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Genetic diversity of durum wheat landraces is a powerful tool for the introgression of

new alleles of commercial interest in breeding programs. In a previous study, our team

structured a collection of 172 durum wheat landraces from 21 Mediterranean countries

in four genetic populations related to their geographical origin: east Mediterranean (17),

east Balkan and Turkey (23), west Balkan and Egypt (25), and West Mediterranean

(73), leaving 34 genotypes as admixed, and association mapping was carried out for

important agronomic traits. Using a subset of this collection, the current study identified

23 marker alleles with a differential frequency in landraces from east and west regions of

the Mediterranean Basin, which affected important agronomic traits. Eastern landraces

had higher frequencies than the western ones of alleles increasing the number of spikes

(wPt-5385 on chromosome 1B), grains per m2 (wPt-0841 on chromosome 7B), and

grain filling duration (7 significant marker trait associations). Eastern landraces had higher

frequencies of marker alleles located on chromosomes 4A, 5B, and 6B associated

with reduced cycle length, and lighter grains than the western ones. Also for lower

kernel weight, four marker alleles were located on chromosome 1A. Breeders may use

the molecular markers identified in the current study for improving yield under specific

Mediterranean environments.

Keywords: association mapping, marker assisted selection, cycle length, yield components, Mediterranean basin

INTRODUCTION

Durum wheat (Triticum turgidum L. var. durum) is a self-pollinated tetraploid cereal and a
traditional Mediterranean crop, with the Mediterranean Basin being the largest production area
worldwide and North Africa the largest import market (Bonjean et al., 2016). Durum wheat is
mainly used for the production of pasta and couscous, but also for a number of other semolina
products such as frike, bourghul, and unleavened breads. In the Mediterranean Basin durum wheat
is mainly cultivated under rainfed conditions where the precipitation is irregular across years and
locations and along the plant growth cycle resulting in major yield variations.

Durum wheat originated and was domesticated in the Fertile Crescent (10,000 BP), and spread
from the East to the West of the Mediterranean Basin (MacKey, 2005; Kabbaj et al., 2017)
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reaching the Iberian Peninsula around 7,000 years BP (Feldman,
2001). During the migration of wheat from the east to
the west of the Mediterranean Basin, natural and human
selection resulted in the establishment of local landraces, whose
evolutionary dynamics are likely to have been strongly affected
by environmental conditions, such as climatic variables, and
soil properties (Mercer and Perales, 2010). These landraces were
specifically adapted to their region of origin, representing a
diversity of agro-ecological zones, and are considered to be the
most important sources of biodiversity within the species (Nazco
et al., 2012). Landraces were largely cultivated until the first
decades of the twentieth century, being progressively abandoned
from the early 1970s and replaced with improved, genetically
uniform semi-dwarf cultivars as consequence of the Green
Revolution (Ortiz et al., 2007). In addition, phenology trait-
based breeding likely discarded important associated genetic
traits. However, scientists believe that local landraces represent
an important group of genetic resources for the improvement
of commercially valuable traits (Lopes et al., 2015). Durum
wheat Mediterranean landraces are considered as resources for
contemporary agriculture to increase the genetic diversity of
modern cultivated varieties and to improve their adaptation to
regions affected by biotic and abiotic constraints.

Introgression of new alleles from locally adapted landraces
into modern cultivars can be very useful when breeding
for suboptimal environments such as those prevalent in the
Mediterranean Basin. However, most landraces have still not
been genetically nor agronomically characterized, although for
their effective use in breeding, knowledge of molecular markers
associated to alleles conferring resilience to the main constraints
expected from climate change (erratic distribution of rainfall
and temperature increases) become essential. Previous studies
have demonstrated that the yield formation strategies of durum
wheat are strongly affected by the environmental conditions.
In warm and dry environments, as those prevalent in the east
Mediterranean Basin, the number of spikes and grains per
unit area are the most important yield components for yield
formation, whereas in wetter and cooler environments, grain
weight is more relevant due to both an extension of the grain
filling period and water availability for photosynthesis (García del
Moral et al., 2003; Moragues et al., 2006; Royo et al., 2006, 2014).

The efficient utilization of landraces in breeding programs
requires understanding their genetic diversity and population
structure. Royo et al. (2014) grouped 172 durum wheat landraces
from 21 Mediterranean countries into four clusters based on
the climatic data of their regions of origin. Later, Soriano
et al. (2016), using molecular markers, structured the same
collection in four genetic populations related to their geographic
origin: easternMediterranean (EM), eastern Balkans and Turkey,
western Balkans and Egypt, and western Mediterranean (WM).
The genetic diversity found by Soriano et al. (2016) was lower
within the eastern Mediterranean population, indicating that

Abbreviations: DSB, Days from sowing to booting; DBA, days from booting to
anthesis; EM, east Mediterranean; GFD, grain filling duration; MTA, marker trait
association; NSm2, number of spikes per m2; NGm2, number of grains per m2;
TKW, thousand grain weight; WM, west Mediterranean.

the diversity of durum wheat Mediterranean landraces increased
during their migration to the western side of the Mediterranean
Basin. Subsequently Soriano et al. (2017) reported an association
mapping study that identified new marker trait associations
(MTA) from the Mediterranean landraces for yield components,
phenology, and biomass that have potential for improving
modern durum varieties if the alleles prove to be superior in
future studies.

Based on these results, the aim of this work was to identify
MTAs with contrasting allelic effect for yield components and
phenology traits in landraces from the east and the west of
the Mediterranean Basin. Although Soriano et al. (2017) also
reported association mapping for biomass traits, these were
not included in the current study as the phenotypic means of
landraces from the two regions were not statistically different
(Soriano et al., 2016).

MATERIALS AND METHODS

Plant Material
Based on the population structure of durum wheat
Mediterranean landraces revealed by Soriano et al. (2016), using
a panel of 172 durum wheat landraces from the Mediterranean
Basin (Royo et al., 2014; Soriano et al., 2016), the present work
selected 14 genotypes from the eastern and 41 genotypes from
the western Mediterranean populations with a membership
coefficient q > 0.8 (Figure 1A). All but two cultivars, the Italian
landrace “Aziziah 17/45” and the Egyptian “Reading,” were
classified in the appropriate population according to their
country of origin. “Aziziah 17/45” was included in the east
Mediterranean population (q = 0.94). According to Scarascia
Mugnozza (2005) although the cultivar was developed in Italy,
it derived from early maturing pure line selected from Syro-
Palestinian landraces. This would suggest that it could retain
genetic background from the east of the Mediterranean Basin.
While cultivar “Reading” with unknown pedigree, is classified
by CRF (Centro de Recursos Fitogenéticos, INIA, Madrid)
and reported by Nazco et al. (2012) as Egyptian, the molecular
characterization carried out by Soriano et al. (2016) placed it
in the west Mediterranean population (q = 0.98), which offers
doubts about its geographical origin (Figure 1). Seeds were
provided by Centro de Recursos Fitogenéticos (INIA-Spain),
ICARDA Germplasm Bank and USDA Germplasm Bank and
were sown and purified as described in Soriano et al. (2017).

Plant Phenotyping
Field experiments were carried out in two locations in Spain
(Lleida, 41◦40′N, 0◦20′E, 260m.a.s.l, in the north-east of Spain,
referred as N, and Granada, 37◦15′N, 3◦46′W, 680m.a.s.l, in the
south of Spain, referred as S) during three harvesting seasons
(2007, 2008, and 2009). Environments are further referred to as
N or S followed by the year of crop harvest or by M, referred
to as the calculated mean across years. Experiments consisted
of an augmented design with three replicated checks (96 times)
(cultivars “Claudio,” “Simeto,” and “Vitron”) and plots of 6
m2 (8 rows, 5m long with a 0.15m spacing). Sowing density
was adjusted to 250 germinable seeds m−2 to avoid lodging.
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FIGURE 1 | (A) Graphical genotyping for the selected eastern and western Mediterranean durum wheat landraces. Shown are the country of origin of the landraces,

the membership coefficient (q) of the subpopulation (SP, EM = East Mediterranean, WM = West Mediterranean) of each landrace as reported by Soriano et al. (2016).

Alleles present on each landrace are indicated by colors: Blue, west; red, east; white, not determined. (B) Map of the Mediterranean Basin highlighting the countries of

origin of the landraces, indicating the number of landraces from each country.
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Meteorological data were recorded by weather stations placed
in the experimental field (Table 1). Experiments were conducted
under rainfed conditions, but irrigation was provided when
necessary to allow seed germination. Weeds and diseases were
controlled following standard practices at each site.

The number of days from sowing to booting (DSB), number
of days from booting to anthesis (DBA) and grain filling duration
(GFD, days) were determined in each plot considering growth
stages 45, 65, and 87, respectively, of the Zadoks scale (Zadoks
et al., 1974). The number of spikes per square meter (NSm2) and
the number of grains per square meter (NGm2) were measured
at Zadoks GS87 from samples of the plants contained in a 1-m-
long row from a central row of each plot. Thousand grain weight
(TKW, g) was estimated as the mean weight of three sets of 100 g
per plot.

Graphical Genotyping
From a total of 245 significant MTAs reported by Soriano et al.
(2017), 126 corresponded to yield components (NSm2, NGm2,
and TKW) and phenology (DSB, DBA, and GFD). Graphical
genotyping (Young and Tanksley, 1989; van Eck et al., 2017) was
used to select MTAs with different marker alleles for eastern and
western Mediterranean subpopulations (Figure 1A). The marker
data for each trait were loaded inMicrosoft Excel, genotypes were
shown in rows and the allele variant in columns (Figure 1A).

Data Analysis
Phenotypic data were fitted to a linear mixed model and
restricted maximum likelihood was used to estimate the variance
components and to produce the best linear unbiased estimates
(BLUEs) for the phenotypic data using Genstat software v.18
(VSN International). Descriptive statistical data (mean, standard
deviation, 95% confidence interval, skewness, and kurtosis)
for the eastern and western populations defined by Soriano
et al. (2016) and subpopulations defined in the present study,
were calculated using JMP v8 statistical package (SAS Institute
Inc, Cary, NC, USA) (Supplementary Table 1). Data were
analyzed with the MIXED procedure of SAS statistical package
(SAS Institute Inc, Cary, NC, USA) with the Kenward-Roger
correction due to the unbalanced number of genotypes within
subpopulations. Site, year, their interaction and genotype (within
subpopulation) were considered random effects in the model
(Smith et al., 2005). Mean comparisons for the phenotypic traits
and for phenotypic means in the presence or absence of the
markers were carried out using the Tukey-Kramer correction
with the JMP v8 statistical package (SAS Institute Inc, Cary, NC,
USA). The contribution of yield components to yield formation
was assesses through stepwise regression analyses separately
for eastern and western subpopulations. These analyses were
conducted using the SAS statistical package (SAS Institute Inc,
Cary, NC, USA) and considered yield as dependent variable and
the main yield components as independent ones.

RESULTS

Descriptive statistics for the populations defined by Soriano et al.
(2016) and the subpopulations used in the present study are

shown in Supplementary Table 1 for yield, yield components,
and phenology data. No statistically significant differences were
found between both sets of landraces for the mean values using
the Tukey-Kramer correction, thus validating the selection of
genotypes within eastern and western subpopulations.

Mean values of phenotypic traits for the east and west
subpopulations are shown in Table 2. No differences in
grain yield were observed among subpopulations, probably
due to compensation in yield components. In relation to
yield components, landraces from the west region of the
Mediterranean Basin had heavier grains, whereas yield for east
Mediterranean landraces had increased numbers of spikes and
grains per unit area. For phenology traits, eastern landraces
flowered earlier and had a longer grain filling duration than the
western ones (Table 2).

The contribution of the main yield components (NGm2 and
TKW) to yield formation was assessed by regression analyses
(Table 3). In landraces from the east of the Mediterranean
Basin, the number of grains per unit area accounted by 84% of
yield, whereas grain weight contributed by an additional 13%.
On the other hand, for western Mediterranean landraces the
contribution to yield of the number and weight of grains was
much more balanced (54 and 44%, respectively).

Based on the mean differences among subpopulations, 23
MTAs with different effects in landraces from the east and the
west of the Mediterranean Basin were found in five out of the six
environments (N7, N8, N9, S7, and S8) and also for the mean
values across environments (NM and SM) (Table 4). The allele
associated to an increase in NSm2 was present in 93% of the
East Mediterranean landraces and was strictly associated with
this yield component. For NGm2, 76% of the landraces from
the west Mediterranean had the allele associated with a decrease
in number of grains per unit area and landraces from the east
Mediterranean had the allele that increased them. Alleles with a
high frequency in eastern landraces were associated with reduced
grain weight whereas western landraces alleles were associated
with heavier grains. The same correspondence was found for
phenology traits. For days until anthesis (combined DSB and
DBA) eastern genotypes had alleles associated with a shorter cycle
(91%) and western alleles with a longer cycle (93%). For the GFD
the effects were the opposite.

Figure 2 shows the frequency of the alleles in landraces from
countries located east or west of theMediterranean Basin for each
trait. Marker allele frequencies specific to the western landraces
range from 75% for TKW to 95% for DSB with a mean of 87%,
whereasmarker allele frequencies specific to the eastern landraces
range from 89% for DSB to 98% for TKW with a mean of 93%.

To associate allele frequencies of eastern or western landraces
with agronomic performance of genotypes, the mean values were
compared for each MTA using the Tukey’s test for each marker.
Only two MTAs for NGm2 (wPt-2389 and wPt-5092) were not
statistically significant at P < 0.05 (Table 4).

DISCUSSION

Domestication and breeding resulted in a gradual loss of genetic
variability. The use of wheat landraces is considered a good
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TABLE 1 | Environmental details for the six field experiments.

Environment code GR07 GR08 GR09 LL07 LL08 LL09

Site Granada Granada Granada Lleida Lleida Lleida

Year 2007 2008 2009 2007 2008 2009

Soil texture Silty clay Clay-loamy Loamy Sandy-clay-loamy

Sowing date (dd/mm/yy) 14/12/06 10/12/07 22/12/08 21/11/06 20/11/07 20/11/08

Harvest date (dd/mm/yy) 29/07/07 07/07/08 05/07/09 02/07/07 02/07/08 15/07/09

Environmental data from sowing to harvest

Water input (mm) 320 345 337 208 258 237

Mean of daily minimum temperatures (◦C) 7.5 7.0 7.1 6.1 6.5 6.3

Mean of daily maximum temperatures (◦C) 22.8 22.1 21.9 17.4 18.6 18.3

Accumulated ET0 (mm) 803 673 614 533 755 623

Average daily relative air moisture (%) 55.9 58.6 60.5 73.4 88.7 70.5

Average daily solar radiation (MJ m−2 d−1) 19.4 18.4 17.8 14.5 14.9 15.9

Days sowing to anthesis modern cultivars 147 147 151 158 160 162

Days sowing to anthesis WM landraces 151 152 156 166 166 166

Days sowing to anthesis EM landraces 148 148 152 158 160 162

Days from sowing to anthesis were determined by Soriano et al. (2016). WM, West Mediterranean subpopulation; EM, East Mediterranean subpopulation.

TABLE 2 | Analysis of variance and mean values for yield components and phenology traits for landraces from east and west of the Mediterranean Basin.

Environment Yield NSm2 NGm2 TKW DSB DBA GFD

East Mediterranean 312 441 7155 44 139 16 33

West Mediterranean 311 388 6236 50 143 17 31

Numerator D.F. 1 1 1 1 1 1 1

Denominator D.F. 53 53 53 53 53 53 53

F value 0.01 26.27 15.17 24.42 74.56 46.68 21.14

P-value 0.9377 <0.0001 0.0003 <0.0001 <0.0001 0.0002 <0.0001

Data on first two rows are means across six environments. Yield, grain yield (g m−2); NSm2, number of spikes per m2; NGm2, number of grains per m2; TKW, thousand grain weight;

DSB, days from sowing to booting; DBA, days from booting to anthesis; GFD, grain filling duration (days); DF, degrees of freedom.

TABLE 3 | Regression equations for the contribution of main yield components to

yield formation in eastern and western Mediterranean landraces.

Environment Regression equation Partial R2 Model R2 P

East Mediterranean Y = −329.0 + 0.05

NGm2
+ 7.06 TKW

NGm2: 0.84 0.84 <0.0001

TKW: 0.13 0.97 <0.0001

West Mediterranean Y = −305.3 + 0.05

NGm2
+ 6.18 TKW

NGm2: 0.54 0.54 <0.0001

TKW: 0.44 0.98 <0.0001

NGm2, Number of grains per m2; TKW, thousand grain weight.

approach to recover and to broaden allelic variation of traits
of interest (Lopes et al., 2015). The availability of landraces for
breeding programs may be of particular interest when breeding
for suboptimal environments such as the Mediterranean Basin.
Although phenology traits such as early heading or flowering are
present mainly in modern cultivars, Soriano et al. (2016) found
no significant differences for these traits among modern durum
wheat cultivars and eastMediterranean landraces.Mediterranean
durum wheat landraces are an important group of genetic
resources because of their huge genetic diversity and specific
adaptation to local environments (Nazco et al., 2012), and

resistance to pests and pathogens (DuToit, 1989; Kyzeridis et al.,
1995; Talas et al., 2011; Valdez et al., 2012). They are also
considered to be the most important sources of biodiversity
within the species (Nazco et al., 2012). Collections of landraces
and modern cultivars are being phenotyped at CIMMYT to
unravel the genetic basis of drought and heat tolerance (Lopes
et al., 2015). Yield component traits as TKW are being also
evaluated. As reported by Lopes et al. (2012), the increase in
TKW was associated with rises in grain yield in environments
with low or medium yield gains. Similarly, Soriano et al. (2016)
found heavier grains in western Mediterranean landraces than in
modern cultivars.

The population structure of the collection of durum wheat
Mediterranean landraces from which the present genotypes were
derived showed a clear genetic classification that matched with
the geographical origin of the landraces (Soriano et al., 2016).
Based on this genetic analysis and the contrasting agronomic
performance of landraces from different climatic regions within
theMediterranean Basin reported by Royo et al. (2014), landraces
from the western and eastern regions of the Mediterranean Basin
were selected for the current study according to the membership
coefficient given by STRUCTURE software (q) (Pritchard et al.,
2000).
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TABLE 4 | Marker trait associations showing differential phenotypic effects on yield components and plant phenology in landraces from east and west of the

Mediterranean Basin.

Traita Marker Chr Positionb Envc −log10(P) Effectd % (SP)e Tukey’s testf F (P-value)

E W

NSm2 wPt-5385 1B 20.6 SM 3.3 14 93 (E) 449 384 28.0 (<0.0001)

NGm2 wPt-0841 7B 116.3 S8 3.0 647 100 (E) 7005 6150 14.4 (0.0004)

NGm2 wPt-2356 7B 160.7 N7/NM 4.3/3.4 373/262 79 (E) 6904 6222 9.3 (0.0035)

NGm2 wPt-5092 7A 2.2 N8 3.2 326 63 (W) 6607 6317 1.5 (0.22)

NGm2 wPt-2389 1B 42.9 N7 3.1 −355 66 (W) 6669 6292 2.7 (0.10)

NGm2 wPt-6842 7A 138.6 N7 3.2 −384 66 (W) 6767 6204 6.0 (0.018)

TKW wPt-7418 5B U N8 3.7 −1.9 93 (E) 45 51 21.5 (<0.0001)

TKW wPt-0011 1A U SM 3.1 −1.4 93 (E) 45 51 33.3 (<0.0001)

TKW wPt-8882 1A U SM 3.7 −1.4 100 (E) 45 51 29.7 (<0.0001)

TKW wPt-6530 1A U SM 3.4 −1.3 100 (E) 45 51 29.9 (<0.0001)

TKW wPt-8838 1A U SM 3.2 −1.3 100 (E) 45 51 29.7 (<0.0001)

TKW wPt-3451 1B 43.9 NM 3.0 1.5 66 (W) 45 51 35.1 (<0.0001)

DSB wPt-7846 6B 60.3 N8/NM 4/3.5 −1.4/−1.2 93 (E) 140 143 31.9 (<0.0001)

DSB wPt-11589 6B 83.6 S7/SM 4.6 −1/−1 86 (E) 140 143 31.8 (<0.0001)

DBA wPt-9059 4A 136.8 N7 3.9 −0.6 86 (E) 16 17 15.8 (0.0002)

DBA wPt-6692 5B 25.6 N8/NM 3.1/3.2 −0.5/−0.4 93 (E) 16 17 15.0 (0.0003)

GFD wPt-0980 7B 117.6 N8 3.1 1.1 93 (E) 33 31 16.3 (0.0002)

GFD wPt-7975 7B 3.6 NM 3.6 1.0 79 (E) 33 31 16.7 (0.0002)

GFD wPt-5846 7B 3.6 NM 3.6 1.0 79 (E) 33 31 16.7 (0.0002)

GFD wPt-0983 1B −7.9 S8 3.5 0.8 93 (E) 33 31 11.8 (0.0012)

GFD wPt-5513 2B 45.2 N8 3.2 0.8 100 (E) 32 31 4.5 (0.038)

GFD wPt-5788 2B 45.3 N8 3.0 0.8 100 (E) 32 31 5.0 (0.029)

GFD tPt-4216 N U N9 3.8 0.7 71 (E) 33 31 15.4 (0.0003)

aNSm2, number of spikes per m2; NGm2, number of grains per m2; TKW, thousand grain weight (g); DSB, days from sowing to booting; DBA, days from booting to anthesis; GFD,

grain filling duration (days).
bU, Unmapped.
cEnvironments: N7, North 2007; N8, North 2008; N9, North 2009; NM, North mean; S7, South 2007; S8, South 2008; SM, South mean.
dAllele effect calculated with GenStat v18. Units of the effect are in accordance with those reported for each trait.
eFrequency of the genotypes carrying the allele conferring the show effect. In parenthesis, E, east Mediterranean; W, west Mediterranean.
fMean comparisons among the presence of the east (E)/west (W) allele for each one of the analyzed traits.

Previous studies have revealed that the relative contribution of
yield components to yield formation in durum wheat is strongly
affected by the meteorological conditions prevalent during the
crop growth, principally temperature and water availability
(García del Moral et al., 2003; Moragues et al., 2006; Royo et al.,
2006, 2014). Based on this assumption, the current study aimed
to elucidate whether the frequency of allelic variants associated
to the main yield components differed in landraces from east
and west of the Mediterranean Basin. The Koeppen’s climatic
classification establishes contrasting climatic characteristics for
these two sides of the Mediterranean Basin (Leemans and
Cramer, 1991). The analysis of long-term climatic data has
demonstrated that the eastern countries Syria, Lebanon, Israel
and Jordan are the warmest and driest within the Mediterranean
region (Royo et al., 2014).

Yield components are sequentially formed in wheat, with
the latter-developing components being under the influence of

earlier-developing ones (García del Moral et al., 1991; Dofing
and Knight, 1992). The potential number of spikes per unit
area is defined during the vegetative phase and it is strongly
affected by water availability (García del Moral et al., 1991;
Simane et al., 1993) and differences in soil conditions (i.e., soil
fertility and nitrogen availability). The fact that eastern landraces
had larger numbers of spikes per unit area than those from
the west Mediterranean countries, may be interpreted as an
evolutionary adaptive mechanism to compensate for the negative
effect of water scarcity on the formation of spikes. Similarly,
the larger number of grains per unit area, whose potential is
determined before booting (Isidro et al., 2011), may be a means
to compensate for the degeneration of florets occurring from
booting to flowering (Isidro et al., 2011) and the subsequent
reduction in grain setting caused by heat and drought stress
(Barber et al., 2017). The high frequency of alleles conferring a
high number of spikes and grains in landraces collected in the
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FIGURE 2 | Marker allele frequencies specific to landraces from east and west

of the Mediterranean Basin for the analyzed traits. All the significant markers

shown in Table 2 and Figure 1 are included. NSm2, number of spikes per

m2; NGm2, number of grains per m2; TKW, thousand grain weight (g); DSB,

days from sowing to booting; DBA, days from booting to anthesis; GFD, grain

filling duration (days).

four eastern countries (93% in both cases) may be biologically
interpreted as a mechanism for achieving higher grain yield. The
reason is that the grain yield relies on the production of a large
number of reproductive organs and a delay in senescence when
plants are grown in harsh environments (Albacete et al., 2014).
The results obtained in this study fully match with previous
studies (Moragues et al., 2006; Royo et al., 2014) showing the
importance of the number of spikes and grains on the yield
formation strategy of durum wheat grown in warm and dry
areas.

Grain weight is the last yield component formed and is
usually negatively correlated with grain number (Sadras, 2007).
Therefore, it is not surprising that landraces collected in
eastern Mediterranean countries had a high frequency (98%)
of alleles associated with low grain weight. The current study
demonstrated that the landraces from the east had lighter
grains than those from the west of the Mediterranean Basin, in
agreement with the low contribution of grain weight to yield
as demonstrated by regression analysis. Two likely physiological
reasons may explain it. The first could be a constraint in the
photosynthates available for grain filling due to the decrease
caused in current photosynthesis by unfavorable environmental
conditions after flowering (Royo et al., 1999, 2017). The second
could derive from the distribution of the available carbohydrates
on a large number of grains to be filled (sink size), thus resulting
in lighter grains. On the other hand, landraces from the west of
the Mediterranean Basin had a high frequency of alleles mostly
conferring opposite characteristics to those of the eastern area:
low number of grains per unit area (76%) and high kernel weight
(75%). The results of the regression analyses showing a much
more balanced contribution of grain number and weight to yield
in western landraces than in eastern ones are in agreement with
the allelic frequencies obtained. These findings are consistent
with previous studies showing a higher grain filling rate in
landraces from cold and wet areas, associated with heavier grains

in durum wheat (Motzo et al., 1996; Royo et al., 2014). It
has been reported that grain weight in wheat is much more
constrained under terminal drought conditions than in cold
and wet environments (Royo et al., 2000). The selection for
heavier grains during the spreading of durum wheat across the
Mediterranean Basin may also have contributed (Peng et al.,
2011).

The short time to booting of landraces from the East of the
Mediterranean Basin may be also interpreted as an evolutionary
adaptive mechanism to escape from the high temperatures,
radiation, potential evapotranspiration and water scarcity usual
in this area after flowering (Royo et al., 2014). Early flowering is
one of the most common physiological mechanisms for escaping
drought. The presence in eastern genotypes of a high frequency
of alleles reducing time to flowering (89%) is in agreement
with previous studies showing that drought stress and high
temperature in the collecting site of durum wheat landraces
reduced cycle length (Annicchiarico et al., 1995). Solar radiation
has been reported to be one of the climatic variables most
affecting the cycle length of landraces, with those from areas
with high solar radiation having the shortest one (Royo et al.,
2014).

The results of previous studies in wheat that associated early
flowering with longer grain filling duration (Tewolde et al.,
2006; Royo et al., 2014) are supported by the findings of
the current study as 91% of the eastern landraces carried the
allele increasing grain filling duration and 93% of the western
genotypes carried the allele reducing it. A previous study revealed
that eastern Mediterranean landraces had a slower grain filling
rate than the western ones (Royo et al., 2014). The results of the
current research showed that despite having a longer grain filling
duration the grains formed were lighter, which is in agreement
with the high frequency in eastern landraces of alleles associated
to low grain weight found in the current study (98%).

The results obtained in this study support the theory that
during the migration of wheat from the east to the west of the
Mediterranean Basin, it developed adaptive mechanisms to the
different conditions found in the new areas, which led to new
strategies for yield formation. The frequency of alleles associated
to the rise or decrease of certain yield components in regions
with contrasting environmental conditions strongly suggest that
the different yield formation strategies of landraces from the east
and the west of the Mediterranean Basin is based on genetic
differences. Moreover, our results give clues for the improvement
of varieties better adapted to specific environmental conditions.
The use of specific alleles affecting grain number or weight,
as well as grain filling duration, will allow fine-tuning the
most favorable allelic combinations for increasing yield in target
regions across the Mediterranean Basin especially in regards to
predicted climate change scenarios.
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