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22 Abstract

23 To better understand the key processes involved in the ripening of attached fruit, we have 

24 investigated physico-chemical and biochemical changes occurring in ‘Blanquilla’ pear 

25 during on-tree (attached fruit) and off-tree ripening (harvested fruit). Flesh firmness, 

26 sugars, acids and the volatile profiles as well as ethylene metabolism, PG and PME 

27 enzyme activities and oxidative damage were measured. Firmness loss in detached 

28 ‘Blanquilla’ pear (off-tree), was initially mediated by oxidative stress (higher 

29 accumulation of malondialdehyde) and then by ethylene in a process in which 1-

30 aminocyclopropene 1-carboxylic acid (ACC) synthase was the limiting factor. In contrast 

31 the progressive but slower softening observed during on-tree fruit ripening was not 

32 associated to oxidative damage but rather to a delayed production of ethylene limited, in 

33 turn, by the activity of ACC oxidase. An interesting association was found between the 

34 initiation of the ethylene production and a concomitant increase of sucrose levels during 

35 on-tree ripening also accompanied by a decline in hexanal. The putative role of these 

36 compounds as a tree-associated factor modulating on-tree pear ripening is discussed.
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44 1. INTRODUCTION

45 Fruit have been classified in climacteric and non-climacteric depending on their 

46 respiratory and ethylene production patterns during ripening (Paul et al., 2012). In 

47 climacteric fruit, an increase in the respiration rate and the ethylene production is 

48 observed at the onset of ripening, a phenomenon that is not observed in non-climacteric 

49 fruit (Lelievre et al., 1997). The autocatalytic ethylene production typically allows 

50 climacteric fruit to ripen once detached from the tree, whereas non-climacteric fruit do 

51 not have this capacity (Van de Poel et al., 2014). 

52 Generally, it is accepted that most European pears, albeit classified as climacteric,  are 

53 not able to completely ripen on-tree or at the time of commercial harvest unless they 

54 received a chilling or ethylene treatment (Villalobos-Acuña and Mitcham, 2008). 

55 Depending on the necessity of this chilling period, pears may be grouped into two classes: 

56 winter and summer pears. The first ones, include cultivars such as ‘Comice’ and ‘Beurré 

57 d’Anjou’, require long chilling periods after harvest to produce ethylene and therefore to 

58 start the ripening process (Villalobos-Acuña and Mitcham, 2008). That said, the length 

59 of the chilling period required to initiate the ripening of winter pears largely differ among 

60 cultivars.  For instance, ‘Beurré d’Anjou’ pears may need up to 150 d of cold storage to 

61 induce ethylene production whereas ‘Packham Triumph’ pears may require  no longer 

62 than 15 d of cold storage (Larrigaudière et al., 2016).

63 In contrast, summer pears such as ‘Rocha’ (Saquet and Almeida, 2017), ‘Blanquilla’ 

64 (Larrigaudière et al., 2004) or ‘Conference’ (Chiriboga et al., 2011) pears require 

65 minimum or no exposure to low temperatures to induce this process, as soon as they are 

66 harvested at the appropriate maturity. ‘Blanquilla’ pears also known as ‘Spadona di 

67 Salermo’ in Italy and ‘Krystalli’ in Greece, is a cultivar capable of ripening both off- and 



68 on-tree (Larrigaudière et al., 2004). This specific behaviour makes this cultivar especially 

69 suitable to study the biochemical events differentiating off- and on-tree pear ripening. 

70 Earlier studies suggested that the inhibition or delay of on-tree fruit ripening was related 

71 to the presence of an inhibiting substance called the ‘tree factor’(Abeles, 1973) . The ‘tree 

72 factor’ was then thought to be exported from the leaves to the fruit via the phloem, and to 

73 affect the fruit ethylene production capacity (Sfakiotakis and Dilley, 1973).

74 Since then, different hypothesis have been proposed to explain the resistance to ripen on-

75 tree for numerous fruit. The initial hypothesis was based on the climacteric characteristics 

76 of the fruit and on the existence of two systems of ethylene production, namely system 1 

77 and system 2 (MCMurchie et al., 1972). System 1 is non-autocatalytic and operates in 

78 immature fruit whereas System 2 operates during ripening to induce the autocatalytic 

79 ethylene production (reviewed in Pech et al., 2008). According to this theory, on-tree 

80 ripening impairment is associated to the maintenance of system 1. Klee (2004) suggested 

81 that differences between cultivars and in the time of induction of system 2 on-tree, 

82 depended on the basal levels of ethylene production by system 1 (even if the ethylene 

83 levels were low). For others authors, differences between cultivars are related to 

84 differences in the fruit sensitivity to ethylene (Biale and Young, 1981; McGlasson, 1985), 

85 a sensitivity that is regulated at the receptor level (Kevany et al., 2007).

86 The regulation of fruit ripening in non-climacteric fruit and by extension, non-detached 

87 fruit, is essentially hormonal. Abscisic acid (ABA) was found to play an essential role in 

88 strawberry ripening by influencing softening, aroma development and anthocyanin 

89 accumulation (Jia et al., 2011, 2013). Jasmonic acid is also involved in strawberry cell 

90 wall metabolism (Mukkun and Singh, 2009) and anthocyanin accumulation in apples 

91 (Rudell et al., 2002). More recently, Jia et al. (2013) have shown that certain fruit 



92 biochemical constituents, such as sucrose also play a key role as a signal involved in 

93 strawberry and tomato fruit ripening. 

94 Further studies are still needed to better understand the physiological basis of non-

95 climacteric and on-tree fruit ripening, especially for pears that may ripen or not on-tree. 

96 Accordingly, the objective of this study was to compare the ripening behaviour of 

97 ‘Blanquilla’ pears ripening off- and on- the tree. Emphasis was given to monitor changes 

98 in global quality traits but also, and especially, on the biochemical and physiological 

99 processes explaining these quality changes. 

100

101



102 2. MATERIALS AND METHODS 

103 2.1. Plant materials and experimental design

104 ‘Blanquilla’ pear (Pyrus communis L.) were harvested on a commercial orchard near 

105 Lleida (Catalonia, Spain) at the optimum commercial harvest date (CH; about 125 d after 

106 full bloom, DAFB) for the off-tree trial, and 3, 6, 10, 15, 20, 25 and 30 d after commercial 

107 harvest (DACH) for the on-tree assay. Off-tree fruit were stored at 20 °C and 85 % of 

108 relative humidity and samples were evaluated at 3, 6, 10, 15 and 20 d.  On-tree fruit were 

109 harvested and transported to the laboratory each sampling day for immediate analysis.

110 2.2. Quality evaluations

111 Flesh firmness was measured on 3 replicates of 6 fruit each per ripening condition with a 

112 hand held penetrometer (53200, T.R.Turoni srl., Italy) equipped with an 8 mm probe as 

113 described by Chiriboga et al. (2011). Total soluble solids (TSS; %) were measured on pear 

114 juice (blend of 6 fruit per replicate and 3 replicates per sampling) using a digital hand-held 

115 refractometer (PAL-1 , Atago, Tokyo, Japan) whereas titratable acid (TA) concentrations 

116 were measured on the same juice samples by titration using 0.1 N NaOH and the results 

117 expressed as g malic acid L-1. 

118 The index of absorbance difference (IAD = A670 – A720) as an indicator of the fruit maturity 

119 was measured with a DA-Meter (TR Turoni, Forli, Italy) on opposite sides of the 

120 equatorial parts of the fruit.

121 The starch index was evaluated on 18 fruit samples as described by Almeida et al. (2016) 

122 with some modifications. An equatorial slice of each fruit was cut and dipped in a solution 

123 of 0.6 % (w/v) iodine in 1.5 % (w/v) potassium iodine for 10 min and then the starch index 

124 was subjectively determined using the 10-point scale chart developed by the CTIFL 

125 (France). The Streif Index was calculated as [firmness / (SSC * starch index)].



126 In parallel, flesh tissue from six individual fruit per replicate and three replicates per 

127 ripening condition was frozen in liquid nitrogen and kept at -80 °C until further 

128 biochemical analysis.

129 2.3. Ethylene production 

130 Ethylene production (nmol kg-1 s-1) was measured as described by Giné-Bordonaba et al. 

131 (2017) with some modifications. Four replicates of 3 fruit each were placed in 2 L flasks 

132 sealed with a silicon septum for sampling the gas of the headspace after 3 h incubation in 

133 an acclimatized chamber at 20 °C. For the analysis of ethylene production, gas samples (1 

134 mL) were taken using a syringe and injected into a gas chromatograph (GC; Agilent 

135 Technologies 6890, Wilmington, Germany) fitted with a FID detector and an alumina 

136 column F1 80/100 (2 m × 1/8 × 2.1, Tecknokroma, Barcelona, Spain) as previously 

137 described by Giné-Bordonaba et al. (2014). 

138 2.4. Enzymes related to the ethylene metabolism and fruit softening

139 1-Aminocyclopropane-1-carboxylic acid oxidase enzyme (ACO) was extracted as 

140 described by Chiriboga et al. (2012) with some modifications. The sample (0.5 g of frozen 

141 tissue) was homogenized in 1 mL of buffer containing 400 mmol L-1 MOPS at pH 7.2, 10 

142 % glycerol, 30 mmol L-1  ascorbic acid sodium salt and PVP 40000 2 %. The homogenate 

143 was gently shaken for 10 min at 1 ⁰C and centrifuged at 17,000 g for 30 min at 4 °C. 

144 Subsequently, the supernatant was stored at -80 °C until analysis.

145 Enzyme activity was analysed as described in Giné-Bordonaba et al. (2017). The mixture 

146 was aired and incubated for 60 min at 30 °C, after which a 1 mL headspace gas sample 

147 was injected into a gas chromatograph and the results were expressed as nmol C2H4 kg-1 

148 s-1 on fresh weight basis.

149 The extraction and activity of 1-aminocyclopropane-1-carboxylic acid  synthase (ACS) 

150 enzyme was determined as previously described by Chiriboga et al. (2013). Briefly, 5 g of 



151 frozen tissue were homogenized with 10 mL of extraction buffer containing 200 mmol 

152 L-1  tricine buffer at pH 8.5, 10 mmol L-1  dithiothreitol (DTT), 20 µmol L-1 pyridoxal 

153 phosphate and 2 % (w/v) PVP. The homogenized was centrifuged at 18,000 g for 20 min 

154 at 4 °C. Subsequently, 2.5 mL aliquot was loaded into a Sephadex G-25 column (PD 10, 

155 GE Healthcare, Buckinghamshire, UK), previously equilibrated with 5 mmol L-1 tricine 

156 buffer pH 8, 1 mmol L-1 DTT and 2 µmol L-1 pyridoxal 5-phosphate. The enzyme was 

157 eluted with 3.5 mL of the same buffer and 1.5 mL was incubated for 2 h at 25 °C with 200 

158 mmol L-1 tricine buffer pH 8 and 100 µmol L-1 of S-adenosyl-L-methionine (SAM). The 

159 reaction was then stopped with 100 mmol L-1 HgCl2, and 1mL of the product was mixed 

160 and stirred with 100 µL of NaOCl and saturated with NaOH (2:1 v/v). After 2 min, a 1 mL 

161 headspace gas sample was injected into a gas chromatograph and the results were 

162 expressed as nmol C2H4 kg-1 s-1 on fresh weight basis. 

163 Pectin methyl esterase (PME; EC 3.1.1.11) enzyme was extracted using the method 

164 described by Plaza et al. (2003). PME was extracted by homogenisation of 2 g of frozen 

165 ground sample with 6 mL of an extraction solution (1 mol L-1 NaCl in 0.2 mol L-1 sodium 

166 phosphate buffer pH 7.5). The resulting mixture was shaken for 10 min at 4 °C, 

167 centrifuged at 16,000 g for 20 min at 4 °C and then the supernatant filtered through six 

168 cheesecloth layers. Finally, PME activity from the resulting extract was quantified by 

169 titration as described elsewhere (Yeom et al., 2000).

170 Polygalacturonase (exo-PG; EC 3.2.1.67 and endo-PG; EC 3.2.1.15) extraction and 

171 determination was conducted by following the methods described by Van linden et al. 

172 (2008). PG activity was calculated as the release of reducing groups per unit of time and 

173 per fresh weight (μmol kg-1 s-1 ) based on the two reaction periods as described in Giné-

174 Bordonaba et al. (2017). 

175 2.5. Sugar and organic acid content



176 Sugars (sucrose, glucose and fructose) and malic acid were extracted from frozen tissue 

177 as described by Giné-Bordonaba et al. (2017). The supernatants of each sample extraction 

178 were recovered and used for enzyme coupled spectrophotometric determination of glucose 

179 and fructose (hexokinase/phosphoglucose isomerase) and sucrose (β-fructosidase) using 

180 commercial kits (BioSystems S.A., Barcelona, Spain) and following the manufacturer’s 

181 instructions.

182 Malic acid was extracted dissolving 2 g of frozen tissue in 5 mL of distillate water. The 

183 resulting supernatant from malic extraction was recovered and used for enzyme coupled 

184 spectrophotometric determination (L-malate dehydrogenase) of malic acid using 

185 commercial kits (BioSystems S.A., Barcelona, Spain) and following the manufacturer’s 

186 instructions.

187 2.6. Determination of malondialdehyde content

188 Malondialdehyde (MDA) was analysed as an index of lipid peroxidation using the 

189 thiobarbituric acid reactive substrates (TBARS) and according to Martinez-Solano et al. 

190 (2005) with some modifications. Briefly, 0.5 g of frozen tissue was homogenized in 4 mL 

191 of 0.1 % trichloroacetic acid (TCA) solution. Then, the samples were centrifuged at 

192 24,000 g for 20 min at 20 °C and 0.5 mL of the supernatant was added to 1.5 mL of a 0.5 

193 % thiobarbituric acid (TBA) in 20 % TCA solution. Another aliquot (0.5 mL) of the 

194 supernatant was added to a solution containing only 20 % TCA as a control. The mixture 

195 was incubated at 90 °C for 30 min until stopped by placing the reaction tubes in an ice-

196 water bath. Then, the samples were centrifuged at 24,000 g for 10 min at 4 °C and the 

197 absorbance of the supernatant was read at 532 nm. The value for non-specific absorption 

198 at 600 nm was subtracted. The amount of MDA-TBA complex (red pigment) was 

199 calculated using the extinction coefficient 155 L mmol-1 cm-1 and the results expressed as 

200 µmol kg-1 on a fresh weight basis.



201 2.7. Volatile determination by SPME-GC-FID

202 The extraction and concentration of volatile compounds was done as described by Qin et 

203 al. (2012) with some modifications. A SPME fibre with 65-µm layer of 

204 polydimethylsiloxane–divinylbenzene (65 μm PDMS/DVB; Supelco Co., Bellefonte, 

205 PA, USA) was used and activated before sampling according to the manufacturer’s 

206 instructions. For each extraction, 10 g of frozen tissue was placed into a 20-mL vial 

207 containing 3.6 g of NaCl to facilitate the release of volatile compounds. Before sealing 

208 the vial, 2 µL of 32 µL L-1 3-nonanone was added as internal standard. A magnetic 

209 follower was added to each vial, which was placed into a constant-temperature water bath 

210 at 40 °C with stirring. Samples were equilibrated for 20 min and then the SPME fibres 

211 were exposed to the headspace of the sample for 30 min to adsorb the volatiles. The 

212 volatile compounds were subsequently desorbed over 10 min at 240 ºC into the splitless 

213 injection port of the chromatograph. The volatile constituents were identified and 

214 quantified with an HP 6890A gas chromatograph with a flame ionization detector 

215 equipped with a capillary column with cross-linked free fatty acids as the stationary phase 

216 (FFAP; 50m×0.2mm×0.33 mm). Helium was used as the carrier gas at a constant flow of 

217 1.0 mL min-1. The injector and detector temperatures were 240 ºC. The oven temperature 

218 programme was 35 ºC for 8 min, increasing at 2 ºC min-1 to 140 ºC and holding for 2 min, 

219 then increasing at 10 ºC min-1 to 240 ºC and holding for 5 min. Compounds were 

220 identified by comparing their respective retention index with those of standards. All of 

221 the standards for the volatile compounds studied in this work were analytical grade or the 

222 highest quality available. Quantification was performed using individual calibration 

223 curves for each compound. The concentrations of volatile compounds were expressed as 

224 µg kg-1 on a fresh weight basis.



225 Compound identification was performed on an Agilent 6890N gas chromatograph/mass 

226 spectrometer (Agilent Technologies, Inc.) using the same capillary column as used in the 

227 GC analyses. Mass spectra were obtained by electron impact ionization at 70 eV. Helium 

228 was used as the carrier gas, and the same temperature gradient programme described 

229 previously was used for MS acquisition. Spectrometric data were recorded (Hewlett-

230 Packard 3398 GC Chemstation) and compared with those from the original NIST 

231 HP59943C library mass spectra.

232 2.8. Statistical Analysis

233 All data were subjected to analysis of variance (ANOVA) using JMP® 13.1.0 SAS 

234 Institute Inc. Mean comparisons for the interaction ripening condition * day was 

235 evaluated using Tukey’s test at a significance level of p ≤ 0.05, while comparisons 

236 between ripening conditions at specific days was done by least significant difference 

237 values (LSD; p ≤ 0.05) using critical values of  t for two-tailed tests for the rest of 

238 parameters.

239 A principal component analysis (PCA) was also performed to characterize the samples 

240 according to their volatile profile, quality parameters and biochemical traits. The samples 

241 included in the PCA were: On-tree 0 d, On-tree 6 d, On-tree 25 d and Off-tree 6 d. A total 

242 of 33 variables (26 volatile compounds, 3 quality parameters (firmness, titratable acidity 

243 and total soluble solids) and 4 biochemical traits (sucrose, glucose, fructose and malic 

244 acid)) were used to perform the data matrix. Data were centered and weighted using the 

245 inverse of the standard deviation of each variable in order to avoid the influence of the 

246 different scales used for the variables. All analyses were carried out using the PCA 

247 platform of JMP® 13.1.0 SAS Institute Inc.

248



249 3. RESULTS AND DISCUSSION 

250 3.1. Changes in overall quality during on-tree and off-tree ripening

251 The flesh firmness of ‘Blanquilla’ pear at harvest was 60 N, which was inside the 

252 commercial harvest range for this pear cultivar (Gamrasni et al., 2010). After harvest, 

253 firmness from off-tree fruit decreased rapidly from days 3 to 6 (ca. -11.2 N/d) and then 

254 more gradually until reaching 5 N at 20 d. In contrast, the loss of firmness in attached 

255 fruit started 10 d later than that observed in detached fruit and was more progressive 

256 (-1.65 N/d), reaching 5 N only after more than 30 d (Fig. 1A). 

257 TSS of the pears at harvest was 13 % (Fig. 1B), thereby similar to the results obtained in 

258 previous studies on other European pear cultivars like ‘Jules d’Airolles’, ‘Abate Fetel’ 

259 and ‘Spadona’(Gamrasni et al., 2010; Yim and Nam, 2016). No differences in TSS were 

260 observed between off-tree and on-tree fruit until 5 d. Then, TSS was higher in off-tree 

261 samples than in those fruit ripened on-tree. 

262 No significant differences were found for TA between off-tree and on-tree fruit (Fig.1C). 

263 TA at harvest was 4.10 ± 0.10 g malic L-1 and then steadily decreased (-0.07 g malic L-1) 

264 until reaching values of ca. 2 g malic L-1 both for off-tree and on-tree fruit. TA values in 

265 this work were slightly higher than those observed in previous studies with ‘Blanquilla’ 

266 (Larrigaudière et al., 2004)  for which TA values were always lower than 3 g malic L-1. 

267 Different orchards or agroclimatic conditions may explain the differences in the TA 

268 values between both studies.

269 The SI at harvest was almost 6 (Fig. 1D) and then gradually increased until reaching 

270 values of completely mature fruit (SI = 10). The highest SI in off-tree fruit was reached 

271 10 d after storage at 20 °C, whereas on-tree ripened fruit needed 25 d to reach the same 

272 value. The slower starch degradation during on-tree ripening may be explained by: (1) 

273 the differences in the ethylene production kinetics (Fig. 2A), since it is well documented 



274 that starch degradation is for some pome fruit cultivars an ethylene-related phenomena 

275 (Thammawong and Arakawa, 2007) and a good indicator of the fruit maturity stage (Peirs 

276 et al., 2002); but also by (2) the continuous supply of carbohydrates from source-to-sink 

277 occurring in attached fruit and satisfying the fruit needs for respiration and other catabolic 

278 process. 

279 Chlorophyll degradation measured by the index of absorbance difference IAD (Fig.1E), as 

280 well as the Streif index (Fig.1F), also reflected the slower ripening pattern of attached 

281 fruit compared with detached fruit and highlighted the suitability of the former non-

282 destructive measurement as a potential tool to determine the optimal harvest date in 

283 ‘Blanquilla’ pears. However, this tool less accurately represented quantitative differences, 

284 not only in firmness loss but in other quality attributes, and was less useful to follow the 

285 ripening process during off-tree ripened fruit. 

286 3.2. Ethylene metabolism and its regulation on- and off-tree

287 Differences in the kinetics of ethylene production were found between off-tree and on-

288 tree ripened fruit (Fig. 2A). Harvested fruit (off-tree) exhibited a typical pre-climacteric 

289 behaviour with a delay (5-6 d) in the initiation of ethylene production and then a sharp 

290 increase up to 0.12 nmol kg-1 s-1 at 20 DACH. The kinetic of ethylene production for on-

291 tree fruit was much more progressive, with an extension of the lag period up to 10 d and 

292 a slower ethylene production rate, being nearly half of that observed in fruit ripened off-

293 tree (Fig. 2A). Temperature conditions among on- and off-tree ripened fruit were 

294 relatively similar (Supplementary Figure 1) and did not explain the differences in ethylene 

295 production. However, it is also likely that warmer temperatures during on-tree ripening 

296 may lead to higher ethylene production, yet not reaching similar values to those observed 

297 in detached fruit.



298 The ability of ‘Blanquilla’ pear to produce ethylene at relatively high levels on-tree is 

299 atypical in pears. Only one study have shown a similar tendency in ‘La France’ pears 

300 which needed up to 14 d on-tree to produce 1 µL of ethylene kg-1 h-1 (equivalent to 0.01 

301 nmol kg-1 s-1, 10-fold lower values; Murayama et al., 1998). However, similar trends have 

302 been reported in ‘Gala’ (Lin and Walsh, 2008) and others apple cultivars. Others summer 

303 pear cultivars, such as ‘Conference’, are more resistant to production of ethylene and are 

304 more difficult to ripen, even off-tree, if harvested when slightly immature (Chiriboga et 

305 al., 2011).To better understand the specific behaviour of ‘Blanquilla’ pear regarding 

306 ethylene production, we analysed the changes in ACC metabolism and more specifically 

307 the changes in the activity of the enzymes ACS and ACO both off- and on-tree. 

308 The  differences of ethylene production between on- and off-tree samples (Fig. 2A) were 

309 not exclusively explained by differences in ACS enzyme activity (Fig. 2B). In off-tree 

310 samples, ACS activity remained inactive for 3 d and sharply increased thereafter until day 

311 6. In on-tree fruit, a steady increase in the ACS activity was observed throughout the 

312 different samplings. ACO activity in off-tree fruit was higher than on-tree (Fig. 2C), 

313 increasing immediately after harvest and reaching a value of 0.17 nmol kg-1 s-1 at 3 

314 DACH.  Overall, our results suggest that ACO and ACS act differentially as limiting 

315 factors for ethylene production during on- and off-tree ripening, respectively. ACO in on-

316 tree ripened fruit was activated only after 10 d, parallel to the increase in the ethylene 

317 production rate (Fig. 2A and 2C).  These findings support the theory of the ‘tree factor’ 

318 (Abeles, 1973) where it was hypothesized that the ‘tree factor’ is an inhibitor of ethylene 

319 production exported from the leaves to the fruit via the phloem (Sfakiotakis and Dilley, 

320 1973). This inhibitor is thought to affect System 2 ethylene production (Lin and Walsh, 

321 2008) and its action may be inhibited by defoliation and girdling techniques (Sfakiotakis 

322 and Dilley, 1973). Our results are in accordance with the ‘tree factor’ theory and with the 



323 putative presence on an inhibitor on-tree. With this in mind, we analysed the differences 

324 in assimilates accumulation (sugars and acids) and changes in the fruit volatiles during 

325 off- and on-tree fruit ripening. 

326 3.3. Are assimilates involved in the regulation of on-tree pear ripening?

327 Malic acid content did not differ between the fruit ripened on-tree and off-tree and 

328 generally decreased from ca. 2 to 1.5 g kg-1 through storage at 20 °C or ripening on the 

329 tree (Fig. 3A). Faster utilisation of malate in off-tree ripened fruit was observed from day 

330 10 onwards if compared to fruit ripened on-tree. The decreased in malic acid off-tree was 

331 paralleled by changes in DA-values, maximum starch index and opposite to the rise of 

332 the ethylene. This pattern may be easily explained by the fact that malic acid is a 

333 respiratory substrate and it is probably used by pear fruit as the carbon source in the 

334 tricarboxylic acid cycle (Ma and Chen, 2003). Albeit no information is readily available 

335 for pears, in grapes, malic acid is thought to be an important respiratory substrates 

336 (Famiani et al., 2014) and postharvest studies on apples also point out the importance of 

337 this compound in fruit respiration (Liu et al., 2016).

338 Only slight differences in glucose accumulation were observed between off- and on-tree 

339 fruit until 10 d (Fig. 3B). Afterwards, the glucose levels slightly increased in off-tree 

340 ripened fruit (up to 10 g kg-1), whereas remained at a constant value of 5 g kg-1 in samples 

341 ripened on-tree. In both on- and off-tree, fructose was the predominant sugar with 

342 concentrations ranging from 40 to 50 g kg-1 (Fig. 3B). Accordingly, fructose, sorbitol, 

343 sucrose and, in lower amount, glucose are known to be the major sugars in pears (Barroca 

344 et al., 2006). In off-tree samples, sucrose levels decreased between 15 and 20 DACH (Fig. 

345 3C) in parallel to a slight increases in glucose and fructose levels. This behaviour has also 

346 been described by Itai et al. (2015) in ‘Gold Nijisseiki’ pear. In contrast, the sharp increase 

347 in sucrose content observed in attached fruit after 10 d (Fig. 3C) was not related to 



348 changes in those of glucose and fructose but coincident with the induction of the ethylene 

349 burst and to the initiation of the ripening process. This last result is of interest and shows, 

350 in agreement with the results described by Murayama et al. (2015) or  Kim et al., (1987) 

351 that sucrose or galactose may act as a signal molecule for on-tree fruit ripening. Indeed, 

352 previous studies have also shown that galactosyl compounds stimulate C2H4 production 

353 in tomato  (Kim et al., 1987). 

354 There is clear evidence that sucrose may play a pivotal role in different processes of plant 

355 biology such as for instance the signalling of assimilates partitioning (Chiou and Bush, 

356 1998) or the induction of anthocyanin biosynthesis (Teng et al., 2005). It is also 

357 recognized that sucrose plays an important role in the regulation of tomato (climacteric) 

358 and strawberry (non-climacteric) fruit ripening (Jia et al., 2016, 2013). Our results further 

359 suggest a pivotal role of this sugar in pear ripening and especially when understanding 

360 the capacity to ripening on-tree. Although on-tree pear fruit cannot be considered as non-

361 climacteric fruit model, the overall physiological changes observed in attached pears, and 

362 especially regarding ACO, let us to hypothesize that on-tree pear ripening may be 

363 regulated by similar effectors than those controlling non-climacteric fruit ripening. 

364 Accordingly, sucrose may act as an important regulatory factor of ‘Blanquilla’ pear 

365 ripening on-tree. Further studies are needed to confirm these results and especially to 

366 determine the role that sucrose or its interplay with other key hormones (i.e. abscisic acid) 

367 may have on regulating on-tree ripening.

368 3.4. The physiological basis of firmness loss both on- and off-tree in relation to cell-

369 wall degrading enzymes and oxidative stress 

370 It is interesting to note the lack of a relationship observed between the ethylene production 

371 and softening for off-tree ripened fruit. Loss of firmness was observed after 3 d of 

372 ripening at 20 °C (Fig. 1A), while detectable ethylene production started only after 5 d 



373 (Fig. 2A). Since firmness loss is assumed to be an ethylene dependent process, such 

374 atypical behaviour in ‘Blanquilla’ pear remains to be clarified. 

375 Hence, in an attempt to further understand the softening pattern of ‘Blanquilla’ pear we 

376 investigated the activity of some cell-wall degrading enzymes including PME and PG 

377 which are thought to be ethylene-dependent (Pech et al., 2008). No differences in PG 

378 activity were observed between off-tree and on-tree ripened fruit (Table 1). PG  activity 

379 remained at a constant levels both on- and off-tree indicating that this enzyme is likely 

380 ethylene-independent in ‘Blanquilla’ pear. In other studies, it has also been demonstrated 

381 that initial fruit softening (i.e. in tomato) is associated with a decline in some cell wall 

382 components without increased PG activity (Gross and Wallner, 1979). Only slight 

383 differences between on- and off-tree samples were found for PME (Table 1), suggesting 

384 also that this enzyme may not have a pivotal role in ‘Blanquilla’ pear softening. These 

385 results are consistent with those observed in ‘Golden Reinders’ apples (Ortiz et al., 2011) 

386 and also in tomato (Tieman and Handa, 1994) where PME activity did not play a key role 

387 on fruit softening.

388 Since differences in the softening pattern between on-tree and off-tree samples were not 

389 explained by cell-wall degrading enzymes nor by ethylene metabolism, we hypothesized 

390 that such differential pattern could be mediated by oxidative stress. Accordingly, we 

391 measured the MDA contents (Fig. 4A), a typical marker of oxidative stress resulting from 

392 lipid peroxidation.

393 At harvest, the concentration of MDA was about 17 µmol kg-1. In off-tree samples, this 

394 concentration increased up to 30 µmol kg-1during the first week of storage. At the same 

395 time, ethylene production remained low and the fruit lost more than half of their initial 

396 firmness. These results clearly suggest that initial firmness loss (from 3 to 6 DACH) in 

397 off-tree ‘Blanquilla’ pear was not ethylene dependent but rather associated to oxidative 



398 stress. This process may also be related to the ‘water-stress’ phenomena experienced by 

399 detached fruit, which in turn may be linked to ABA. A strong negative correlation was 

400 observed between the MDA content and firmness (Fig. 4B). A similar behaviour was also 

401 observed in Japanese pear (Li and Wang, 2009) for which an 8-fold increase in MDA 

402 content was described after 6 d at room temperature if compared to the values at harvest.  

403 In contrast to off-tree fruit, MDA levels in on-tree ripened fruit only significantly 

404 increased after 25 d and regardless of the changes in ethylene production and firmness 

405 loss. Overall, these results suggest that oxidative stress was unlikely involved in the 

406 firmness loss observed after 10 d and in the induction of the ripening process in fruit 

407 ripened on-tree. As described earlier, and in contrast to off-tree ripened fruit, on-tree fruit 

408 softening appeared to be exclusively ethylene dependent.

409 Collectively these results are of interest and highlight clear differences in the 

410 susceptibility of off- and on-tree fruit to oxidative stress that likely determine the initiation 

411 of fruit ripening.

412 3.5. Changes in the volatile profile during on and off-tree ripening

413 Pears are highly appreciated by consumers due in part to their unique and complex aroma 

414 profiles associated to each each specific cultivar (Chen et al., 2018) but also to its 

415 characteristic ripening process. Accordingly, we investigated whether ripening off- tree 

416 impaired or enhanced the development of the ‘Blanquilla’ pear volatile profile. Fifteen 

417 compounds belonging to different chemical classes: esters (8), aldehydes (2), alcohols (4) 

418 and terpene (1) were identified (Table 2). The predominant compounds in all the samples 

419 with concentrations higher than 1500 µg kg-1 were hexanal, butyl butanoate, and α-

420 farnesene, as found for ‘Yali’ pear (Chen et al., 2006). The presence and abundance of 

421 volatile compounds on fruit ripened off-tree for 6 d was similar to that observed on fruit 

422 ripened on-tree for 25 d, both of them characterised with similar firmness values. No 



423 significant differences in the concentration of any volatile compound were found between 

424 these samples, except hexyl acetate, which was almost 3-fold higher in fruit ripened off-

425 tree for 6 d. In the case of ripe fruit (On-tree 25d and Off-tree 6d), 4 straight esters (propyl 

426 acetate, butyl acetate, pentyl acetate and hexyl acetate) and one alcohol (1-butanol) were 

427 the majority compounds. 1-Butanol was present in all the samples analysed being ca. 20-

428 fold higher in ripe than in unripen fruit (0 DACH).  These results are in accordance with 

429 previous studies in ‘Bartlett’ pears, where 1-butanol concentration drastically increased 

430 during ripening (Zlatić et al., 2016). In addition, it has been shown that completely ripe 

431 pear have a higher concentration of esters than firmer ones (Makkumrai et al., 2014), so 

432 this may explain the fact that the majority of esters in our samples were present in fruit 

433 ripened on-tree for 25 d and in off-tree for 6 d yet not at the time of commercial harvest.    

434 Hexanal was the principal aldehyde and there were no significant differences neither 

435 between the content in immature fruit (on-tree 0 d and on-tree 6 d), nor between ripe fruit 

436 samples (off-tree 6 d and on-tree 25 d). In contrast, there were significant differences for 

437 this compound when comparing different DACH, the hexanal content declining as fruit 

438 ripened off-tree but also on-tree. In on-tree ripened fruit (25 DACH), hexanal contents 

439 were nearly half than that observed in fruit at the time of commercial harvest. Similar 

440 results were obtained by Makkumrai et al. (2014) in ‘Bartlett’ pear, where hexanal also 

441 decreased as the fruit ripened. Interestingly, hexanal contents remained high during the 

442 first days of on-tree fruit ripening, when no softening occurs, pointing out a potential role 

443 of this compound to modulate on-tree ripening process of ‘Blanquilla’ pear. Exogenous 

444 application of this compound are known to inhibit fruit ripening (Pak Dek et al., 2018) by 

445 decreasing transcript levels of phospholipase D and other ripening-related genes. 

446



447 3.6. Exploring the organoleptic changes occurring during on- and off-tree pear 

448 ripening

449 To further explore the relationship between the taste-related (individual sugars, malic 

450 acid, TSS and TA) and the volatile composition of fruit ripened on- and off-tree, we 

451 performed a multivariate analysis. A principal component analysis (PCA) was carried out 

452 to assess differences between on-tree and off-tree samples or among the different days 

453 on-tree. Two principal components 1 (PC1) and 2 (PC2) were sufficient to explain 75.7 

454 % of total variability of the samples (Fig. 5). There were three well-separated groups: one 

455 to the left of the plot corresponding to the samples on-tree 0 d and on-tree 6 d, a second 

456 group on the top right of the plot corresponding to samples ripened on-tree for 25 d, and 

457 the third group located in the middle down corresponding to the samples ripened off-tree 

458 for 6 d. The highest emissions of α-farnesene, 2-methyl-1-butanol, octyl acetate, hexanal 

459 and butyl hexanoate, together with high firmness and high glucose concentration, were 

460 found for fruit harvested at the optimum commercial date (0 DACH) but also for fruit 

461 ripened on-tree for 6 d (more immature fruit). Conversely, fruit let attached on the tree 

462 for 25 d, showed the lowest emissions of these variables along with the highest emission 

463 of ethanol, hexyl propanoate, propyl acetate, butanol, benzyl alcohol, together with high 

464 concentrations of sucrose, fructose and total soluble solids (TSS). The last group was 

465 related to the samples ripened off-tree for 6 d which was characterised by including those 

466 samples with higher amounts of butyl, hexyl and pentyl acetate, all of these compounds 

467 being previously identified as primary contributors to pear aroma (Suwanagul et al., 

468 1998). Overall, and despite the lack of significant differences when considering absolute 

469 values, on-tree ripened fruit have a distinct volatile blend and physicochemical 

470 characteristics than fruit ripened off-tree. Future studies should address if such differences 

471 can result in different consumer preferences. 



472

473



474 3 CONCLUSIONS

475 The results from this study provide new information on the biochemical events 

476 differentiating on-tree and off-tree ‘Blanquilla’ pear ripening. In both samples, ACC 

477 metabolism plays a key role yet under different regulatory mechanisms. In off-tree pears, 

478 ripening (ethylene production and softening) is initially regulated by oxidative stress that 

479 likely promotes the further autocatalytic burst of ethylene production through an 

480 activation of ACS. In contrast, no oxidative stress was detected in on-tree fruit, where 

481 ripening seems to be regulated by ACO and initially inhibited by hexanal, but also, in the 

482 later stages of ripening, by the accumulation of sucrose possibly triggering the initiation 

483 of ethylene production.

484 Future studies are required to better understand the role that ethylene, volatiles and 

485 sucrose or its interplay with other crucial hormones such as ABA may have in the ripening 

486 process of pear fruit, and especially in other pear cultivars that do not have the capacity 

487 to ripen on-tree. The results from this study may provide a better understanding of the 

488 ripening process in attached pears hence making easier the decisions for optimal harvest 

489 in terms of fruit quality.

490
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691 Table 1: PG (nmol kg-1 s-1) and PME (µmol kg-1 s-1) levels in Blanquilla pear during off-

692 tree and on-tree ripening. Means ± standard deviation followed by the same letter are not 

693 significant different at p ≤ 0.05 (n=3).

694

695

696

697

698

699

700

701

702

703

704

705

706

PG (nmol kg-1 s-1) PME (µmol kg-1 s-1)

DACH Off-tree On-tree DACH Off-tree On-tree

0 19.38±2.052 a 19.38±2.052 a 0 6.64±1.838 bc 6.64±1.838 bc

3 18.15±2.613 - 3 5.20±0.797 -

6 16.47±1.385 b 20.18±1.871 ab 6 4.52±1.019 cd 10.36±0.207 a

10 18.06±2.937 ab 17.91±0.418 ab 10 5.23±0.759 bcd 11.07±1.639 a

15 17.84±1.182 - 15 5.29±0.906 -

20 18.08±2.167 ab 23.09±1.708 a 20 8.84±0.323 ab 3.60±0.738 cd

25 - 18.30±1.632 25 - 5.67±1.108

30 - 17.44±0.764 30 - 2.72±0.955



707 Table 2: Average concentrations of volatile compounds. Means ± standard deviation 

708 followed by the same small letter indicate no significant differences among the control 

709 and on-tree samples for each compound. Means ± standard deviation followed by the 

710 same capital letter indicate no significant differences between the samples on-tree 25d 

711 and off-tree 6d for each compound (p ≤ 0.05; n=3). nd = non detected.

712

713

714

715

716

717

718

719

Volatile 
compounds 

(µg kg-1)
On-tree Off-tree 

0d (61.1 N) 6d (62.9 N) 25d (25.3 N) 6d (23.6 N)
Ethanol nd nd 0.46±0.158 A 0.22±0.025 A

Propyl acetate nd nd 543.36±332.428 A 372.10±108.541 A

Butyl acetate nd nd 8620.90±2668.309 A 16953.53±5685.289 A

Hexanal 18080.67±1344.572 a 19547.21±2445.170 a 10635.48±4289.035 bA 7897.73±2053.258 A

Butanol 23.77±10.561 b 17.17±2.011 b 375.36±123.527 aA 415.84±103.391 A

Pentyl acetate nd nd 844.64±158.209 A 1363.10±582.786 A
2-Methyl-1-

Butanol 177.12±19.420 ab 200.60±54.486 a 95.51±25.378 bA 68.82±10.577 A

Butyl 
butanoate 3921.15±1387.091 a 2653.79±998.638 a 3041.76±1068.421 aA 4194.76±501.560 A

Hexyl acetate nd nd 9435.01±112.496 B 24294.35±3825.698 A
Hexyl 

propanoate nd nd 50.00±10.156 nd

Butyl 
hexanoate 36.33±1.810 nd nd nd

Octyl acetate 262.58±40.925 a 371.63±90.566 a 223.14±34.882 aA 175.28±33.557 A

Benzaldehyde nd nd 27.91±5.930 nd

α-farnesene 3864.85±565.301 a 3626.88±261.110 ab 2098.00±717.585 bA 1595.90±343.353 A

Benzyl alcohol nd nd 67.19±4.980 nd
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722 Figure 1. Changes in fruit firmness (A), total soluble solids (B), titratable acidity (C), 

723 starch index (D), DA-value (E) and Streif index (F) during off-tree (●) and on-tree (○) 

724 ripening. DACH stand for Days After Commercial Harvest. Error bars represent the 

725 standard deviations of the means (n=3). Stars indicate significant differences at p ≤ 0.05.

726 Figure 2. Changes in ethylene production (A), ACC synthase activity (B) and ACC 

727 oxidase activity (C) in off-tree (●) and on-tree (○) ripening. DACH stand for Days After 

728 Commercial Harvest. Error bars represent the standard deviations of the means (n=4 for 

729 ethylene production and n=3 for ACC and ACS activity). Stars indicate significant 

730 differences at p ≤ 0.05.

731 Figure 3. Changes in malic acid content (A), D-Glucose and D-fructose levels (B) and 

732 sucrose levels (C) during off-tree (●) and on-tree (○) ripening. DACH stand for Days 

733 After Commercial Harvest. Error bars represent the standard deviations of the means 

734 (n=3). Stars indicate significant differences at p ≤ 0.05.

735 Figure 4. Changes in the concentration of malondialdehyde (A) and the correlation 

736 between firmness and MDA content (B) during off-tree (●) and on-tree (○) ripening. 

737 DACH stand for Days After Commercial Harvest. Error bars represent the standard 

738 deviations of the means (n=3). Stars indicate significant differences at p ≤ 0.05.

739 Figure 5. Principal components analysis of volatile profile, quality parameters and 

740 biochemical traits in control fruit (OHD = 0d on-tree), fruit ripened 6d on-tree, fruit 

741 ripened 25d on-tree and fruit ripened 6d off-tree. 

742
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822 Supplementary Figure 1:  Temperature, relative humidity and rainfall during the period between samplings for on-tree ripened fruit. Off-tree 
823 ripened fruit were stored at 20±0.5 ºC and 85% RH. 




