
 
 
 
 

 
 
 
 
 
 
 

 

This document is a postprint version of an article published in Aquaculture© Elsevier 

after peer review. To access the final edited and published work see 

https://doi.org/10.1016/j.aquaculture.2019.734253 

 

 

Document downloaded from: 

 

 
 

 
 
 
 
 

https://doi.org/10.1016/j.aquaculture.2019.734253
http://repositori.irta.cat/


 
 
 
 
 

 
Lecithin-enriched ARTEMIA combined with inert diet and its effects on reproduction and digestive 

enzymes of Aequidens RIVULATUS 

Hadi Jamalia, Nasrollah Ahmadifarda,⁎, Farzaneh Noorib, Enric Gisbertc, Alicia Estevezc, 
Naser Aghb 

a DEPARTMENT of Fisheries, FACULTY of NATURAL Resources, URMIA University, P.O. Box: 57153-165, URMIA, IRAN 

b DEPARTMENT of ARTEMIA, ARTEMIA & AQUACULTURE RESEARCH Institute, URMIA University, P.O. Box: 57153-165, 
URMIA, IRAN 

c IRTA – SANT CARLES de LA RÀPITA, PROGRAMA D'AQÜICULTURA, CRTA. del Poble Nou km 5.5, 43540 SANT CARLES de LA 
RÀPITA, SPAIN

 

 

 

Abstract 

The present study investigated the effects of soybean lecithin bioencapsulated in adult ARTEMIA FRANCISCANA 

and unenriched  ARTEMIA  in  combination  with  an  inert  diet  on  digestive  enzymes  activity  and  

reproductive  perfor- mance  in  Aequidens  RIVULATUS  (green  terror  cichlid).  Eight hundred  

and  ten  fish  (3.1  ±  0.2 g)  were  randomly allotted into glass tank (80 L) and assigned to ten dietary 

treatments with 5 different levels (0, 25, 50, 75, and 100%) of either lecithin-enriched ARTEMIA (EA) or 

unenriched ARTEMIA (UA) over a period of 90 days. The amount of total polar lipid increased from 39.2% 

in the unenriched ARTEMIA to 43.7% in the lecithin-enriched ARTEMIA (P  <  .05).  The  fish  fed  with  50%  EA  

had  higher  total  weight,  and  total  length  compared  with  other  groups (P  <  .05). The peculiar functions 

of total alkaline proteases, α-amylase, and lipase in green terror increased in the groups fed with 

lecithin-enriched ARTEMIA, compared to the un-enriched groups (P <  .05). The highest total alkaline  

proteases  activity  was  observed  in  the  fish  fed  with  75%  EA  treatment.  In  comparison  to  the  other 

groups, fish fed 100 and 0% levels of ARTEMIA replacement had significantly highest and lowest α-amylase 

ac- tivity values, respectively. Concerning reproductive performance, the highest average fecundity, egg 

diameter, egg weight, fertilization, hatching, and larval survival rates, as well as the lowest time 

between two spawning episodes,  were  obtained  in  fish  fed  50%  EA.  In  conclusion,  this  feeding  strategy  

is  advisable  for  a  proper  nu- tritional management of broodfish of green terror cichlid. 

  
 



 

 

1. Introduction 

Ornamental  fish  industry  is  a  flourishing  business  in  international trade,  fisheries,  aquaculture,  

conservation,  and  poverty  reduction  in developing  countries  (Ahmadifard  et  al.,  2018).  Considering  the  

high economic value of these fish, and in order to support the sustainability of  this  activity,  the  study  of  

cultivation  methods  of  broodstock  and larvae  seems  important  in  order  to  avoid  the  reliance  on  animals  

obtained from the natural environment (Firouzbakhsh et al., 2011). There are more than a thousand species 

of freshwater fish, including 100 fa- milies  among  the  commercial  ornamental  fish  list  (Dey,  2016).  The 

green terror  cichlid (A. RIVULATUS) is a prevalently ornamental fish  originating  from  South  America  (Yeh  et  

al.,  2018).  However, there is limited   knowledge   regarding   the   nutritional   requirements   and   re- 

productive  characteristics  of  these  fish  species.  Considering  its  carnivorous  feeding  habits,  the  available  

nutritional  recommendations  are based   on   compound   diets   containing   salmonid   and   other   cichlid 

species, as these diets can partially meet their nutritional requirements (Firouzbakhsh et al., 2011; Alishahi 

et al., 2015). 

Diet plays an important role in increasing reproductive performance of broodstock and larva quality 

(Izquierdo et al., 2001). Broodstocks fed live food have usually better performance in relation to those fed 

inert compound  diets since  live  food is  more  palatable and  easier  to digest and generally has higher 

nutritional value, leading to a positive impact on  the  development  of  gonads  and  an  increased  

reproductive  perfor- mance  (Langroudi  et  al.,  2009).  Success  or  failure  in  fish  production plans  depends  

on  breeding  conditions  including  the  provision  of  sui- table food to ensure the growth and better quality 

of larvae, juvenile, and  broodfish  stages  (Lim,  2002).  Live  foods  are  excellent  nutrient sources of fostering 

both freshwater and marine ornamental fish as well as  shrimp  species  (Lim,  2003).  Among  different  sources  

of  live  preys, ARTEMIA sp. (nauplii, metanauplii, juveniles, and adults) is the most used live prey in cultured 

fish and crustaceans. However, due to the high cost of  ARTEMIA  cyst,  the  infrastructures  and  laboratories  

conditions  for ARTEMIA production and the nutritional value of ARTEMIA, it is necessary to find a replacement 

commercial diet having a stable nutritional value for  the  development  of  ornamental  fish  trade  (Sorgeloos  

et  al.,  2001; Conceição  et  al.,  2010).  Regardless  of  the  advantages  of  using  com- pound feeds, live preys 

are still commonly used in ornamental fish retailers and commercial fish hatcheries. ARTEMIA can transfer 

some useful nutrients  such  as  vitamins,  EFA,  phospholipids  (PLs)  to  a  target  organism due to their non-

selective feeding behavior (Agh and Sorgeloos, 2005;  Guinot  et  al.,  2013a,  b).  Moreover,  it  due  to  the  

higher  palatability  can  enhance  the  ingestion,  digestion,  and  absorption  of  formulated  diet  provided  

under  a  co-feeding  regime  (Kolkovski  et  al., 1997; Øie et al., 2011). Furthermore, other researchers found 

that the combination of live prey with an inert diet could result in an increase in feed intake and as well as 

an enhancement of food digestibility (Engrola et al., 2009; Nhu et al., 2010; Anh et al., 2009; Jamali et al., 

2018). 

Lecithin,  as  a  PLs  source,  has  the  potential  to  augment  stress  re- sistance  as  well  as  growth  and  

survival  in  fish  species  (Jafari  et  al., 2018).  The  effects  of  lecithin  on  the  growth  of  both  freshwater  and 

marine fish as well as crustaceans have been studied in European sea- bass  DICENTRARCHUS  LABRAX  (Cahu  et  

al.,  2003),  Oncorhynchus  mykiss (Azarm  et  al.,  2013),  large  yellow  croaker  LARMICHTHYS  CROCEA  (Zhao et al., 

2013), white leg shrimp LITOPENAEUS VANNAMEI (Niu et al., 2011); Atlantic salmon SALMO SALAR L., (Hung et al., 

1997), and Japanese blue crab Portunus TRITUBERCULATUS (Li et al., 2014). From a biological point of view, as an 

important part of cell membranes, PLs are vital for a normal cell  and  function  of  an  organ  (Niu  et  al.,  2011)  

and  supply  fish  with vital  fatty  acids,  choline,  and  phosphorus,  which  is  required  for  their development, 

growth, and reproduction (Jamali et al., 2018). In addition,  PLs  were  reported  to  reduce  the  non-polar  

lipid  droplets  in  the gastrointestinal mucosa (Wold et al., 2007) and act as lipid emulsifiers (Hamza  et  al.,  

2008)  which  improve  the  digestion  and  absorption  of dietary fatty acids (Niu et al., 2011). Furthermore, 



 

 

lecithin was shown to have noteworthy effects on the reproductive performance of several species of fish 

and crustaceans (Wu et al., 2007; Hossen et al., 2014). However, the effects of lecithin on many aspects of 

reproduction have not been determined since most of the previous nutritional studies have been conducted 

in aquaculture species with long lifespans. Therefore, in this study, the effects of soybean lecithin 

bioencapsulated in adult A. FRANCISCANA and un-enriched ARTEMIA in combination with an inert diet were 

evaluated in terms of the activity of the main pancreatic digestive enzymes, and reproductive indices in A. 

RIVULATUS, as a valuable species of ornamental fish. 

 

2. Materials and methods 

2.1. ARTEMIA enrichment 

Adult brine shrimps A. FRANCISCANA were obtained from Artemia and Aquaculture research (AAR) Institute 

(Urmia, Iran). Soya lecithin (with 74.4% total phospholipid) was purchased from Monil Global SDN.BHD 

Company, Malaysia. In this study, we adopted the enrichment method of   ARTEMIA   described   in   Jamali   et   

al.   (2018).   Briefly,   liposomes (< 50 μm) were prepared with a mixture of lecithin and seawater (1 g/ 10 

mL) by means of a digital homogenizer (IKA, Turrax, Germany). A number  of  adult  ARTEMIA  were  transferred  

to  the  vessels  containing sterile  salt  water  and  fasted  for  18 h.  At  this  time,  two-thirds  of  the ARTEMIA 

guts were empty. Afterward, 3000 adults ARTEMIA were counted and  transferred  to  conical  glass  containers  

with  a  volume  of  1 L  of seawater at salinity 30 g L
−1

. Then, 3 mL of the prepared emulsion was added to 

the enrichment vessel at zero and after 3 h. This procedure was carried out at 27 °C for 6 h. 

 

2.2. EXPERIMENTAL diets AND fish HUSBANDRY 

Green terror cichlids were obtained from an ornamental fish farm in Urmia, Iran. Before beginning the 

experimental phase of the study, a group  of  fish  (900  fish)  was  acclimatized  with  receiving  commercial 

feed (FFT pellets, 2 mm pellet size, BioMar, France) during 7 days. From this group, a total of 810 fish (25 fish 

per each container) with a mean initial body weight of 3.1 g  ±  0.2 (mean  ±  standard deviation) were 

randomly distributed into 27 glass aquaria (working volume: 80 L). The experimental  groups  were  fed  5  

different  levels  (0,  25,  50,  75,  and 100%) of either lecithin-enriched ARTEMIA (EA) or un-enriched ARTEMIA 

(UA).  As  for  pre-test,  the  dietary  intake  based  on  AD  libitum  was achieved  through  using  live  adult  

ARTEMIA  and  commercial  food  (FFT pellets, 2 mm pellet size, BioMar, France). We found 8% (approximately 12  

ARTEMIA  per  gram  of  fish)  and  3%  of  the  body  weight  for  adult ARTEMIA (8 mm in size) and commercial 

food, respectively. These fixed levels  of ARTEMIA and  inert  diet were  used  in our experiments.  We  in- creased 

the proportion of Adult ARTEMIA in our replacement treatments. Green  terror  cichlids  received  live  ARTEMIA  

or  the  commercial  diet four times per day. Throughout the experimental period, the following 

environmental features were measured with a Hach's multi-parameter (Model DR1900-01H and HQ40D 

portable multi meter): temperature at 26.0  ±  1.5 °C;   dissolved   oxygen   at   8.10  ±  1.20 mg L−1;   pH   at 

7.6  ±  0.50 units;  hardness > 120 mg L
−1   

of  CaCO3  with  50%  water change per day, and photoperiod was 

set at 12:12 (light: darkness). At the onset of the study, day 18, 54 and 90, a number of fish were an- 

esthetized with 200 mg L
−1  clove powder. Using a caliper and a digital balance, we recorded the total body 

length (BL, nearest 0.01 mm) and body weight (BW, nearest 0.01 g), respectively. 

 



 

 

2.3. Reproductive PERFORMANCE 

Fish reached maturity at the end of the study; therefore, three pairs of  fish  which  were  ready  to  spawn  

from  each  experimental  replicate were  selected,  weighed,  and  transferred  to  a  new  glass  aquarium  (1 

mating  pair  per  aquarium)  containing  40 L  of  water  similar  to  their counterparts measured in the 

nutritional trial stage of the study. Water was obtained from two 300 L tanks that had been aerated VIA a 

central pump for 24 h in order to remove its chlorine. At the aquarium floor, several small rocks were 

placed for spawning the fish. To prevent fungal infections of eggs, methylene blue (Merck, Germany) was 

added to each aquarium at concentration of 1 mg L
−1

. Twenty hours after mating by counting the number 

of developing eggs (blastopore closing stage), the fertilization rate was determined in line with Woynarovich 

and Horváth (1980).  In  brief,  a  glass  tube  (30 cm)  whose  diameter  was  30–50% thicker  than  an  egg  

was  filled  with  eggs.  Then,  viable  and  developed and  non-viable  (white, opaque,  and have  turbid  

contents) eggs  in the tube were counted (Langroudi et al., 2009). 

We determined the hatching rate by counting the total number of newly hatched larvae and unhatched 

after a lapse of 60 to 72 h. Moreover, 6–7 days later, the number of active swimming larvae was used for 

computing the larval survival rate considering the initial number of hatched specimens. In addition, 20 

larvae per replicate were selected to measure their BW and total length (TL) at hatching and the onset of 

the active swimming behavior. The pairs of fish were kept in similar conditions for forty days to check the 

number of spawns. Moreover, at the end of the experiment, three mature and un-spawned fish (these fish 

were different from those used for studying spawning episodes) from each replicate were anesthetized 

with clove powder solution   (200 mg L
−1

)   and   weighed.   Gonads   were   removed   and weighted to 

determine the gonadosomatic index (GS). For each group of fish, the following factors were calculated: the 

gonadosomatic index (GS, %) = [GW(g) / TW (g)] × 100; relative fecundity (RF) = EN / BW (g); total fecundity 

(TF) = EG; and average egg weight (EW, g) = EW (g)/ TF; where GW was the gonad weight, BW was the body 

weight, EN was the number of eggs, and EG was the number of eggs in the spawn. In order to determine 

egg diameter, a sample of 25 to 30 eggs of ripe females (maturity stage IV) were randomly taken from the 

females' ovaries and measured under a microscope with an ocular micrometer (Jamali et al., 2016). 



 

 

2.4. DETERMINATION of PANCREATIC enzymes 

2.4.1. SAMPLING AND crude EXTRACT PREPARATION 

The activities of α-amylase, bile-salt activated lipase, and total al- kaline proteases were measured in 

order to evaluate the effects ofcommercial diet fasted for 24 h and, then, six fish per treatment were sacrificed with 

a lethal dose of clove powder (500 mg L−1). The abdominal cavity of the selected fish was cut from the mouth to the 

anus by means of a scalpel and the whole digestive tract was removed and washed by physiological serum. Dissected 

digestive tracts until being extracted were stored into 5 mL microtubes at e80C degree (Lemieux et al., 1999). We 

homo- genized the whole digestive tract in 50 mM Tris-HCl buffer (pH = 7.5) with the help of a homogenizer (Polytron 

PT, 1300 D model, Kinema- tica, Switzerland) and centrifuged it at 10,000g and 4 °C for 20 min. The supernatant was 

collected, divided into 0.5 mL microtubes, and stored at −80 °C for further analyses (Chong et al., 2002). 

2.4.2. Enzyme assays 

Total alkaline protease activity was determined using azocasein 2% in Tris-HCl (pH = 7.5) according to the 

method presented by Imani et al. (2017). In short, 20 μL of crude homogenate was mixed with 0.5 mL of 2% 

azocasein (pH = 7.5) and incubated (10 min at 25 °C). Finally, the reaction was stopped by adding 0.5 mL of 

trichloroacetic acid. The stirred mixture was centrifuged (6500 g, 5 min), optical density was noted at λ = 440 

nm, and the specific enzyme activity was expressed as unit mg pro- tein−1 min−1. We assayed bile-salt 

activated lipase while subscribing to Iijima et al.'s (1998) method. The mixture of 2-methoxy-ethanol, sodium 

cholate, p-nitrophenyl myristate, and Tris–HCl (pH = 9.0) was used as a substrate. The mixture of substrate and 

crude homogenate were incubated (15 min at 30 °C) and then the reaction was stopped using acetone/n- 

heptane (5:2, v/v). The stirred mixture was centrifuged at 6000 g for 2 min and the optical density was noted at 

λ = 405 nm. The enzyme activity was reported as μmol n-nitrophenol mg−1 protein−1 min−1 (one unit). 

Alpha- amylase activity was measured using the hydrolysis of starch (Imani et al., 2017). The mixture of 1% 

starch solution (w/v) and 0.02 M sodium phosphate (pH = 6.9) was used as substrate. Crude enzyme extracts 

were incubated with substrate for 4 min at 25 °C. The reaction was terminated by adding of di-nitrosalicylic acid 

solution (1% w/v), boiled for 5 min, and cooled down at room temperature. The specific activity of α-amylase 

was noted   at  λ = 540 nm  and  expressed   as  micromole   maltose   mg protein
−1 

min
−1 at 25 °C. In assaying 

the total soluble protein, bovine serum albumin was used as a standard according to the method used by 

Bradford (1976). All assays were carried out in triplicate (methodological replicates). 

2.5. CHEMICAL ANALYSIS 

Experimental   diets   (commercial   diet,   lecithin-enriched   and   un- enriched  ARTEMIA)  were  analyzed  for  

their  proximate  and  lipid  class composition  according  to  the  methods  used  by  the  AOAC  (1997)  and 

Olsen  and  Henderson  (1989),  respectively.  All measurements  were performed in methodological 

triplicate. 

2.6. STATISTICAL ANALYSES 

All statistical analyses were carried through SPSS (21 version) (IBM Statistics). At first, we verified the normal 

distribution and  homo-  geneity of the data with Kolmogorov–Smirnov and Levene's tests, re- spectively. Arcsine 

transformations were conducted in case of all data  and were expressed in terms of percentages. Any significant 

among experimental groups were elucidate using two-way ANOVA. Tukey's HSD test was used for comparisons 

if significant differences were de- tected among groups. Statistically significant differences were considered at P 

< .05.  

The  data  of  reproductive  performance  and  enzyme  activity  were subjected  to  regression  analysis  



 

 

(quadratic)  where  the  ARTEMIA  level served  as  the  independent  variable.  The  polynomial  regression  model 

was  used  to  estimate  the  appropriateness  of  ARTEMIA  level  for  green terror  on  reproductive  performance  

(Robbins  et  al.,  1979).  Using  the Pearson  Product  Moment,  we  found  the  degree  of  correlation  in  re- 

productive performance data among the groups similar to Sigma-Stat. (1995). The data were further 

analyzed by means of linear regression between  the  two  variables  with  statistical  correlation  (Gisbert  et  

al., 2000). 

 
3. Results 

3.1. Diet composition 

Proximate  and  lipid  class  compositions  of  the  tested  diets  are  dis- played in Table 1 and Fig. 1. The 

amounts of crude lipid in the lecithin- enriched and  unenriched groups  were  19.7%  and 16.1%,  respectively 

(P  <  .05). The amount of crude ash declined in the enriched-live prey. As far as dry matter and crude protein 

content are concerned, there was an insignificant  difference  between  the  two  groups  (P  >  .05).  

Furthermore, the amount of total polar lipid increased from 39.2% in the unenriched    ARTEMIA    to    43.7%    

in    the    lecithin-enriched   ARTEMIA (P  <  .05), whereas the lowest and highest amounts of polar lipid levels 

(3.7%) and natural lipids (95.88%) were recorded in the inert diet (see Fig. 1). 

 

Fig. 1. Lipid class composition of experimental diets (commercial diet, lecithin- enriched, and unenriched 

adult A. FRANCISCANA) (mean  ±  SD; n = 3). Different letters   in   each   same   bars   indicate   significant   

differences   by   Tukey's   test (P  <  .05). 

 



 

 

 

Fig. 2. Total weight (A) and total length (B) of green terror fed with different dietary ratios of 

unenriched (UA) and lecithin-enriched (EA) adult A. FRANCISCANA for 90 days (mean  ±  SD; n = 3). Different 

letters in each day indicate significant differences by Tukey's test (P  <  .05). 

 

3.2. Growth PERFORMANCE PARAMETERS 

According  to  the  results  of  the  two-way  ANOVA  regarding  total weight (P, 0.023; r2, 0.936) and total 

length (P, 0.001; r2, 0.855) at the end of three months were influenced by the interaction of ARTEMIA adult 

enrichment and commercial diet replacement with ARTEMIA. There was no significant difference  in the  green 

terror  total weight  recorded  be- tween days 0 and 18 (P  >  .05, see Fig. 2 A). At 54 and 90 days, there were    

significant    differences    among    green    terror    total    weights (P  <  .05).  The  findings  also  demonstrated  

that  the  total  weights  in green terror increased in the group fed with lecithin-enriched ARTEMIA, and it was 

found to be significantly higher compared to the un-enriched ARTEMIA group (P  <  .05), and 50 EA treatment 

was significantly higher compared to other treatments (P  <  .05) (Fig. 2 A). There was no sig- nificant 

difference in the total length of green terror between days 0 and 18  (P  >  .05,  Fig.  2  B). At  54 and  90 days,  

there were  significant  dif- ferences  among  green  terror  total  lengths  (P  <  .05).  The  analyses showed 

that the total length in green terror increased in the group fed lecithin-enriched ARTEMIA, and it was 

significantly higher compared to the  un-enriched  ARTEMIA  group  (P  <  .05),  and  50  EA  treatment  was 

significantly higher compared to other treatments (P  <  .05) (Fig. 2 B). 

 

 



 

 

 
3.3. Activity of PANCREATIC digestive enzymes 

3.3.1. TOTAL ALKALINE PROTEASES 

The two-way ANOVA results in the case of the activity of total al- kaline proteases in different 

experimental groups are shown in Table 2. The activity of total alkaline proteases was influenced by the 

interaction between  the  enrichment  of  the  adult  ARTEMIA  (“enrichment”)  and  the replacement of the 

commercial diet with ARTEMIA. The findings showed that the specific activity of total alkaline proteases  in 

green terror in- creased in the groups fed lecithin-enriched ARTEMIA, whereas, in those fed  with  75%  EA  

(0.304  ±  0.02 U mg  protein
−1 min

−1
),  it  was  sig- nificantly higher compared to the other groups (Figs. 3, 

P  <  .05). Be- sides,  the  lowest  total  alkaline  proteases  activity  was  observed  in  the fish    fed    25%    (0.145  

±  0.01 U mg    protein
−1 min

−1
)    and    0% (0.141  ±  0.01 U mg protein

−1 min
−1

) ARTEMIA groups (Fig. 3). 

 
3.3.2. ALPHA-AMYLASE 

The two-way ANOVA results showed that the specific activity of α- amylase  activity  in  green  terror  was  

significantly  affected  by  ARTEMIA enrichment  and  replacement  factors  (see  Table 2).  Therefore,  fish  fed 

100  and  0%  level  of  ARTEMIA  replacement  had  significantly  higher (27.08  ±  9.94 U mg protein
−1 min

−1
) 

and lower (17.16  ±  1.28 U mg protein
−1 min

−1
) α-amylase activity values, respectively, compared to the  

other  groups  (P  <  .05,  Fig.  4  A).  Besides,  the  highest  α-amylase activity was obtained in the enriched 

group (Fig. 4 B). 

 
3.3.3. BILE-SALT ACTIVATED LIPASE 

Based on two-way ANOVA results in Table 2, the lipase enzyme was only  affected  by  the  enrichment  of  

the  adult  ARTEMIA.  There  were  no significant  differences  in bile-salt  activated lipase  among  replacement 

treatments  (P  >  .05)  (Fig.  4  C).  Nevertheless, the  enrichment  factor had significant effects on bile-salt 

activated lipase (Fig. 4 D). 

 
3.3.4. RELATIONSHIP between digestive enzymes ACTIVITY AND ARTEMIA REPLACEMENT 

The α-amylase activity was quadratically related to the increase of 
ARTEMIA  percentage  in  both  lecithin-enriched  and  unenriched  dietary treatments.  These  activity values  

generally  increased with  ARTEMIA re- placement up to 100%. Based on PNR analysis, the maximum activity 

was  observed  in  100%  replacement  of  lecithin-enriched  ARTEMIA  and 86%  replacement  of  unenriched  

ARTEMIA  (Fig.  5  A).  However,  the  re- lationship  between  bile-salt  activated  lipase  and  unenriched  and  en- 

riched   ARTEMIA   replacement   percentages   were   not   statistically   sig- nificant (Fig. 5 B). 

The  relationship  between  alkaline  proteases  activity  and  levels  of ARTEMIA replacement was not 

statistically significant in the unenriched- ARTEMIA groups. Based on the PNR analysis, the maximum total 

alkaline proteases activity was observed in 85% lecithin-enriched ARTEMIA (Fig. 5 C). 

 
3.4. Reproductive PERFORMANCE 

3.4.1. Reproductive indices in ADULT fish 

The  two-way  ANOVA  results  of  the  variables  related  to  the  re- productive   performance   of   green   

terror   in   different   experimental groups are shown in Table 3. Gonadosomatic index, absolute fecundity, 

relative  fecundity, and  egg  weight  were  influenced by  the  interaction between  adult  ARTEMIA  enrichment  

and  commercial  diet  replacement with  ARTEMIA,  whereas  the  other  factors  were  only  impressed  by  one 

dietary factor (“replacement” or “enrichment”). 

The highest and lowest values for GSI were observed in broodfish in 50% of the EA group (5.8% in females 

and 0.56% in males) and 100% of the UA group (1.25% in for females and 0.07% in males), respec- tively 



 

 

(Fig. 6). 

The best results of relative and absolute fecundity values were ob- tained in those groups co-fed EA and 

UA and the inert commercial diet, regardless of the combination of live prey and the inert diet (Table 4). 

The administration of only UA resulted in the lowest relative fecundity and absolute fecundity values, 

whereas the rest of the treatments (EA and  CD)  showed  intermediate  values  with  regard  to  those  feeding  

re- gimes containing ARTEMIA and the CD (P  <  .05).  

In addition, egg weight was significantly impressed by the interac- tion between the enrichment and 

replacement percentages (P < .05). In particular, the heaviest eggs were found in the broodfish fed with 

50% EA, 75% UA, and 75% EA feeding regimes, whereas the smallest ones belonged to 100% CD and 25% 

UA groups. The other feeding regimes resulted in intermediate egg weight values in the above-men- tioned 

dietary treatments. 

Hatching and larval survival rates, as well as the time between two spawning episodes, were significantly 

affected by the “replacement” factor (Table 3; P < .05). In addition, the hatching rate was affected by the 

“enrichment” factor (Table 3; P < .05). The best hatching and larval survival rates were found in the 50% 

replacement group in each of UA and EA (Table 5). The shortest time between two spawning episodes was 

observed in broodfish in the 50 and 75% replacement factor groups, whereas the longest interval was 

observed in 0 and 100% replacement factors groups (Table 5; P < .05). 

Although fertilization rates and egg diameter were not affected by the “enrichment” factor (Table 5, P > 

.05), the egg diameter was in- fluenced by the “replacement” factor. The highest eggs in term of size were 

found in the broodfish fed with 50% CD replaced by each of UA and EA, whereas the smallest ones were 

those in 0% UA and 0% EA (100% CD) groups. 

 

 
3.4.2. Reproductive indices in LARVAE 

The two-way ANOVA results of larval TL and BW at hatching and 170 h after hatching (hah) in different 

experimental groups are shown in Table 6. All parameters were influenced by the interaction between 

“enrichment” and “replacement” factors. In particular, larval TL and BW at hatching and 170 hah in 

different dietary experimental groups are shown in Table 7. Larval TL and BW at hatching were lowest    (3.1 

mm and 6.6 mg) and highest (4.7 mm and 9.4 mg) for those fed 100% CD and 50% EA, respectively. At 170 

hah, the lowest and highest total length and weight were recorded in the 100% CD and 50% EA groups, 

respectively. 

 

 



 

 

 

 

Fig. 3. Total alkaline proteases activity of green terror fed with different dietary ratios of unenriched (UA) 

and lecithin-enriched (EA) adult A. FRANCISCANA for 90 days (mean  ±  SD; n = 3). Different letters in bars 

indicate significant differences by Tukey's test (P  <  .05). 

 
 

 

Fig. 4. α-amylase activity (A and B) and Bile-salt activated lipase (C and D) of green terror fed with 
different dietary in replacement (A and C) and enrichment (B and 

D) groups. Different letters in bars indicate significant differences by Tukey's test (P < .05). 



 

 

 

Fig. 5. Polynomial regression analysis of α-amylase activity (A), bile-salt activated lipase activity (B), 

and total alkaline proteases activity (C) in groups fed with lecithin-enriched (EA, ■) and unenriched 

(UA, ◆) treatments. 

3.4.3. RELATIONSHIPS between reproductive indices 

A  positive  and  significant  correlation  was  detected  between  gona- dosomatic  index  with  absolute  

fecundity,  relative  fecundity,  egg  dia- meter, and egg weight; absolute fecundity with egg diameter and 

egg weight; relative fecundity with egg diameter and egg weight; and egg diameter  with  egg  weight  values  

of  the  experimental  fish  in  lecithin- enriched groups (Table 8). However, in unenriched (UA) groups only a 

positive and significant correlation was found between gonadosomatic index with egg diameter as well as 

egg diameter with egg weight values (Table 8). The relationships between other indices were not statistically 

significant in the unenriched (UA) A. FRANCISCANA treatments (Table 8). A   positive   and   significant   correlation   

was   detected   between hatching  and  larval  survival  rates  of  experimental  fish  in  both  un- enriched 

and enriched groups. Also, a correlation between larval body weight,  total  length,  and  egg  diameter  was  

obtained  from  that  those feeding both unenriched and lecithin-enriched A. FRANCISCANA (Figs. 7). Based on 

the PNR analysis and considering different feeding regimes and reproductive indices such as absolute 

fecundity, relative fecundity, fertilization and hatching rate it was suggested thatthe optimal levels of  

lecithin-enriched  ARTEMIA  were  54,  53,  54,  56,  and  56%  (average 

value = 54.6  ±  1.3%), whereas, for the unenriched ARTEMIA, they were 46, 46, 56, 50, and 53% (average 

value = 50.2  ±  4.4%) (Table 9). 



 

 

 

4. Discussion 

In this study, the use of soybean lecithin bioencapsulated in adult A. FRANCISCANA and its combination with 

an inert commercial diet improved the  pancreatic  digestive  enzymes,  and  reproductive  performances  of 

terror cichlid. This feeding strategy (combination of a commercial diet with ARTEMIA) is commonly used in 

ornamental fish hatcheries, although authors considered that there is room for the nutritional 

improvement of diets, especially in terms of PL content. As ARTEMIA has non-selective and  continuous  feeding  

behavior,  its  nutritional  value  may  be  modu- lated  in  order  to  fit  the  nutritional  requirements  of  the  

desired  fish species (Dhert, 1991; Lim, 2003). In the current study, the crude lipid content in adult ARTEMIA 

increased by 22.36%, whereas its PL content increased  by  11.47%.  Similar  results  were  reported  in  

liposomes-en- riched ARTEMIA (Monroig et al., 2003, Guinot et al., 2013b) with 12.8, 53.44% and 21.6% 

increase in crude lipid and PL, although the mag- nitude of the increase can be depended on the stage of 

development AND different strain of ARTEMIA. 

In  the  current  study,  the  administration  of  PL-enriched  ARTEMIA  in combination  with  a  commercial  

diet,  in  50%  EA  groups,  resulted  in 34.17% increase in growth performance, in comparison with the 0% in 

the replacement group. These results may be attributed to the fact that 

 

 

Fig.  6. Gonadosomatic  index  (GSI)  of  green  terror  (male  and  female)  fed  with  different  dietary  ratios  

of  unenriched  (UA)  and  lecithin-enriched  (EA)  adults  A. FRANCISCANA for 90 days (mean  ±  SD; n = 3). 

Different letters in each same bars indicate significant differences by Tukey's test (P  <  .05). 



 

 

crude lipid and PL levels increased in enriched ARTEMIA compared to the commercial diet. In addition, feeding 

behavior was modified in terror cichlid when enriched ARTEMIA was offered. As the fish were growing, their  

food  intake  rate  enhanced  in  comparison  to  those  in  the  0%  re- placement group (the data is not shown). 

These results may be due to the  higher  palatability of  this  type  of  live  prey  (Øie  et  al.,  2011)  and attractant 

effect of phosphatidylcholine that was previously reported by and  Harada  et  al.  (1987)  and Koven  et  al.  

(1993)  in seriola  (SERIOLA LALANDI)  and  gilthead sea bream  (SPARUS  AURATA), respectively. Further- more, Jamali 

et al. (2018) found that the combination of ARTEMIA with an  inert  diet  could  result  in  increased  feed  intake  

as  well  as  an  en- hancement  of  food  digestibility.  However,  feeding  terror  cichlid  with just  enriched  or  

unenriched  ARTEMIA  did  not  result  in  the  best  growth performance. In Senegalese sole (SOLEA SENEGALENSIS) 

and cobia (RACHY- centron  CANADUM)  larvae  (Engrola  et  al.,  2009;  Nhu  et  al.,  2010;  Mai et  al.,  2009)  and  

freshwater  prawn  MACROBRACHIUM  rosenbergii  (Anh et  al.,  2009),  the  co-fed  with  ARTEMIA  and  a  micro-diet  

had  the  best effects on growth performance. Moreover, it was reported that dietary PLs may promote 

somatic growth by supplying energy, enhancing the efficiency  of  lipid  utilization  by  their  emulsification  

and  digestion,increasing lipid transport between organs, and supplying phosphati- dylcholine with a 

growth-promoting effect (Kasper and Brown, 2003; Geurden et al., 1998; Shields et al., 1999; Tocher et al., 

2008; Zhu et al., 2018). 

Previous studies using lecithin as lipid emulsifiers in the aquafeeds improved lipid emulsification and 

enhanced lipid digestion and ab- sorption (see the review in Tocher et al., 2008). It was reported that some 

species of fish only at larval and early juvenile stages may have a limited capacity to biosynthesize of PLs 

(Saleh et al., 2013). It is no- teworthy that older fish have not been investigated in this respect. As the authors 

postulated, the requirement for intact phospholipids in fish feeding is extremely low levels of PLs (Tocher et 

al., 2008). 

 



 

 

 

Fig. 7. Linear regression equations and the relationship between hatching rate and larval survival rate (A: 

unenriched and B: lecithin-enriched group); total weight of larvae and egg diameter (C: unenriched and 

D: lecithin-enriched group); total length of larvae and egg diameter (E: unenriched and F: lecithin-

enriched group) in green terror fed with different dietary ratios of unenriched and lecithin-enriched 

adults A. FRANCISCANA. 



 

 

Considering  the  main  pancreatic  digestive  enzymes,  the  results varied depending on the enzyme 

considered. The changes in α-amylase activity were significantly correlated with the level of ARTEMIA inclusion 

in the feeding regime in green terror cichlid. In particular, the highest activity of α-amylase was observed 

in both groups fed unenriched- and lecithin-enriched  ARTEMIA.  As  previous  authors  have  reported,  these 

results may be attributed to different carbohydrate content and source in live prey with regard to the inert 

diet (Ma et al., 2005; Gisbert et al., 2009).  Regarding  the  bile-salt  activated  lipase,  the  enrichment  factor 

played a significant role; however, it increased bile-salt activated lipase negligibly  among  the  experimental  

treatments.  These  results  may  be attributed to 22.36% increase in the crude lipid in the enriched ARTEMIA 

compared to the un-enriched ARTEMIA, as the synthesis of this lipolytic enzyme  is  regulated  by  lipid  classes  

(chain  length  and  degree  of  sa- turation) and levels (Morais et al., 2004). Based on Fig. 1, the highest and  

lowest  values  of  total  alkaline  protease  activities  may  not  be  at- tributed  to  the  different  dietary  

proteins,  as  unenriched  and  enriched adult   ARTEMIA   contain   similar   level   and   quality   of   crude   protein 

(50–51%).  In  particular,  the  above-mentioned  different  levels  of  total alkaline proteases may be linked to 

the effects of dietary fatty acids and phospholipid levels, especially lysophospholipids that act as emulsifiers 

in  the  intestine  of  fish,  on  the  synthesis  and  secretion  of  pancreatic enzymes (Infante and Cahu, 1999; 

Gisbert et al., 2005; Rønnestad et al., 2014). In line with our study, Adel et al. (2017) reported that the use 

of soybean  lecithin  in  the  common  carp  (Cyprinus  CARPIO)  diet  increased the activity of lipase (5.4%), amylase 

(6.8%), and protease (27%) en- zymes. The researchers reported that lecithin usually increases the se- 

cretion  of enzymes,  especially  pancreatic enzymes,  for digestion. This increase in the secretion of enzymes 

can improve the absorption of food by  aquatic  animals  (Bakke-McKellep  et  al.,  2000).  In  our  study,  the 

ARTEMIA encapsulated with soybean lecithin increased protease activity by > 79%,  and  helped  to  enhance  

amylase  and  lipase  activities  ap- proximately  by  13%  in  both  when  compared  to  the  un-enriched  Ar- 

TEMIA. Additionally, Gisbert et al. (2005) found that that the increased lipase activity  in the fish  fed  with 

lecithin-based diet could  be  due to their increased capacity of using neutral lipids through phospholipids in 

fish. 

In  addition,  unenriched  and  lecithin-enriched  adult  ARTEMIA  com- bined  with  an  inert  diet  was  also  

beneficial  in  terms  of  reproductive performance.  On-grown  ARTEMIA  appears  to  contain  lipid  compounds 

such  as  polyunsaturated  fatty  acids  and  peptides  similar  to  sexual hormones  that,  in  broodstock  diets,  

can  induce  enhanced  sexual  ma- turity   and,   consequently,   increased   reproductive   performance   of 

aquatic animals (Gandy et al., 2007). In this study, reproductive para- meters improved after incorporating 

the enriched or unenriched adult ARTEMIA into the feeding regime of green terror cichlid. With regard to 

the  incorporation of the unenriched ARTEMIA, the  positive effects have been  reported  in  shrimp  (L.  

VANNAMEI)  broodstocks  (Naessens  et  al., 1997), CARASSIUS AURATUS, Pterophyllum leopoldi broodstocks (Tamaru 

and Ako,  2003),  and  L.  VANNAMEI  broodstock  (Wouters  et  al.,  2002).  They suggested  that  on-grown  ARTEMIA  

acted  as  a  transferor  for  essential nutrients  that  were  able  to  increase  the  reproductive  performance  

in term of the fertilization rates, the number of spawning events, female's fecundity,  sperm  counts,  and  

spermatophore  weight.  In  line  with  our work,  the  positive  effects  of  adult  ARTEMIA  in  diets  on  

reproductive performance of ornamental fish broodstocks has been well-documented in the golden corydoras 

catfish, Corydoras aeneus (Tamaru et al., 2000), the  goldfish,  Carassius  auratus  (Tamaru  and  Ako,  2003),  the  

severum cichlid  Cichlasoma  severum  (Langroudi  et  al.,  2009),  and  angelfish Pterophyllum scalare (Langroudi 

et al., 2009). 

There is no data about whether lecithin-enriched ARTEMIA was used in feeding regimes. Nonetheless, the 

impact of lecithin in diets on the reproductive  indices  of  aquatic  organisms  are  well  documented  (Bray et 

al., 1990; Cahu et al., 1994; Tocher et al., 2008; Sui et al., 2009). In 



 

 

this  study,  the  lecithin-enriched  ARTEMIA  increased  the  reproductive performance  of  green  terror  in  

term  of  fecundity,  egg  diameter,  egg weight, hatching rates, and larval survival. In addition, dietary PLs 

have resulted  in  decreased  interval  between  the  two  spawning  events  and increased  larval  size  in  body  

weight  and  total  length  at  hatching  and 170 hah. Although there is limited information on the effects of 

dietary PL  on  fish  reproductive  performance,  in  different  shrimp  species,  si- milar  results  were  observed  

(Cahu  et  al.,  1994;  Sui  et  al.,  2009).  The above-mentioned results may be attributed to the improvement 

of egg quality  through  vitellogenesis,  as  PLs  may  enhance  lipid  mobilization from the liver into the ovaries 

(Wu et al., 2007; Sui et al., 2009) and promote  larval  development  due to  a  more  efficient  use  of  

triacylgly- cerides at early larval stages (Tocher et al., 2008). Sui et al. (2009) and Alava et al. (1993) reported 

that in Eriocheir sinensis and MARSUPENAEUS JAPONICUS  fed  phospholipid  affected  lipid  mobilization  from  the  

hepa- topancreas to the ovary. This could be a plausible explanation for the higher  rate  of  GSI  in  our  

study.  As  shown  in  our  findings,  males  and females fed 50 EA had 460% and 300% GSI, respectively, which 

were higher  than  those  in  the  0%  replacement  group.  As  pointed  out  by Cheng  et  al.  (1998)  and  Wen  

et  al.  (2001),  it  seems  that  the  dietary phospholipids  are  transported  to  the  developing  ovaries.  In  the  

same vein,  Teshima  and  Kanazawa  (1980)  concluded  that  the  triglycerides converted to phospholipids 

could enter the ovary. Furthermore, other studies showed that triglycerides can be considered as an 

energy sup- plier for embryo development (Kaitaranta and Ackman, 1981). There- fore,  co-feeding  with  

commercial  food  containing  high  triglyceride source  (73.44%)  and  lecithin-enriched  ARTEMIA  containing  

high  phos- pholipid source (43.72%) can improve the reproductive performance of green terror  cichlid  

through increasing  the transfer process  of neutral lipids (triglyceride) by phospholipids. 

5. Conclusion 

The  current  study  revealed  that  feeding  strategy  (combination  of ARTEMIA  with  a  commercial  diet)  

improved  the  pancreatic  digestive enzymes,   and   reproductive   performances   of   green   terror   cichlid. 

Moreover, the administration of lecithin-enriched ARTEMIA in combina- tion with a commercial diet had 

positive effect on above factors. Based on  PNR  analysis  of  reproductive  performance,  the  feeding  regimes  

of green  terror  from  55.8  to  52.5%  and  54.6  to  50.2%,  respectively,  of lecithin-enriched and unenriched 

ARTEMIA in combination with an inert diet  could  be  recommended.  Moreover,  based  on  PNR  analysis,  the 

activity  of  α-amylase  and  total  alkaline  proteases  was  related  to  un- enriched and enriched ARTEMIA 

replacement percentages. On the other hands  relationship  between  bile-salt  activated  lipase  and  

unenriched and  enriched  ARTEMIA  replacement  percentages  were  not  significant. This feeding strategy 

can be applied successfully in this freshwater or- namental fish culture. 
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Table 1. Lipid class analysis of soybean lecithin (mean ± SD; n = 3). 

Lipid class (% of  total lipids) Soybean lecithin 

PC 32.5 ± 0.7 

Pea 16.7 ± 0.2 

PSe + PI 16.8 ± 0.3 

LPC 1.4 ± 0.1 

LPEa nd 

Unknown 6.9 ± 0.4 

Total phospholipid 74.4 ± 0.2 

Chl 0.97 ± 0.09 

FFA  5.20 ± 0.12 

TAG 2.46 ± 0.12 

Abbreviation: nd, not detected; PC, Phosphatidylcholine; PEa, Phosphatidylethanolamine; PSe, Phosphatidylserine; PI, 

Phosphatidylinositol; LPC, Lysophosphatidylcholine; LPEa, Lysophosphatidylethanolamine; Chl, Cholesterol; FFA, Free 

fatty acids; TAG, Triacylglycerides 

 

 

 

 

 

Table 2. Proximate composition of experimental diets (commercial diet, lecithin-enriched and unenriched A. franciscana 

adults) (mean ± SD; n = 3). 

Composition 

Diets 

Unenriched A. 

franciscana 

Lecithin-enriched A. 

franciscana 
Commercial diet* 

Dry matter (%) 12.1 ± 0.8b 10.6 ± 0.9b 91.0 ± 2.5a 

Crude protein (% DW) 51.1 ± 1.9 50.2 ± 2.6 48.0 ± 2.0 

Crude lipid (% DW) 16.0 ± 2.3b 19.7 ±1.1a 13.0 ± 3.0c 

Ash (%DW) 20.7 ± 1.5a 17.0 ± 3.2b 11.0 ± 1.5c 

*The trade mark of commercial food was BioMar, France 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3. Lipid class composition of experimental diets (commercial diet, lecithin-enriched and unenriched A. franciscana 

adults) (mean ± SD; n = 3). 

Lipid class (% of  total 

lipids) 

Diets 

Unenriched A. franciscana 
Lecithin-enriched A. 

franciscana 
Commercial diet 

PC 17.2 ± 1.8a 18.1 ± 0.5a 3.2 ± 0.3b 

Pea 10.8 ± 1.2b 13.9 ± 0.6a nd 

PSe + PI 7.6 ± 0.2a 7.3 ± 0.1a 0.5 ± 0.0b 

LPC 2.7 ± 0.0a 1.2 ± 0.1b nd 

LPEa 2.7±0.3 2.5 ± 0.6 nd 

Unknown nd Nd nd 

Total phospholipid 39.2± 2.0b 43.7 ± 1.3a 3.7 ± 0.1c 

    

Chl 23.8 ± 1.0a 19.4 ± 0.6b 7.1 ± 0.15c 

FFA  21.9 ± 1.4a 20.9 ± 0.2a 5.6 ± 0.1b 

TAG 7.8 ± 1.3c 9.8 ± 0.9b 73.4  ±0.3a 

Abbreviations: nd, not detected; PC, Phosphatidylcholine; PEa, Phosphatidylethanolamine; PSe, Phosphatidylserine; PI, 

Phosphatidylinositol; LPC, Lysophosphatidylcholine; LPEa, Lysophosphatidylethanolamine; Chl, Cholesterol; FFA, Free 

fatty acids; TAG, Triacylglycerides. 

 

 

 

 

 

 

 

Table 4. Two-way ANOVA output for growth of green terror cichlid (A. rivulatus) fed different experimental groups at 

the end of the experiment (p-values). 

Parameters Replacement 

regime 
Enrichment 

Replacement regime × 

Enrichment 
r2 

BWf 0.001 0.001 0.023 0.936 

TLf 0.001 0.001 0.001 0.855 

SGR 0.001 0.001 0.001 0.895 

WG 0.001 0.001 0.001 0.897 

BWf, body weight final; TLf, total length final; SGR, specific growth rate; WG, weight gain 

 

 

 

 

 

 

 

 

 



 

 

Table 5. Survival and growth performance parameters of green terror cichlid (Aequidens rivulatus) fed different dietary 

ratios of commercial diet (CD), unenriched (UA) and lecithin-enriched (EA) A. franciscana for 90 days (mean ± SD; n = 

3). 

Experimental groups 
Growth parameters 

Enrichment 
Replacement 

regime BWf TLf (cm) SGR (% day-1) WG (%) SR (%) 

UA 

0 12.0 ± 0.3c 7.9 ± 0.1cd 1.51 ± 0.05d 290.6 ± 17.2d 92.2 ± 1.9 

25 12.4 ± 0.2c 7.9 ± 0.1cd 1.54 ± 0.04d 300.2 ±14.3d 93.3 ± 3.3 

50 14.6 ± 0.3b 8.5 ± 0.2bc 1.76 ± 0.02ab 385.6 ± 10.7ab 96.7 ± 3.3 

75 14.2 ± 0.2b 8.3 ± 0.0bcd 1.69 ± 0.02bc 357.0 ± 6.7bc 93.3 ± 3.3 

100 11.8 ± 0.4c 7.9 ± 0.1d 1.49 ± 0.03d 283.5 ± 9.08d 92.2 ± 1.9 

EA 

0 12.0 ± 0.3c 7.9 ± 0.1cd 1.51 ± 0.05d 290.6 ± 17.2d 92.2 ± 1.9 

25 12.9 ± 0.4c 8.1 ± 0.1bcd 1.61 ± 0.06cd 324.4 ± 21.7cd 94.4 ± 1.9 

50 16.1 ± 0.5a 9.4 ± 0.3a 1.86 ± 0.05a 432.1 ± 24.7a 95.6 ± 1.9 

75 15.2 ± 0.4ab 8.6 ± 0.0b 1.76 ± 0.03ab 386.4 ± 15.1ab 93.3 ± 3.3 

100 12.7 ± 0.3c 7.9 ± 0.2cd 1.58 ± 0.05cd 314.4 ± 19.67cd 94.4 ± 1.9 

Different letters on the each column indicate significant difference by Tukey’s test (P < 0.05). Abbreviations: BWf, final 

body weight; TLf, final total length; SGR, specific growth rate; WG, weight gain; SR, survival rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Polynomial regression (PNR) analysis of BWf, TLf, SGR and WG and suggested percentage of Artemia 

replacement. 

Groups  

Investigated factors1 

BWf TLf SGR WG 

Lecithin-

enriched 
Artemia 

P, r2 0.001,0.748 0.004, 0.601 0.001, 0.743 0.001, 0.723 

F 17.794 9.021 17.377 15.642 

A 11.447 7.764 1.478 275.370 

b1,b2 0.140, -0.001 0.046,-0.0004 0.011, -0.0001 4.62, -0.0418 

Suggested of Artemia 54% 57% 57% 55% 

Unenriched- 
Artemia 

P, r2 0.001, 0.708 0.017, 0.491 0.001, 0.671 0.001, 0.667 

F 14.578 5.786 12.245 12.012 

A 11.527 7.844 1.472 274.699 

b1,b2 0.099, -0.001 0.019, -0.0002 0.009, -0.0000 3.377, -0.0321 

Suggested of Artemia 55% 47% 55% 53% 

Abbreviations for this table are similar to those presented in Table 4. 

 

 

 

 

 

 



 

 

 

 

 

Table 7. Two-way ANOVA output for activity of pancreatic digestive enzymes of green terror cichlid (A. rivulatus) fed 

different experimental groups at the end of the experiment (p-values). 

Parameters Replacement 

regime 
Enrichment Replacement × Enrichment r2 

α-amylase 0.001 0.026 0.148 0.585 

Bile-salt activated lipase 0.800 0.008 0.389 0.072 

Total alkaline proteases 0.001 0.001 0.004 0.828 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Two-way ANOVA output for reproductive of green terror cichlid (A. rivulatus) fed different experimental 

groups at the end of the experiment (p-values). 

Parameters Replacement 

regime 
Enrichment Replacement × Enrichment r2 

GSIf 0.001 0.001 0.024 0.907 

GSIm 0.001 0.001 0.007 0.955 

AF 0.001 0.001 0.012 0.877 

RF 0.001 0.001 0.026 0.845 

EW 0.001 0.148 0.046 0.858 

ED 0.001 0.180 0.421 0.815 

F 0.056 0.160 0.898 0.153 

TS 0.006 0.073 0.402 0.390 

H 0.001 0.039 0.826 0.455 

SRL 0.002 0.077 0.911 0.403 

GSIf, Gonadosomatic index of female; GSIm, Gonadosomatic index of male; AF, Absolute fecundity; RF, relative 

fecundity; ED, egg diameter; EW, egg weight; TS, time between two spawning; F, Fertilization; H, hatching; SRL, 

larval survival 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 9. Absolute fecundity (AF), relative fecundity (RF) and egg weight (EW) of green terror cichlid fed different dietary 

ratios of commercial diet (CD), unenriched (UA) and lecithin-enriched (EA) A. franciscana for 90 days (mean ± SD; n = 

3). 

 
Experimental groups 

Reproductive factors 

Enrichment 
Replacement 

regime AF (egg number) RF (egg number g-1) EW (mg) 

UA 

0 215 ± 35bc 16.9 ± 2.9b 0.81 ± 0.11d 

25 300 ± 20ab 24.2 ± 3.7a 0.88 ± 0.08d 

50 325 ± 25ab 25.4 ± 3.7a 1.89 ± 0.18a 

75 373 ± 55ab 28.6 ± 2.3a 1.37 ± 0.17bc 

100 100 ± 32d 8.5 ± 2.5c 1.20 ± 0.15bcd 

EA 

0 215 ± 35bc 16.9 ± 2.9b 0.81 ± 0.11d 

25 410 ± 45a 30.3 ± 3.5a 1.54 ± 0.17ab 

50 410 ± 30a 31.6 ± 1.9a 1.95 ± 0.22a 

75 340 ± 40ab 26.1 ± 1.7a 1.29 ± 0.22bcd 

100 253 ± 15bc 19.4 ± 2.8b 1.00 ± 0.13cd 

Different letters on the each column indicated significant difference by Tukey’s test (P < 0.05) 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Fertilization (F, %), hatching (H, %) and larval survival rates (SRL, %), egg diameter (ED), and time between 

two spawning (TS) of green terror cichlid fed different dietary ratios of commercial diet (CD), unenriched (UA) and 

lecithin-enriched (EA) A. franciscana for 90 days (mean ± SD; n = 3). 

 

Experimental groups 

Reproductive factors   

F (%) H (%) SRL (%) TS (days) ED (mm) 

 

Replacement 

regime 

 

0 89.67 ± 3.51 80.67 ± 3.51c 70 ± 5c 14 ± 0.89a 0.67 ± 0.08d 

25 90.83 ± 2.86 86.67 ± 3.76abc 78 ± 4.60abc 12.5 ± 1.04b 0.79 ± 0.1cd 

50 94.33 ± 3.44 90.67±3.01a 84 ± 5.55a 11.5 ± 1.14b 1.18 ± 0.09a 

75 94.83 ± 2.92 88.83 ± 3.63ab 80.5 ± 5.79ab 11.5 ± 1.43b 0.96 ± 0.06b 

100 93 ± 3.85 82.50 ± 2.92bc 73.83 ± 6.43bc 13.3 ± 1.73ab 0.83 ± 0.07bc 

Enrichment 
UN group 91.8 ± 3.14 84.27 ± 5.03b 75.4 ± 7.03 12.98 ± 1.27 0.87 ± 0.19 

EN group 93.6 ± 3.79 87.47 ± 5.41a 79.13 ± 6.88 12.14 ± 1.74 0.91 ± 0.2 

Different letters on the each column indicated significant difference by Tukey’s test (P < 0.05) 

 

 

 

 

 



 

 

 

 

Table 11. Linear regression and correlationship values between reproductive performance parameters of green terror 

cichlid fed different dietary ratios of commercial diet (CD), unenriched (UA) and lecithin-enriched (EA) A. franciscana. 

     

 Parameter R2 F P 

Lecithin-enriched Artemia 

GSI × AF 0.928 38.09 0.009 

GSI × RF 0.953 60.93 0.004 

GSI × ED 0.937 44.45 0.007 

GSI × EW 0.989 266.88 0.001 

AF × ED 0.805 12.42 0.039 

AF × EW 0.882 22.35 0.018 

RF × ED 0.840 15.70 0.029 

RF × EW 0.916 32.69 0.011 

ED × EW 0.975 1543.03 0.001 

Unenriched- Artemia 

GSI × AF 0.588 4.29 0.130 

GSI × RF 0.574 4.04 0.138 

GSI × ED 0.777 10.46 0.048 

GSI × EW 0.758 9.42 0.055 

AF × ED 0.155 0.551 0.512 

AF × EW 0.134 0.465 0.544 

RF × ED 0.145 0.510 0.527 

RF × EW 0.125 0.427 0.560 

ED × EW 0.998 116.17 0.002 

Abbreviations for this table are similar to those presented in Table 6 and 7. 

 

 

 

 

 

 

 

 

Table 12. Polynomial regression (PNR) analysis of AF, RF, FE, HE and SRL and suggested percentage of Artemia 

replacement. 

Groups  

Investigated factors1  

AF RF FE HE SRL 

Lecithin-

enriched 
Artemia 

P, r2 0.035,0.965 0.020, 0.981 0.013, 0.987 0.009, 0.991 
0.006, 

0.994 

F 27.67 48.47 76.54 116.41 177.13 

a 205.83 16.33 89.89 80.38 70.26 

b1,b2 7.83, -0.072 0.574,-0.005 0.259, -0.002 0.428, -0.004 
0.553, -

.005 

Suggested of 

Artemia 
54% 53% 54% 56% 56% 

Unenriched- 
Artemia 

P, r2 0.203, 0.801 0.176, 0.823 0.015, 0.985 0.022, 0.978 
0.067, 

0.933 

F 3.92 4.67 66.99 45.25 14.02 

a 195.09 15.66 89.59 274.699 69.78 

b1,b2 7.29, -0.079 0.554, -0.006 0.135, -0.001 
3.377, -

0.0321 

0.414, -

0.004 

Suggested of 

Artemia 
46% 46% 56% 50% 53% 

Abbreviations for this table are similar to those presented in Table 6 and 7. 

 



 

 

 

 

 

 

Table 13. Two-way ANOVA output for larval TL and BW at hatching and 170 hours after hatching of green terror 

cichlid (A. rivulatus) fed different experimental groups at the end of the experiment (p-values). 

Parameters Replacement 

regime 
Enrichment Replacement × Enrichment r2 

BW0 0.001 0.001 0.001 0.959 

TL0 0.001 0.001 0.001 0.974 

BW170 0.001 0.001 0.041 0.942 

TL170 0.001 0.001 0.006 0.980 

BW0, body weight at hatching time; TLf, total length at hatching time; BW170, body weight at 170 hours after hatching; 

TLf, total length at 170 hours after hatching. 

 

 

 

 

 

 

 

 

 

Table 14. Total length (TL) and body weight (BW) of newly hatched and 170-hours larvae of green terror cichlid fed 

different dietary ratios of commercial diet (CD), unenriched (UA) and lecithin-enriched (EA) Artemia franciscana for 90 

days (mean ± SD; n = 3). 

Experimental groups 
Newly hatched  larvae 170-hours larvae 

Enrichment 
Replacement 

regime TL (mm) BW (mg) TL (mm) BW (mg) 

UA 

0 3.1 ± 0.1 e 6.6 ± 0.2d 5.7 ± 0.1e 9.7 ± 0.2e 

25 3.2 ± 0.1de 7.2 ± 0.2c 6.2 ± 0.2cd 10.3 ± 0.3de 

50 4.5 ± 0.1a 9.3 ± 0.1a 7.4 ± 0.1ab 13.4 ± 0.2a 

75 3.7 ± 0.1c 8.4 ± 0.1b 6.6 ± 0.2c 11.5 ± 0.2c 

100 3.2 ± 0.1de 7.1 ± 0.1c 6.2 ± 0.1d 10.2 ± 0.2de 

EA 

0 3.1 ± 0.1 e 6.6 ± 0.2d 5.7 ± 0.1e 9.7 ± 0.2e 

25 3.5 ± 0.1cd 8.1 ± 0.2b 6.5 ± 0.2cd 11.2 ± 0.2c 

50 4.7 ± 0.1a 9.4 ± 0.2a 7.6 ± 0.2a 13.7 ± 0.2a 

75 4.2 ± 0.2b 9.1 ± 0.1a 7.1 ± 0.1b 12.1 ± 0.1b 

100 3.2 ± 0.1de 7.3 ± 0.1c 6.5 ± 0.1d 10.6 ± 0.1d 

Different letters on the each column indicated significant difference by Tukey’s test (P < 0.05) 

 




