=0.43) but no linearity was found 314 

in periods of low dAstD. The interactions between the other hydrological variables (FL1 and MA5) and 315 

the rest of biotic factors (percentage of alien species and percentage of alien-prey) were no 316 

significant. 317 

 318 

Response variable Significant predictors Model AIC0 AICf Estimate SE p value R2 

y-intercept of NAS 
(food web capacity) 

% of piscivorous M1 195.75 176.32 -1.491 0.385 <0.001 0.74 

dAstD    -22.376 4.387 <0.001  

 % of pisc.*:dAstD*    -17.052 4.619 <0.001  

slope of NAS (food 
web efficiency) 

% of piscivorous M1 41.68 24.16 0.146 0.047 <0.001 0.71 

dAstD    2.489 0.532 <0.001  

 % of pisc.*:dAstD*    2.184 0.560 <0.001  

 319 

Table 5 – Results of the models showing hydrological index dAstD, predatory pressure (% of piscivorous 320 

fishes) and their interaction affecting y-intercept of NAS (food web capacity) and slope of NAS (food web 321 

efficiency). AIC, Akaike information criteria; SE, Standard error; R2 corresponds to a linear regression of fitted 322 

versus real values; M1 means Mixed Effects Model with river reach as random factor. (*) Indicates that 323 

predictors were centred to avoid autocorrelation. 324 

 325 

 326 

  327 
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  328 

 329 

Figure 4.  The response of y-intercept of NAS (food web capacity) and slope of NAS (food web efficiency) to 330 

the percentage of piscivorous is dAstD depending. Note the different grades of regression in high and low 331 

dAstD conditions. 332 

 333 

4. Discussion 334 

Our results confirm the high abundance of introduced fish species in the Ebro River previously 335 

reported by Almeida et al. (2017), Aparicio et al. (2016), Caiola et al. (2014), Elvira (1995a, 1995b) 336 

and López et al. (2012) among others. When we looked at how these species were represented in 337 

the size structure, we found that, although there were very large introduced species such as the 338 

Wels catfish (Silurus glanis) and de common carp, the most abundant alien species were 339 

characterized for being small sized fish with very high reproduction rates such as the bleak and the 340 

mosquitofish (Gambusia holbrooki). More concretely, 78% of small fish (lengths below the mean 341 

length of the entire community) were alien individuals while only a 22% were native fish. This high 342 

proportion of small introduced fish is related with higher values of food web capacity (i.e. higher y-343 

intercept of NAS, calculated from the entire fish community) and lower food web efficiency (i.e. 344 

steeper slopes of NAS, calculated from the entire fish community). Thus, according to the models, an 345 

increase of the percentage of total alien individuals was related with an increase of food web 346 

capacity (i.e. total abundance), as well as with a decrease of food web efficiency and a greater 347 
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proportion of small fish. The same happened with the percentage of alien-prey since the correlation 348 

between total alien and alien-prey was very high (r=0.996). These results indicate that total and prey 349 

alien fish contribute to increase the amount of energy available in the ecosystem. Presumably, if the 350 

community were exclusively composed of autochthonous species, there would be fewer proportion 351 

of small sized individuals (there would be no Gambusia holbrooki nor Pseudorasbora parva) and the 352 

NAS would present flatter slopes and lower y-intercept values, although this is something that we 353 

cannot guarantee since all the trophic dynamics would be altered and the community would be 354 

totally different from the current one.  355 

Among the hydrological variables that we included in the analysis, only those describing 356 

variability of flow conditions were significantly related with fish community size structure. FH5 and 357 

FL1 are the occurrences of high and low extreme flow events while MA5 gives an idea of the 358 

asymmetry in the distribution of flow measurements. The others are directly linked to diel flow 359 

variability, and they can be considered hydro-peaking descriptors (Bevelhimer et al., 2014) that take 360 

higher values when the amplitude of flow sub-daily oscillations increase (dD, dSD, dpath, dAstD) or 361 

the frequency of fluctuations is higher (drev). A hydroelectric power plant that operates through 362 

hydro-peaking to cover daily rises of energy demand is located 4 km upstream from the station E05. 363 

Although the hydro-peaking was not constant during the whole year, it persisted for long periods 364 

with average ranges of flow fluctuation between 165 m3·s-1 (in February) and 79 m3·s-1 (in July). The 365 

negative relationship between hydrological indices and food web capacity can be read as a decrease 366 

of total fish abundance and the portion of small fish in conditions of high hydropeaking. Other 367 

authors previously observed a decrease of small sized fishes and juveniles in the river banks 368 

immediately downstream hydroelectric power stations that operate by hydro-peaking (Bain et al., 369 

1988; Bond and Jones, 2015; Enders et al., 2017). The causes reported to explain this decline are 370 

several: Jones (2013) found a reduced population of benthic invertebrates in the margin area 371 

influenced by dewatering, and Bond and Jones (2015) hypothesized that this could lead to a lack of 372 

bentivorous fishes and juveniles that would move to deeper waters looking for more feeding 373 

resources. Enders et al (2017) pointed to the loss of suitable habitat, increased mortality or altered 374 

behaviour of small-bodied fishes as the causes of their observations, but they also pointed out that 375 

desiccation and scouring of spawning locations during the incubation period could suppose a big loss 376 

of individuals for the next generation. Our results further suggest that the decrease of total fish 377 

abundance and of small fish at high hydropeaking conditions may have consequences on the whole 378 

food web capacity.  379 
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Our results also showed that another biotic factor was significantly related with food web 380 

capacity and efficiency: the percentage of alien-piscivorous fish. As stated for the first time by Elton 381 

(1927) in the beginnings of trophic ecology, the predatory-prey interaction is size-depending in a 382 

manner that big fishes feed on the smaller ones. Thus, a big presence of piscivorous will reduce by 383 

consumption, the number of small sized fishes and this fact will be reflected on the shape of body-384 

size distributions (Allen et al., 2006). Similar trends have been observed by other researchers in 385 

marine environments, (Bianchi, 2000; Rice and Gislason, 1996) as well as in lakes (Emmrich et al., 386 

2011) and rivers (Murry and Farrell, 2014). But going deeper into the linkage of predation and size 387 

structure, our results suggest that hydro-peaking has a multiplicative effect on this relationship, so 388 

that under conditions of high flow oscillations, the predation by alien-psicivorous may become more 389 

efficient, triggering to a higher modification of size spectrum parameters (Fig. 4). Under low hydro-390 

peaking conditions, the linearity between the amount of predators and size spectrum parameters 391 

was lost, suggesting a low efficiency of predation. This could be explained, as Boavida et al. (2013) 392 

and Bond and Jones (2015) suggested, by the action of flow fluctuation caused by hydro-peaking 393 

that would force small fishes to avoid the riverbed area that is continuously wetted and dried, 394 

moving to deeper waters where the encounters with larger piscivorous would be more frequent. 395 

Also Bain et al (1988) proposed the increase of predation risk in shallow areas during high flows as 396 

one of the most important causes of the reduction of small fish in high hydro-peaking conditions.  397 

To summarize, we found that some descriptors of flow variability as well as the biotic factors 398 

alien fish, alien prey and alien piscivorous, significantly affected the fish community size structure, 399 

while environmental variables such as temperature, conductivity, dissolved oxygen, dissolved solids, 400 

water depth, water velocity and the presence of macrophytes, did not show any significant 401 

relationship with size structure. Nevertheless, other authors demonstrated that environmental 402 

variables such as water temperature can deeply affect the size structure of fish communities, 403 

especially when dominated by cyprinids, as is the case (Mills & Mann, 1985; Wolter, 2007). The fact 404 

that our data did not reflect this relationship or others, may be due to a narrow range of variability 405 

of these environmental factors in our study area and period. Therefore, it would be very interesting 406 

to expand the analysis, both spatially and temporally, to detect other factors that can affect the fish 407 

community size structure but that couldn’t be identified in the present work. 408 

 409 

5. Conclusions 410 

This study suggest that hydro-peaking may negatively affect the populations of small fishes in 411 

the lower Ebro River. Furthermore, it shows that Normalized Abundance Spectra of the fish 412 
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community in the lower Ebro River is highly determined by the presence of alien species, and thus 413 

they have the potential to be developed as indicators of these two alterations (alien invasions and 414 

hydro-peaking). In addition, although more investigation is required to better understand it, we 415 

observed a possible interaction between hydro-peaking and the presence of piscivorous fish that 416 

would make fish community size structure more susceptible to change by the action of predation in 417 

high hydropeaking conditions. These results should be taken into account by water authorities and 418 

hydropower managers when designing possible mitigation measures for hydro-peaking impacts on 419 

fish, since it has been demonstrated that not only affects certain individuals, but can also alter the 420 

trophic dynamics of the community. 421 
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