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Integrative approach using liver and 
duodenum RNA-Seq data identifies 
candidate genes and pathways 
associated with feed efficiency in 
pigs
Yuliaxis Ramayo-Caldas  1, Maria Ballester1, Juan Pablo Sánchez1, Olga González-
Rodríguez1, Manuel Revilla  2,3, Henry Reyer4, Klaus Wimmers  4,5, David Torrallardona  6 & 
Raquel Quintanilla1

This study aims identifying candidate genes and pathways associated with feed efficiency (FE) in pigs. 
Liver and duodenum transcriptomes of 37 gilts showing high and low residual feed intake (RFI) were 
analysed by RNA-Seq. Gene expression data was explored through differential expression (DE) and 
weighted gene co-expression network analyses. DE analysis revealed 55 and 112 differentially regulated 
genes in liver and duodenum tissues, respectively. Clustering genes according to their connectivity 
resulted in 23 (liver) and 25 (duodenum) modules of genes with a co-expression pattern. Four modules, 
one in liver (with 444 co-expressed genes) and three in duodenum (gathering 37, 126 and 41 co-
expressed genes), were significantly associated with FE indicators. Intra-module analyses revealed 
tissue-specific candidate genes; 12 of these genes were also identified as DE between individuals 
with high and low RFI. Pathways enriched by the list of genes showing DE and/or belonging to FE 
co-expressed modules included response to oxidative stress, inflammation, immune response, lipid 
metabolism and thermoregulation. Low overlapping between genes identified in duodenum and liver 
tissues was observed but heat shock proteins were associated to FE in both tissues. Our results suggest 
tissue-specific rather than common transcriptome regulatory processes associated with FE in pigs.

Feed efficiency (FE) has a major impact on profitability and consequently in economic sustainability of pig pro-
duction, where feedstuffs represent the largest expenditure component, accounting for 60% to 70% of production 
costs1,2. Additionally, improving FE implies a reduction in the amount of minerals, heavy metals and greenhouse 
gases excreted per kg of meat produced3, thus reducing the environmental impact of pig production systems. 
These elements together with the need to optimize the use of feed resources make FE a major economically and 
socially important trait. Including FE in selection schemes has therefore/consequently become an emerging and 
challenging trend in pig breeding.

As a complex trait, FE is determined by both genetics and environmental factors. Heritability of feed utiliza-
tion efficiency has ranged from 0.14 to 0.53 depending on the whether the trait measured was FE or residual feed 
intake (RFI)4–6. More recently, Berry and Crowley7 proposed a new FE trait, the residual intake and body weight 
gain (RIG), which additionally to RFI takes into account the difference between actual and predicted growth. 
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Several authors reported phenotypic and genetic variation for RIG in cattle breeds8–10; to the best of our knowl-
edge, there are no references to genetic parameters for RIG in pigs.

In the light of the existing genetic determinism for FE, several genome-wide association (GWAS) and dif-
ferential expression (DE) analyses have been performed for the aforementioned FE phenotypes, and a number 
of polymorphisms and genes have been reported to be associated to either RFI, FCR or RIG in livestock, par-
ticularly in cattle8,11–13, poultry14,15 and pigs16–18. Both GWAS and DE analyses performed to date tend to apply 
multiple-testing across the whole genome/transcriptome but testing in isolation the association of, respectively, a 
single genetic variant or the expression level of a gene with FE phenotypes. The use of network-based approaches 
has emerged as an alternative tool to study complex traits. Weighted gene co-expression analyses (WGCNA) ena-
ble us to identify functionally-related modules of co-expressed genes and also to integrate gene-expression data 
with external information19,20. Moreover, by analysing modules of genes rather than a single gene it is often easier 
to predict their function, interactions as well as common regulatory mechanisms21,22.

The main goal of this study is to identify candidate genes and pathways associated with FE in pigs through 
both DE analysis and a network-based approach that combine liver and duodenum transcriptomic data with FE 
phenotypic information.

Results and Discussion
Feed efficiency phenotypes. The 37 females selected for transcriptome analyses were chosen among the 
most extreme animals regarding RFI. Analysed animals were therefore classified in two groups denoted hereafter 
as HFE (high feed efficiency, corresponding to animals with low RFI) and LFE (low feed efficiency, with high RFI). 
Phenotypic differences between these groups are shown in Table 1.

As expected, the two groups diverging for FE differed significantly in all FE phenotypes, including the classifi-
cation criteria RFI but also in FCR and RIG. RFI and FCR were significantly lower in most efficient animals (HFE) 
and showed a positive covariation between them (phenotypic correlation r = 0.95; p-value < 0.0001). Conversely, 
RIG showed an opposite pattern, with lower values in HFE when compared to LFE group. This result is consistent 
with the fact that RIG includes the residual gain plus the negative standardized RFI, so that positive RIG values 
whereas negative RFI are related to higher FE. Accordingly, a strong and negative phenotypic correlation between 
RIG and RFI was observed in our data (R = −0.93, p-value < 0.0001).

Regarding other production traits, selecting most extreme animals according to RFI culminates in most effi-
cient females with much lower feed intake (630 g less of daily feed intake) compared to the less efficient group, 
which explained the increase in feed efficiency. The other production phenotypes did not show significant dif-
ferences between HFE and LFE groups, but a tendency towards a lower growth rate (50 gr less of daily growth on 
average) that was not significant. These results agree well with those recently obtained by Reyer et al.18, who in 
a similar experiment selecting divergent animals according to RFI observed a significant decrease in daily feed 
intake of high-FE animals, but no differences between groups in growth and fat deposition.

Mapping and annotation. A total of 2173.36 Millions of 75 bp paired-end reads (42.5 M–71.2 M per liver 
sample) and 2185.88 M of 75 bp paired-end reads (42.4 M–71.0 M per duodenum sample) were generated from 
liver and duodenum RNA-Seq experiments, respectively. Around 87% (84.3% to 89.4% in liver) and 83% (75.2% 
to 86.3% in duodenum) of reads were mapped to the reference pig genome Sscrofa10.2. The highest percentages 
of reads were mapped to exons (59–75% in liver, 52–69% in duodenum), while intergenic regions were in a range 
of 15–33% in liver tissue and 20–38% in duodenum tissue. The lowest percentage of reads was located in introns 
(6–10% in liver, 6–18% in duodenum).

Genes and biological pathways identified by differential expression analysis between animals 
with high and low FE. An initial analysis to identify genes differentially expressed between LFE (inefficient) 
and HFE (efficient) animals was performed using edgeR software. According to the employed cut-off (FC > 1.5 
and corrected p-value ≤ 0.05), 55 and 112 genes were identified as DE in liver and duodenum tissues, respec-
tively (Supplementary Table S1), being approximately half of them (22 genes in liver and 75 genes in duodenum) 
up-regulated in the LFE group in comparison to HFE. It should be noted that 20 of the identified DE genes, five 
DE in liver and 15 in duodenum, have been previously reported as DE in different tissues of pigs also divergently 
selected for RFI23 (Supplementary Table S2).

Phenotype High FE Low FE p-value

RFI (kg feed) −0.236 (0.030) 0.304 (0.031) <0.0001*

FCR (kg feed/kg gain) 2.207 (0.043) 2.736 (0.044) <0.0001*

RIG 1.801 (0.363) −2.604 (0.372) <0.0001*

ADG (kg/d) 0.938 (0.023) 0.994 (0.024) 0.0998

ADI (kg/d) 2.070 (0.053) 2.702 (0.055) <0.0001*

MW (kg0.75) 21.673 (0.424) 22.550 (0.435) 0.1567

BFT (mm) 11.952 (0.519) 11.900 (0.532) 0.9442

Table 1. Phenotypic information of analysed animals divergently classified in high and low feed efficiency 
(FE): mean (standard error) and significance of differences between groups for Residual feed intake (RFI), Feed 
conversion ratio (FCR), Residual intake and body weight gain (RIG), Average daily gain (ADG), Average daily 
feed intake (ADI), Metabolic weight at mid-point of the control period (MW) and Backfat thickness (BFT).
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Four genes, two per tissue, were analysed by quantitative real-time PCR (qPCR) to validate the RNA-Seq 
results: HSPH1 and ATF3 genes in liver, and CRYAB and HSPB8 genes in duodenum. When the pattern of gene 
expression levels was compared, strong correlations ranking from 0.65 to 0.99 between qPCR and RNA-Seq were 
observed, confirming a high reproducibility of the data. The highest correlation coefficient between RNA-Seq 
and qPCR expression levels corresponded to the liver tissue genes (r = 0.99 for HSPH1 and r = 0.99 for ATF3), 
whereas moderate to high correlation values were obtained for duodenum tissue genes (r = 0.65 for CRYAB and 
r = 0.72 for HSPB8). However, in agreement with the DE analysis performed with RNA-Seq data, significant gene 
expression differences between groups were confirmed using the RQ mean values (p-value < 0.05).

Only three genes (RNF181, CNN1, GTSF1) were commonly identified as DE in both liver and duodenum 
tissues. This is also consistent with results obtained in the aforementioned study23, in which a low overlapping of 
DE genes in liver, longissimus muscle and two adipose tissues of growing pigs was observed. RNF181 participates 
in the degradation of muscle proteins through the ubiquitin-proteasome system24, and has been also described 
as DE in the skeletal muscle of animals with divergent lipid profiles, being overexpressed in the leaner pigs25. 
Next, to gain insight into the biological processes that differed between LFE and HFE groups in liver and duode-
num tissues, the list of DE genes was explored using the core analysis included in Ingenuity Pathways Analysis 
(IPA). In agreement with the largest number of DE genes, duodenum samples showed more significantly enriched 
pathways than the liver (Supplementary Table S3). Despite the rare overlapping between the lists of DE genes 
identified in each tissue, 12 canonical pathways were significantly overrepresented in both liver and duodenum: 
LXR/RXR and FXR/RXR Activation, Production of Nitric Oxide and Reactive Oxygen Species in Macrophages, 
Acute Phase Response Signaling, Histidine Degradation VI, Bupropion Degradation and IL-12 Signaling and 
Production in Macrophages (Supplementary Table S3). These results point out the association of those biological 
pathways to FE in both liver and duodenum, but suggest a tissue-specific regulation of genes involved in these 
biological processes.

Co-expressed gene modules and correlation with FE traits. The covariation between gene-expression 
and phenotypic information, which usually is not considered in a classical DE analyses, could provide relevant 
information for disentangling the regulatory role of genes in a complex system. Therefore, in addition to DE 
analysis, we performed a WGCNA with gene expression data of liver and duodenum. Co-expression analyses 
revealed highly connected networks in both tissues. Genes were clustered according to their connectivity, and 23 
and 25 modules of genes with a co-expression pattern were identified in liver and duodenum tissues, respectively. 
Supplementary table S4 provide the complete list of gene module membership in each tissue. WGCNA procedure 
assigned a specific colour to each gene-module that will be used to refer each module in the following sections. 
Figure 1 shows the colour assigned to each module, plus the correlation coefficient between the eigengene values 
of these modules and three FE phenotypes: RFI, FCR and RIG. In agreement with previous results8, opposite 
correlation patterns with the module eigengene values were observed between phenotype variation for RFI/FCR 
and RIG in both liver and duodenum tissues (Fig. 1). This is an expected result taking into account the negative 
relationship between RIG and RFI previously mentioned, so that positive RIG values whereas negative RFI are 
more favourable regarding FE.

The eigengene values of four of the identified gene modules, one in liver and three in duodenum, were signifi-
cantly associated with RFI, FCR and RIG (Fig. 1). In liver, only the eigengene of Yellow module resulted to be sig-
nificantly correlated with FE traits (Fig. 1A), reporting a positive correlation with RFI and FCR (r = 0.38 and 0.47, 
respectively), but negative correlation with RIG (r = −0.35). With 444 genes, the liver Yellow module contained 
the largest number of genes among the four gene modules significantly correlated to phenotypes. The same trend 
was observed in duodenum modules associated to FE (Fig. 1B; modules Salmon, Darkred and Darkgreen), being 
significantly correlated with FCR (all three modules) and RFI (except Salmon module) and contrarily correlated 
with RIG, albeit reaching statistical significance only at a suggestive level (p-values < 0.1). The Salmon and the 
Darkgreen modules included 126 and 37 co-expressed genes, respectively; both of them correlated positively with 
RFI and FCR, the correlation coefficients ranging from 0.31 to 0.41. Conversely, the duodenum Darkred module, 
that included 41 genes, was negatively correlated with RFI and FCR (r = −0.33 in both cases) and positively with 
RIG.

Biological pathways deduced from gene modules associated with FE. Genes showing similar 
co-expression patterns (i.e. members of the same gene-module) either work cooperatively in related pathways 
and/or are under control of a common set of transcription factors (TF). Pathway analyses indicated that genes 
gathered in FE associated modules take part in a wide variety of physiological and biological events such as 
inflammation, immune response, lipid metabolism and thermoregulation (Supplementary Table S5). Among 
pathways significantly enriched it is worth highlighting Adipogenesis, Ephrin receptor signaling, EIF2 signaling, 
mTOR signaling, Phosphoinositide 3-kinase, ERK signalling, and Regulation of eIF4 and p70S6K signaling path-
ways, that had been previously reported as associated with FE in broilers, beef and pigs11,18,23,26,27. These pathways 
are essential for protein synthesis, and regulate many major cellular processes that generate or use large amounts 
of energy and nutrients.

When comparing across modules, eight pathways are overrepresented in at least two modules (Table 2). These 
pathways overrepresented in both tissues included Aldosterone Signaling in Epithelial Cells, NRF2-mediated 
Oxidative Stress Response and Unfolded protein response (liver-Yellow and duodenum-Darkgreen modules); 
Cell Cycle: G1/S Checkpoint Regulation, IL-1 Signaling, IL-8 Signaling (liver-Yellow and duodenum-Salmon 
modules); Role of RIG1-like Receptors in Antiviral Innate Immunity (liver-Yellow and duodenum-Darkred). 
Meanwhile, Protein Ubiquitination Pathway was common-overrepresented in the Yellow (liver), Darkgreen and 
Darkred (duodenum) modules. In spite of differences in the genetic background, age and diet of the animals 
included in our study compared to those analysed by Gondret et al.23, we identified genes belonging to pathways 
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related to response to oxidative stress, protein metabolism, inflammation and immune response common in the 
two studies (Supplementary Table S5).

Identification of candidate genes associated with FE in liver and duodenum tis-
sues. Intra-module analyses revealed interesting tissue-specific candidate genes (i.e. detected only in one of 
the two analysed tissues), as well as 12 candidate genes that were commonly identified in liver and duodenum 
transcriptomes (Table 3). Supplementary Table S4 shows the whole list of genes included in each of the four gene 
co-expression modules associated to FE. Additionally, a list of genes contained in these co-expression modules 
that has been previously reported as associated with FE phenotypes in pigs or other livestock species is provided 
in Supplementary Table S6.

Interestingly, approximately 20% (90 out of 440) of genes identified in the liver Yellow module were reported 
as associated with FE in pigs and/or cattle13,23. For example, Serum/Glucocorticoid Regulated Kinase 1 (SGK1) 
gene had been previously identified as linked to pig eating behaviour through a GWAS28. It should be noted that 
differences in eating behaviour between extreme RFI pigs have been described in previous studies29. SGK1 was 
also reported as differentially expressed between animals divergently selected for RFI in two broiler chicken 
lines14,15. This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress 
response and in the regulation of a wide variety of processes including ion channel transport and mTOR signaling 
pathways which was over-represented in our study. Other members of the liver Yellow module such as Growth 
Arrest and DNA Damage Inducible Gamma (GADD45G) and Nuclear Factor Kappa B Subunit 1 (NFKB1) had 
been reported as DE in the liver of RFI-divergent beef cattle8 and chicken30.

Focusing on duodenum co-expression modules associated to FE, ~32% (12 out of 37) of gene members of 
the Darkgreen module corresponded to genes already reported as candidate genes for efficiency-related traits in 
other species (Supplementary Table S6). Kern et al.31 suggested the ruminal expression of NAD(P)H Quinone 
Dehydrogenase 1 (NQO1) as indicator of FE in beef. Moreover, genes such as SIN3 Transcription Regulator 
Family Member A (SIN3A), CUB And Sushi Multiple Domains 2 (CSMD2), Leukocyte Cell Derived Chemotaxin 
2 (LECT2) and Cell Division Cycle 37 Like 1 (CDC37L1) had been described as associated with FE traits in 
beef9,12 and poultry30,32. It is also worth highlighting the Interleukin 22 (IL22) gene that encodes for a cytokine 
relevant for intestinal barrier maintenance and functioning, implicated in tissue regenerative processes in gut and 
skin33. Transcription factors and candidate genes involved in lipid metabolism processes such as the Peroxisome 
Proliferator Activated Receptor Alpha (PPARA), Acyl-CoA Thioesterase 4 (ACOT4) and Sirtuin 4 (SIRT4) were 
also identified in the duodenum Darkred module. The ACOT4 and PPARA genes have been also reported as can-
didate genes for efficiency-related traits in chicken and pigs15,23,34.

Figure 1. Gene co-expressed modules identified in liver (A) and duodenum (B), and correlation coefficients 
(p-values) of each module eigengene with residual feed intake (RFI), residual intake and body weight gain 
(RIG), and feed conversion ratio (FCR).



www.nature.com/scientificreports/

5ScIeNTIFIc RePORTS |  (2018) 8:558  | DOI:10.1038/s41598-017-19072-5

Common genes identified in both liver and duodenum gene modules. As stated above, 12 
genes (out of 636 genes) were commonly identified as members of co-expressed modules associated to FE in 
both liver and duodenum tissues (Table 3). According to the current version of the pig genome annotation 
(Sscrofa10.2), a detailed examination of the 12 common genes associated with FE reveals that three of them, 
ENSSSCG00000009636, ENSSSCG00000002535 and ENSSSCG00000013554, encoding for uncharacterized 
proteins. The orthologues of two of those genes revealed a high homology with HSP90AA1 and TRIP10 genes, 
respectively (Table 3). Interestingly, 50% of the remaining ten genes encode for Heat Shock Proteins (HSPs): 
HSPA2, HSPA4L, HSPH1, DNAJA1 and DNAJB1. HSPs are highly conserved proteins present in all organisms, 
being critical regulators in cellular stress response35. Heat stress reduces feed intake and affects both intesti-
nal integrity and barrier function36. In pigs, heat stress increases mRNA expression of HSPs and reduces ileal 
abundance of several metabolic enzymes suggesting metabolic modifications36. A relationship between heat pro-
duction and RFI in pigs has been proposed. Pigs belonging to the high RFI (low FE) line were energetically less 
efficient because of their greater heat production related to physical activity and basal metabolic rate37. In our 
study, a positive correlation was observed between the eigengene of modules carrying these genes (liver-Yellow 
and duodenum-Darkgreen) and RFI and FCR traits, suggesting that animals with higher expression of these 
genes are less efficient. In agreement with the WGCNA analysis, HSPH1 was up-regulated in the liver of high 
RFI (low FE) compared to low RFI (high FE) group as well as other members of this gene family such as HSPB8, 
CRYAB and HSPH1 (Supplementary Table 1).

In addition, these proteins are part of the common overrepresented pathways Aldosterone Signaling in 
Epithelial Cells, protein ubiquitination pathway and NRF2-mediated Oxidative Stress. Aldosterone is the main 

Cannonical Pathways Tissues (Module) -log(p-value) Genes

Aldosterone Signaling in Epithelial Cells
duodenum (Darkgreen) 5.80 HSPH1,DNAJB1,DNAJA1,HSPA2,HSPA4L

liver (Yellow) 4.79 HSPA4,CRYAB,HSP90AB1,DNAJB4,SGK1,HSPH1,HSPB8,HSPD1,DNAJA1,HSPA2, 
DNAJB5,HSPA4L

Cell Cycle: G1/S Checkpoint Regulation
duodenum (Salmon) 1.64 RPL11,RPL5

liver (Yellow) 1.71 MYC,SMAD3,CDKN2C,E2F3

IL-1 Signaling
duodenum (Salmon) 1.35 TRAF6,GNAS

liver (Yellow) 2.46 FOS,JUN,NFKBIE,NFKB2,NFKB1,IRAK2

IL-8 Signaling
duodenum (Salmon) 1.44 TRAF6,GNAS,PGF

liver (Yellow) 4.72 FOS,VCAM1,JUN,ICAM1,RND3,RHOB,HBEGF,VEGFC,LIMK2,PTGS2,NFKB1,FNBP1,IRAK2

NRF2-mediated Oxidative Stress Response
duodenum (Darkgreen) 2.78 NQO1,DNAJB1,DNAJA1

liver (Yellow) 4.15 FOS,UBB,JUN,DNAJB4,GSTA4,STIP1,DNAJA4,HSPB8,DNAJA2,DNAJA1,MAFF,DNAJB5

Role of RIG1-like Receptors in Antiviral 
Innate Immunity

duodenum (Darkred) 1.32 CASP10

liver (Yellow) 1.50 NFKBIE,NFKB2,NFKB1

Unfolded protein response
duodenum (Darkgreen) 2.7 HSPH1,HSPA2

liver (Yellow) 3.66 HSPA4,INSIG1,HSPH1,PPP1R15A,DNAJA2,HSPA2

Protein Ubiquitination Pathway

duodenum (Darkred) 1.48 HSPE1,ANAPC10

duodenum (Darkgreen) 4.89 HSPH1,DNAJB1,DNAJA1,HSPA2,HSPA4L

liver (Yellow) 5.40 UBB,CRYAB,DNAJB4,HSPH1,HSPB8,THOP1,HSPD1,DNAJA1,HSPA2,HSPA4,HSP90AB1, 
UBE2B,NEDD4L,DNAJB5,HSPA4L,BIRC2

Table 2. Description of pathways overrepresented in co-expression modules associated to feed efficiency 
identified in both liver and duodenum tissues.

Ensembl ID Symbol Chr Start (bp) End (bp) Biotype

ENSSSCG00000002274 HSPA2 7 94987618 94990126 protein_coding

ENSSSCG00000002535 HSP90AA1 7 129758772 129761205 protein_coding

ENSSSCG00000009077 HSPA4L 8 103901031 103951701 protein_coding

ENSSSCG00000009334 HSPH1 11 7585525 7661067 protein_coding

ENSSSCG00000009636 14 8076243 8084520 protein_coding

ENSSSCG00000010686 BAG3 14 141034618 141058597 protein_coding

ENSSSCG00000011000 DNAJA1 10 37686862 37699607 protein_coding

ENSSSCG00000013554 TRIP10 2 72685806 72695425 protein_coding

ENSSSCG00000013784 DNAJB1 2 65177577 65180388 protein_coding

ENSSSCG00000014399 ARHGAP26 2 150495712 150918983 protein_coding

ENSSSCG00000021620 STIP1 2 6978383 7040372 protein_coding

ENSSSCG00000030182 DEDD2 6 45629733 45646518 protein_coding

Table 3. List of genes in co-expression modules associated to feed efficiency identified in both liver and 
duodenum tissues.
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mineralocorticoid hormone synthetized in the adrenal gland playing a major role in the control of arterial blood 
pressure and extracellular volume homeostasis (reviewed in38). Remarkably, aldosterone has been related with an 
increase of feed intake and weight gain39,40. Aldosterone binds to the mineralocorticoid receptor (MR) which is 
expressed in different tissues exerting numerous functions (reviewed in38). Binding of HSP90 to MR is required 
for ligand binding activity41. In addition, aldosterone and MR activation are directly associated with the induction 
of oxidative stress (reviewed in38). In previous works, the decrease in reactive oxygen species (ROS) production 
and oxidative stress have been related to low RFI animals23,42. Furthermore, interconnected networks related to 
oxidative stress and immunity have been previously described as associated to FE23, supporting the involvement 
of immune system activation in the release of highly ROS23. In our study, pathways related to protein metabolism, 
immune response, and cellular defence mechanisms to maintain intracellular redox homeostasis were predicted 
to be up-regulated in the LFE group. This result suggests that less efficient animals have a high protein turnover, 
activated inflammatory processes and high oxidative protein damage.

Interestingly, recent studies in beef steers43,44 have identified genes encoding for heat shock proteins and 
DNAJ, as well as those involved in the aldosterone pathway, as DE in the spleen and small intestine transcrip-
tomes of animals phenotypically divergent for body weight gain and feed intake, supporting the implication of 
those genes and pathway in FE traits. Specifically, the HSP HSPH1 and DNAJA1, jointly with the Stress Induced 
Phosphoprotein (STIP1) gene, were consistently identified in these studies. STIP1 was also a differentially abun-
dant protein between thermal neutral and heat-stressed pigs36. STIP1 is an adaptor protein that coordinates the 
functions of HSP70 and HSP90 by stimulation of ATPase activity of HSP70 and inhibition of ATPase activity of 
HSP9045. According to the String database (http://string-db.org/)46, experimental data confirmed a functional 
interaction among STIP1, HSPA2, HSPA4L, HSPH1 and DNAJA1. In our study, strong and positive correlation 
ranging from 0.67 to 0.99 among the expression level of these genes was observed in both duodenum and liver 
tissues (Supplementary Figure 1). Opposite correlation patterns between individual gene expression and RFI and 
RIG phenotypic variation was observed (Fig. 2), consistently with aforementioned associations at module and 
phenotypic level. To detect potential candidate regulators among the 12 common genes, we performed an in silico 
identification of enriched TF-binding motifs and TFs with the iRegulon Cytoscape plugin. Different enriched 
motifs were detected, for example, Heat Shock Transcription Factor 1 (HSF1) was predicted as regulator of six 
of the 12 common genes: HSP90AA1, STIP1, DNAJA1, HSPH1, DEDD2, DNAJB1 (Supplementary Table S7). All 
these observations suggested a coordinated interaction pattern and/or regulatory cascade involving HSPs in both 
liver and duodenum tissues that may have a role in the transcriptional regulation of FE in pigs.

Identification of putative master transcriptional factors in the co-expression modules. The in 
silico identification of enriched TF-binding motifs provided different TFs that might regulate candidate genes in a 
tissue-specific manner (see Supplementary Table S7). Potential regulators of FE co-expression modules in duode-
num included TF such as Tumor Protein P53 (TP53), Distal-Less Homeobox 1 (DLX1), TATA-Box Binding Protein 
Associated Factor 1 (TAF1), Activating Transcription Factor 5 (ATF5), Nuclear Respiratory Factor 2 Alpha Subunit 
(GABPA) and HMG-Box Transcription Factor 1 (HBP1). In liver, however, a low number of putative TF were 
identified despite the high number of genes gathered by the liver Yellow module; potential TF identified in liver 
included Heat Shock Transcription Factor 1 (HSF1), ATP-Dependent Helicase CHD1 (CHD1), SIN3 Transcription 
Regulator Family Member A (SIN3) and RNA Polymerase II Subunit A (POLR2A). A comparison between TFs 
identified in liver and duodenum revealed POLR2A as the only common putative regulator. This result together 
with the low overlapping between tissues at candidate gene and functional levels suggest different mechanisms 
modulating the transcriptional expression of genes related with pigs FE in liver and duodenum tissues.

Figure 2. Correlation networks among expression levels of STIP1, HSPA2, HSPA4L, HSPH1, DNAJA1 
and DNAJB1 genes in liver and duodenum, and their relationships with residual feed intake (RFI), residual 
intake and body weight gain (RIG), and feed conversion ratio (FCR). Node colour distinguish among tissue 
transcriptomic (red = liver; grey = duodenum) and phenotypic (yellow) information. Edge colour represents 
positive (green) and negative (red) correlation coefficients.

http://string-db.org/
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Common genes and pathways identified in DE and WGCNA analyses. In this study we used a com-
bination of DE and WGCNA analyses; 12 genes identified as DE in liver (7 genes) and duodenum (5 genes) were 
also included in co-expression modules associated with the analysed traits (Table 4). Three of these genes encode 
for the HSPs HSPB8, CRYAB and HSPH1, and were up-regulated in the LFE (inefficient) group (Supplementary 
Table 1), thus agreeing with the previously mentioned association between HSP gene expression and phenotype 
variation in RFI and FCR (Fig. 2). HSPB8 had been previously reported as associated with RFI in a GWAS47, as 
well as DE in the liver of Nelore steers with divergent RFI phenotypes48. CRYAB gene acts as a molecular chap-
erone and is a member of the small heat shock protein family. Previous studies in several species also described 
associations of this gene with FE. CRYAB was found up-regulated in broilers with low FE26, and DE between 
individuals with divergent FE phenotypes in cattle (jejunum) and pigs (adipose tissue)23,43. Among the other 
common genes, ATF3 and MYOM1 have also been previously reported as candidate genes for FE traits48–50. ATF3 
encodes a member of the mammalian activation transcription factor/cAMP responsive element-binding (CREB) 
protein, and is involved in cellular stress response. Interestingly, a member of this family of TF (ATF5) was in 
silico predicted among the top putative regulators by iRegulon (Supplementary Table 8). As previously observed 
across tissues, a better overlap was observed at functional level between results from DE and WGCNA analyses: 
15 biological pathways were identified with both approaches (Supplementary Table 9). These results suggest the 
usefulness of pathways-centred analysis to carry out intervention studies (e.g. nutritional) targeting these specific 
pathways to improve FE in pigs.

Conclusions
This study provides a list of candidate genes and pathways associated with FE in pigs. A differential expression 
analysis between animals with divergent RFI revealed DE genes in liver and duodenum tissues, whereas a more 
integrative network-based approach allowed identifying four modules of co-expressed genes that were associated 
to FE traits. Despite the low number of common genes identified in both liver and duodenum modules, an inter-
esting overlapping between tissues was observed at functional (pathways) level, suggesting that gene members of 
the same biological pathways are differentially regulated in liver and duodenum tissues. Among biological path-
ways overrepresented in both liver and duodenum, those related to response to oxidative stress, inflammation and 
immune response seemed consistently involved in FE related traits. These results provide novel insights into the 
molecular mechanisms controlling FE in pigs, support the usefulness of pathways-centred analysis, and reveal the 
convenience of using integrative approaches combining omics and phenotypic information for disentangling the 
regulatory role of genes in a complex system.

Material and Methods
Animals, phenotypes and samples. Animal material and data come from a trial focusing on pigs FE 
under different feeding strategies that was carried out in the framework of the European ECO-FCE project (A 
whole-systems approach to optimise feed efficiency and reducing the ecological footprint of monogastrics).The 
trial was conducted between December 2014 and March 2015 at IRTA Pig Experimental Farm (Monells, Spain) 
with up to 244 individuals (121 females and 123 males) selected from 25 litters from Hermitage hybrid females 
inseminated with 4 controlled Hermitage Maxgro boars. Animals were involved in the trial from around 25 kg 
of body weight (BW) until around 106 kg BW. On average the animals were 69 (68–70) and 153 (152–154) days 
old at the beginning and at the end of the trial. Pigs were weighed individually at the start of the trial, every three 
weeks (weeks 3, 6, 9 and 12), and at the end of the study (weeks 14–15). Average daily weight gain (ADG) was cal-
culated. Backfat thickness (BFT) was also measured every 3 weeks. Individual feed intake (FI) was recorded by the 
electronic feeders located in each pen (IVO-station feeder; INSENTEC®). All animals were offered the same type 
of feed but following 4 different feeding protocols that had no significant effects on production traits. Animal care 
and procedures were performed according Spanish and European regulations about the protection of animals 

Tissue (module) #Genes Ensembl ID Symbol DE Tissue

liver (Yellow) 12

ENSSSCG00000003693 MYOM1 duodenum

ENSSSCG00000009844 HSPB8 duodenum

ENSSSCG00000015025 CRYAB duodenum

ENSSSCG00000021873 CRABP1 duodenum

ENSSSCG00000027609 GC duodenum

ENSSSCG00000000181 RND1 liver

ENSSSCG00000007554 ZFAND2A liver

ENSSSCG00000009334 HSPH1 liver

ENSSSCG00000015595 ATF3 liver

ENSSSCG00000023589 liver

ENSSSCG00000024048 liver

ENSSSCG00000030165 MAFF liver

Duodenum (Darkgreen) 1 ENSSSCG00000009334 HSPH1 liver

Table 4. List of genes associated to feed efficiency commonly identified in a differential expression (DE) and a 
co-expression network based analyses.
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used in experimentation, following national and institutional guidelines for the Good Experimental Practices and 
approved by the Ethical Committee of the Institut de Recerca i Tecnologia Agroalimentàries (IRTA).

Different measures of individual FE during the controlled fattening period were computed, establishing the 
RFI as the criterion to classify animals regarding FE. RFI was computed as deviation of actual amount of feed 
consumed during the control period (69–153 days) from the expected consumption for covering main biolog-
ical functions such as maintenance, growth and fat deposition. This way, RFI corresponds to the residual of the 
following model:

β β β= + + + +DFI S MW ADG BFT RFI (1)ij j MW j i ADG j i BFT j i ij( ) ( ) ( )

where DFIij is the daily feed intake from 69 to 153 days of age of the ith individual of sex j (male or female); Sj 
is the effect of the jth sex level (j = 1, 2) on DFI; MWi, ADGi and BFTi are, respectively, the metabolic weight at 
mid-point of the trial (~110.5 days of age), the average daily gain across the control period, and the backfat 
thickness at the end of the control period of the ith individual; βMW(j), βADG(j) and βBFT(j), are the partial regressions 
coefficients, nested to sex, of DFI on MW, ADG and BFT; and finally RFIij is the residual feed intake of individual 
i, i.e. the residual of the regression model. Feeding protocol was excluded from the analysis model after checking 
the absence of significant effects on either DFI, ADG and BFT.

Additionally, other measures of FE such as FCR (kg of FI/kg of ADG) and RIG were computed. The RIG 
phenotype, that consider the residual weight gain in addition to RFI, were calculated according to Berry and 
Crowley7 applying the following formula:

= −RIG RG SD RFI SD[( / ) ( / )] (2)i i RG i RFI

where RGi is the residual body weight gain of individual i, obtained as the residual of a regression model of ADG 
on weight, feed intake and fat deposition (i.e. β β β= + + + +ADG S MW DFI BFT RGi j MW j i ADG j i BFT j i i( ) ( ) ( ) ); 
SDRG and SDRFI correspond to the standard deviations of RG and RFI in the analysed sample.

At the end of the trial, individual FE was assessed by RFI values and 40 females were chosen among the most 
extreme animals: 20 with low RFI (group of high FE) and 20 with high RFI (group of low FE). Despite no sig-
nificant differences across feeding protocols were observed, the selection of animals for RNA-Seq experiment 
considered a balanced design for dietary treatments (i.e. included the 5 best and 5 worse feed convertor females 
within each treatment). These animals were slaughtered 10–12 days after the end of the FE-testing period, at ~163 
days of age, at IRTA’s experimental slaughterhouse in Monells (Spain), where the collection of biological samples 
took place just after sacrifice. Samples of approximately 1 mg were taken from the most relevant tissues (liver, 
duodenum, back-fat and hypothalamus); all samples were immediately submerged in RNA-later, and stored at 
−80 °C after 24 h. In the present study, the transcriptome of duodenum epithelium and liver tissues belonging to 
these females was explored, in association with their phenotypes for RFI, FCR and RIG.

RNA isolation, library preparation and sequencing. Total RNA of 40 females was isolated from liver 
and duodenum using the RiboPureTM Isolation of High Quality Total RNA (Ambion®; Austin, TX) following 
the manufacturer’s recommendations. RNA was quantified using the NanoDrop ND-1000 spectrophotometer 
(NanoDrop products; Wilmington, USA) and checked for purity and integrity with a Bioanalyzer-2100 (Agilent 
Technologies, Inc.; Santa Clara CA, USA). After quality control, three samples were excluded due to low RNA 
quality. Each library was being paired-end sequenced (2 × 75 bp) using the Illumina TruSeq SBS Kit v3-HS, on a 
Illumina HiSeq. 2000 platform at Centro Nacional de Análisis Genómico (CNAG-CRG; Barcelona, Spain).

Mapping, assembling and annotation of reads. Quality control for the raw reads sequenced was ana-
lysed with FASTQC (Babraham Bioinformatics; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
Reads were mapped against the reference pig genome (Sscrofa10.2) and the annotation database Ensembl Genes 
86 using the open-source software STAR 2.5.2a51. Mapping quality evaluation and descriptive statistics were gen-
erated with Qualimap v.2.252. The resulting bam files containing the aligned sequences were subsequently merged 
with Samtools53. The total number of genome-mapped reads to gene was quantified using HTSeq. 0.6.1p254 with 
the same GTF file used for the alignment step.

Differential expression. The differential expression analysis contrasting the extreme samples was per-
formed using the common dispersion and the ‘glmFit’ function of the edgeR package55. The fitted model includes 
feeding protocol (4 levels) as a fix effect. Supplementary table S10 resume the full list of the used genes as well 
as their read counts data. Genes were considered as DE when the rate of change between groups reached |Fold 
Change (FC)| > 1.5 and differences were significant after adjusting for multiple testing (FDR < 0.05).

Validation of differentially-expressed genes by RT-qPCR. In order to evaluate the repeatability and 
reproducibility of gene expression data obtained by RNA-Seq, a quantitative real-time PCR (qPCR) assay using 
SYBR Green chemistry (SYBRTM Select Master Mix, Applied Biosystems) and the comparative Ct method56 was 
performed. The isolated RNA of individual samples for liver and gut tissues was reverse-transcribed into cDNA 
using the PrimeScript RT Reagent Kit (TAKARA) in a total volume of 20 μl containing 1 μg of total RNA, fol-
lowing the manufacturer’s instructions. All primers were designed using PrimerExpress 2.0 software (Applied 
Biosystems) (Supplementary Table S11). The ACTB and HPRT1 genes were used as endogenous controls57.

All assays were tested and PCR efficiencies were evaluated by performing standard curves with a four-fold dilu-
tions series (1/4, 1/16, 1/64, 1/256, 1/1024) per triplicate of a pool of 6 cDNA samples in an Applied Biosystems 
7500 Real-Time PCR System (Applied Biosystems, Inc.; Foster City, CA). A dissociation curve was drawn for 
each primer pair. A QuantStudio™ 12 K Flex Real-Time PCR System (Applied Biosystems, Inc.; Foster City, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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CA) was used for mRNA quantification. The reactions were carried out in a 96-well plate for the ABI PRISM® 
7900HT instrument in a 20 μl volume containing 5 μl of cDNA sample diluted 1/20. For the QuantStudio™ 12 K 
Flex Real-Time PCR instrument, the reactions were carried out in a 384-well plate in 15 μl volume containing 
3.75 μl of cDNA sample diluted 1/20. All primers were used at 300 nM. The thermal cycle was: 10 min at 95 °C, 
40 cycles of 15 sec at 95 °C and 1 min at 60 °C. Each sample was analysed in duplicate. Data was analysed using 
the Thermo Fisher Cloud software (Applied Biosystems). The sample of lowest expression level was selected as 
calibrator. Correlation coefficients between RNA-seq and qPCR data (RQ) as well as group mean comparison test 
were computed with R.

Weighted Gene Coexpression Network Analysis (WGCNA). The RNA-Seq expression data corre-
sponding to the complete list of expressed genes in each tissue (Supplementary Table S10) was normalized using 
the edgeR package55 and then adjusted for the fixed effects of feeding protocols (four levels) with the linear model 
procedure of R. To identify co-expressed and highly interconnected genes associated with RFI, FCR and RIG the 
WGCNA approach was implemented as follows:

 (1) The network construction as well as the identification of the modules of co-expressed genes was done 
separately for each tissue (liver and duodenum). The soft-thresholding power as function of the scale-free 
topology index was defined at six, which represent a power-law model in liver of R2 = 0.90 and R2 = 0.97 in 
duodenum.

 (2) In each tissue, Pearson’s correlation between the module eigengene and the phenotype information was 
estimated. The eigengene, is defined as the first principal component of a given module and can be consid-
ered a representative of the gene expression profiles in a module20. A module was chosen for downstream 
analysis if it presented module-trait relationship ≥ |0.25| in at least two of the three analysed traits (RFI, 
FCR and RIG), and p-value ≤ 0.05 in at least one of these traits.

 (3) In order to identify common genes associated with RFI, FCR and/or RIG in both tissues, a comparison 
between those genes reported in each tissue was performed.

Identification of regulators, functional classification and pathway analyses. To detect potential 
regulators among the candidate genes, an in silico identification of enriched transcription factor (TF)-binding site 
motifs in the cis-regulatory elements of the candidate genes was done using the iRegulon v1.3 Cytoscape plugin58. 
Gene function classification and pathway analyses were performed using Ingenuity Pathways Analysis software 
(IPA, Ingenuity Systems; Redwood City, CA). The cut-off for considering a significant over-representation was 
established with a p-value ≤ 0.05 after Benjamini and Hochberg multiple-test correction59.

Data availability. RNA-Seq data has been submitted to NCBI Bioproject under accession SUB2967615.
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