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Abstract 7 

This research work evaluates the feasibility of a smartphone-based spectrometer 8 

(740-1070 nm) for salted minced meat composition diagnostics at industrial scale. 9 

A commercially available smartphone-based spectrometer and a benchtop NIR 10 

spectrometer (940-1700 nm) were used for acquiring 1312 spectra from minced 11 

meat samples stored at four different temperatures ranging from -14 ᵒC to 25 ᵒC. 12 

Thereafter, for each spectrometer, PLS and Random Forest regression models 13 

specific for each temperature and global models were created to predict the fat, 14 

moisture and protein contents. Fat and moisture can be estimated with the global 15 

model in a wide range of temperatures by using the smartphone-based 16 

spectrometer, which has an acceptable accuracy for quality control purposes 17 

(RPD>7) and comparable to the accuracy of a benchtop spectrometer.  18 

 19 

Highlights: 20 

 Smartphone-based NIR was used to estimate salted meat composition 21 

 Accuracy of fat and moisture estimates are acceptable for quality control 22 

purposes 23 

 Predictive ability of smartphone-based NIR is similar to a benchtop 24 

spectrometer 25 

                                                        
1  IRTA, Food Technology Program, Finca Camps i Armet 17121 Monells, Girona, Spain    
2 Universitat Rovira i Virgili, C/ Marcel·lí Domingo, 2-4-6. 43007 Tarragona, Spain 
3  Corresponding author: +34-902789449 Ext. 1407 

mailto:andreas.kartakoullis@irta.cat
mailto:josep.comaposada@irta.cat
mailto:alvarojavier.cruz@urv.cat
mailto:xavier.serra@irta.cat
mailto:pere.gou@irta.cat


2 
 

 Random Forest predictive models are robust at temperatures from -14 ᵒC 26 

to 25 ᵒC  27 

 28 

1. Introduction 29 

Smartphone-based food diagnostic technologies have the potential to 30 

revolutionize the food sector by allowing rapid, on-site and inexpensive analysis 31 

of food and food products (Rateni, Dario, & Cavallo, 2017). This potential has been 32 

recognized by the European Union (EU) and a Horizon Prize competition called 33 

“Food Scanner” took place in 2016 for developing affordable and non-invasive 34 

mobile solutions that will enable users to measure and analyze their food intake. 35 

The winners were three European startups: Spectral Engines (winner), SCIO 36 

(runner-up) and TellSpec (runner-up) (Horizon, 2016). These three companies 37 

have developed novel smartphone-based food diagnostic applications by utilizing 38 

the analytical power of Near Infrared Spectroscopy (NIRS). NIRS utilize the 39 

spectral range from 800nm to 2500nm in order to provide chemical information 40 

through the different response of molecular bonds and structural information of 41 

the scanned sample (Burns & Ciurczak, 2007).  42 

Several research studies have been published in the last years in the agrifood 43 

sector that are taking advantage of the combined use of the rear smartphone 44 

camera with augmented sensors. For example, bio-receptors (e.g. fluorescent 45 

dyes) and colorimetric assays have been used for the on-site detection of 46 

contaminants (Coskun, et al., 2017); (Chen, et al., 2014), pesticide residues (Levin, 47 

Krishnan, Rajkumar, Halery, & Balkunde, 2016), (Wang, et al., 2016) and 48 

foodborne pathogens (Zhu, Sikora, & Ozcan, 2012), (Seo, et al., 2016). As for 49 

commercial applications, a great number of startups worldwide are offering 50 

smartphone-based NIRS by exploding the technological advancements in the high-51 

volume fabrication of microelectromechanical systems (MEMS) and micro-mirror 52 

arrays. These advancements have made possible the construction of miniaturized 53 

and inexpensive NIR spectrometers while keeping the performance at similar 54 

levels with the benchtop equipment (Ozcan, 2016). Device schematics and details 55 
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on how to design a low-cost smartphone-based spectrometers from off-the-shelf 56 

components can be found in the literature (Das, Wahi, Kothari, & Raskar, 2016). 57 

Spectral Engines solution uses a variety of Bluetooth-connected NIR sensors 58 

together with advanced analytics, cloud-connectivity and spectral libraries to 59 

reveal the fat, protein, sugar, and calories of food items (Antila, Kantojärvi, & 60 

Mäkynen, 2016). TellSpec is using a pocket-sized NIR spectrometer based on the 61 

Texas Instruments DLP module for scanning food through a mobile application in 62 

order to identify calories, allergens, contaminants and food frauds (Beam Your 63 

Health Up–TellSpec, 2018). Consumer Physics has the in-house-developed SCIO, a 64 

pocket-sized NIR spectrometer for molecular analysis of different samples, 65 

including food (Goldring & Sharon, 2011). In addition to the advancements in 66 

miniaturizing spectrometers, a mobile phone-compatible hyperspectral imager 67 

based on a tunable MEMS Fabry-Perot interferometer has been demonstrated for 68 

food sensing applications among other applications (Rissanen, et al., 2016).  69 

The abovementioned innovations have developed reliable food scanning mobile 70 

applications but are mostly targeting the customer. There is a need to develop 71 

more robust smartphone-based food diagnostic applications especially for the 72 

meat industry in order to ensure food quality and safety. NIRS is a widely used 73 

analytical technique in the food industry for the determination of the chemical 74 

composition because of its non-destructive, fast and sensitive abilities, and 75 

requires little or no sample preparation (Prieto, Roehe, Lavin, Batten, & Andres, 76 

2009) (Van den Berg, Lyndgaard, Sørensen, & Engelsen, 2013). Furthermore, NIRS 77 

coupled with multivariate analysis can determine the water and salt content at the 78 

surface of fermented sausages during the drying process (Collell C. , Gou, Arnau, 79 

Muñoz, & Comaposada, 2012), water and salt content at the surface of dry-cured 80 

ham during the resting and drying processes (Collell C. , Gou, Arnau, & 81 

Comaposada, 2011) and the authentication of meat products (Chiesa, et al., 2016). 82 

A limitation for the adoption of NIRS-based innovations is the sample temperature 83 

because it can cause significant variation to the acquired spectra. When the light 84 

of wavelengths longer than 450 nm is absorbed by liquid water, the energy is 85 

transferred to one or more of the vibrational modes of the O–H bond.  86 
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Spectroscopic studies of liquid water have shown that the shift in frequency is 87 

attributed to the weakness of intermolecular H-bonds due to the rise of 88 

temperature, which strengthens the covalent O-H bonds and consequently causes 89 

the water molecule to vibrate at higher frequencies (Segtnan, Sasic, Isaksson, & 90 

Ozaki, 2001). Furthermore, the absorption of light from liquid water at the visible 91 

and NIR region is getting stronger due to the rise of temperature above the 92 

freezing point of water (Pegau, Deric, & Zaneveld, 1997). Unfortunately, the 93 

temperature influence is usually ignored in NIRS predictive modeling because the 94 

temperature control, especially in industrial conditions, is quite difficult. However, 95 

recent studies have used compensation methods to mitigate the temperature 96 

influence and to improve the accuracy of the prediction by employing 97 

temperature-compensated PLSR  global models (Yao, Chen, Xie, & Rao, 2013) 98 

(Campos, Antolin, Deban, & Pardo, 2018).  99 

The aim of this paper is to study the feasibility of smartphone-controlled near-100 

infrared spectrometers for salted minced meat composition prediction at different 101 

temperatures in comparison to a benchtop spectrometer. Additionally, linear and 102 

nonlinear regression methods have been used for constructing global models with 103 

the smartphone-based spectrometer that are robust for a great range of 104 

temperatures, from -14oC to 25oC. Furthermore, the effect of different data 105 

partitioning methods on how they affect the construction of predictive models is 106 

also investigated. 107 

2. Material and Methods 108 

2.1 Experimental Design 109 

Green hams (n= 328) from different origins were purchased: 171 Serrano-type 110 

hams from Jamonificio Subirats, S.L. (Els Hostalets de Balenyà, Barcelona, Spain),  111 

72 Serrano-type hams from Càrniques de Juià, S.A. (Juià, Girona, Spain), 30 Duroc 112 

Serrano-type hams from Cárnica Batallé, S.A. (Riudarenes, Girona, Spain) and 55 113 

Iberian hams from Corporación Alimentaria Guissona, S.A., (Guissona, Lleida, 114 

Spain). 115 

Green hams were salted by covering them with a layer of salt of at least 10 cm for 116 

different periods of time (7 days to 16 days) in order to obtain a high variability in 117 
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salt uptake, and therefore, in composition. Each green ham was carefully dissected 118 

and the subcutaneous fat, lean and intermuscular fat were minced together in a 119 

bowl chopper until a homogeneous meat paste was obtained. Four samples from 120 

each ham were vacuum packed and stored at different temperatures (-14 ᵒC, +5 121 

ᵒC, +12 ᵒC and +25 ᵒC) until data acquisition. The whole procedure resulted in 122 

samples with fat content varying from 5% to 43%, protein content varying from 123 

12% to 23% and moisture content varying from 35% to 69%.2.2 124 

Instrumentation 125 

Two NIR instruments were used. The first one is the smartphone-based SCiO 126 

(Consumer Physics, Israel) that can acquire 331-points reflection spectra that are 127 

ranging from 740 to 1070 nm. For controlling the SCiO spectrometer a Samsung 128 

Galaxy Core Prime with an Android 5.1.1 operating system was used. The second 129 

NIR instrument is a diode array Polychromix Spectral Probe (Polychromix Inc., 130 

Wilmington, USA) with InGaAs detector type that is covering the spectral region 131 

between 940 and 1700 nm with a resolution of 8 nm. Polychromix was used to 132 

compare the results obtained with SCiO. Polychromix reflectance data were stored 133 

as the logarithm of reciprocal of reflectance (1/R). For both instruments, three 134 

spectra per sample were collected and the mean spectrum per sample was used 135 

for further analysis. All the equipment was set in reflectance mode and operated 136 

at room temperature (20 ± 3 °C). 137 

The moisture, protein and fat contents of the meat samples were determined by 138 

using a FoodScan™ Lab (Foss Analytical, Hillerød, Denmark), which is an approved 139 

method for the analysis of moisture, fat and protein in meat and meat products by 140 

the Association of Analytical Communities, labeled as 2007.04 method (AOAC, 141 

2007).  142 

2.3 NIRS Analysis 143 

2.3.1 Data Acquisition 144 

Data acquisition was performed using the two different NIRS systems. Each 145 

sample was removed from the storage rooms and immediately three SCiO scans 146 

and three Polychromix scans were acquired at three different random spots and 147 

subsequently averaged. Great attention was given to keep the total acquisition 148 
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time for both the instruments less than 2 minutes in order to ensure that the 149 

temperature did not change significantly the sample composition during the 150 

spectra acquisition.  151 

2.3.2 Data partitioning 152 

Dataset from each acquisition temperature was divided in two: a training dataset 153 

with 80% of the initial data and a testing dataset with 20% of the initial data.  The 154 

general aim of performing the data partitioning is to prevent knowledge from the 155 

training dataset to “leak” to the testing dataset, which will affect the predictive 156 

power of the PLSR model (Wold, Sjöström, & Eriksson, 2001). Two different 157 

methods for data partitioning have been selected, the first one is using only the 158 

responses Y to construct the two datasets by separating the values of Y with 159 

random stratification into groups. Each of the stratified groups contains 160 

approximately the same percentage of each response as in the original Y dataset 161 

(Molinaro, Simon, & Pfeiffer, 2005). For constructing the global model, the 162 

datasets of each temperature were merged and the training and testing datasets 163 

were obtained with the random stratification on the Y-dataset. 164 

The second method is to use the properties of the NIR spectra from the predictors 165 

X dataset. The Kennard-Stone (KS) algorithm was used for this partitioning, which 166 

is a sequential method that covers the spectral space uniformly in order to build a 167 

training dataset with flat distribution over the spectral space. It starts by 168 

computing the geometric distances (e.g. Euclidean) between all the pairs of 169 

spectra and the two spectra that are the farthest apart are assigned to the training 170 

dataset. The selection procedure is repeated until to build the training dataset 171 

according to the following maximin criterion, the next selected spectra must have 172 

the least distance with respect to any other spectra already selected (Puzyn, 173 

Mostrag-Szlichtyng, Gajewicz, Skrzyński, & Worth, 2011). Mahalanobis distance 174 

can be used also for satisfying the maximin criterion by performing Principal 175 

Component Analysis (PCA) on the spectra and computing the Euclidean distance 176 

of the PCA scores according to the following definition of the Mahalanobis 177 

distance:  178 

𝐻𝑖𝑗
2 = ∑ (𝑡̂𝑖,𝑛 − 𝑡̂𝑗,𝑛)

2
/𝜆̂𝑛

𝑁
𝑛=1     (1) 179 
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where 𝑡̂𝑖,𝑛 is the n-th principal component score of point 𝑖,  𝑡̂𝑗,𝑛 the corresponding 180 

principal component score for point 𝑗, 𝜆̂𝑛 is the eigenvalue of principal component 181 

𝑛 and 𝑁 is the number of the selected principal components. 182 

2.3.3 Data pretreatment 183 

The scatter correction methods include Multiplicative Scatter Correction (MSC), 184 

Inverse MSC, Extended MSC, Extended Inverse MSC, detrending, Standard Normal 185 

Variate (SNV) and different kinds of normalization to unit-vector length (e.g. 186 

scaling). The most common spectral derivatives methods are the gap-segment 187 

(also known as Norris-Williams) derivatives and the Savitzky-Golay (SG) 188 

polynomial derivative filters (Rinnan, van den Berg and Engelsen 2009). 189 

The SG method is fitting polynomials to windows around each point in the 190 

spectrum and these polynomials are then used to smooth the obtained data and 191 

subsequently differentiate them. Finite difference method can be used instead of 192 

the polynomial fitting for the computation of the first and second derivative by 193 

considering two different points of the spectrum: 194 

𝑥𝑖
′ = 𝑥𝑖 − 𝑥𝑖−1     (2) 195 

𝑥𝑖
′′ = 𝑥𝑖−1 − 2𝑥𝑖 + 𝑥𝑖+1    (3) 196 

This numerical subtraction deemphasizes lower frequencies and emphasizes 197 

higher frequencies (e.g. noise). Data smoothing methods are needed in order to 198 

improve the signal-to-noise ratio of the obtained data. The gap-segment method 199 

first performs a smoothing under a given segment size, followed by a gap 200 

derivative: 201 

𝑥𝑖
′ = 𝑥𝑖+𝑘 − 𝑥𝑖−𝑘     (4) 202 

𝑥𝑖
′′ = 𝑥𝑖−𝑘 − 2𝑥𝑖 + 𝑥𝑖+𝑘    (5) 203 

where 𝑘 is the gap size between the points. 204 

2.3.4 Predictive modelling 205 

Partial Least Squares (PLS) Regression (also known as Projection of Latent 206 

Structures) is one of the most popular tools for multivariate analysis (Wold H. , 207 
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1966). PLSR derives its popularity from the ability to analyze data with multiple, 208 

noisy, collinear (e.g. NIR spectra), and even incomplete variables. Its goal is to 209 

predict a set of dependent variables (denoted as Y) from a set of predictors 210 

(denoted as X). The prediction is achieved by extracting from the predictors a new 211 

set of orthogonal factors called Latent Variables (LVs) that have the best predictive 212 

power on unseen data. More specifically, PLSR tries to find two sets of weights w 213 

and c in order to extract two vectors from X and Y, t=Xw and u=Yc such that 214 

maximize the covariation between X and Y. It can be achieved with the following 215 

cost function: 216 

maximize cov(Xw, Y) subject to wTw=1   (6) 217 

The number of LVs defines the complexity of the predictive model and selecting 218 

the optimal number is one the most important steps because the amount of 219 

variance explained by a LV indicates its importance in the prediction of Y. For 220 

example, selecting too many LVs will result in an over-fitted model that takes into 221 

consideration not only the variance of the data but also noise. While selecting too 222 

few LVs implies an under-fitted model, which incorporates insufficient 223 

information of the data.  224 

In the current study, the target Y variables describe the concentration of certain 225 

components and X are the spectral data. The PLSR analysis was applied to the 226 

training dataset for each acquisition temperature.  We also constructed a global 227 

model for investigating further the temperature dependency on the predictive 228 

ability of the PLSR model. For each instrument, the four training datasets acquired 229 

at the four different temperatures were merged to create a global model for each 230 

instrument. The Root Mean Squared Error of Prediction (RMSEP), the coefficient 231 

of the determination (R2) and the residual predictive deviation (RPD) were used 232 

to decide the number of LVs.  233 

The RMSE of calibration was calculated: 234 

𝑅𝑀𝑆𝐸𝐶 = √∑ (𝑌𝑖−𝑌̂𝑖)2𝑁
𝑖=1

𝑁−𝐿𝑉𝑠−1
    (7) 235 

2.3.5 Validation of predictive models 236 
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Predictive models obtained after PLSR analysis of training dataset were applied to 237 

the testing data set. The RMSEP, R2 and RPD were calculated: 238 

𝑅𝑀𝑆𝐸𝑃 = √∑ (𝑌𝑖−𝑌̂𝑖)2𝑁
𝑖=1

𝑁
    (8) 239 

𝑅2 = 1 −
∑ (𝑌𝑖−𝑌̂𝑖)2𝑁

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑁
𝑖=1

    (9) 240 

where N is the size of the dataset, 𝑌𝑖 is the experimentally measured reference 241 

value for sample 𝑖 ,  𝑌̂𝑖  is the predicted reference value for sample 𝑖 and 𝑌̅ is the 242 

arithmetic mean of the corresponding dataset.  243 

RPD is the ratio between the standard deviation of the reference values and the 244 

error of prediction of the testing. It has been suggested that RPD values >3 are 245 

considered good for screening purpose; RPD values >5 are good for quality control, 246 

whereas RPD values >8 are considered excellent for all analytical tasks (Conzen, 247 

2006). 248 

2.4 Software and Algorithms 249 

The open-source programming language R (version 3.4.0, codename: “You Stupid 250 

Darkness”) (The R Core Team, 2018) was used to develop in-house codes based 251 

on the PLS and randomForest packages (Mevik & Wehrens, 2007) (Liaw & Wiener, 252 

2002).  253 

3.  Results and Discussion 254 

3.1 Spectral description of the samples 255 

Figure 1 shows the raw mean spectrum of all the collected spectra at each one of 256 

the acquisition temperatures. As expected, there are differences between the 257 

different temperatures even with a shift in frequency (frozen sample at -14 ᵒC) 258 

due to perturbations caused by the increase in temperature (Fig. 1B). The primary 259 

vibrational modes of liquid water are in the mid-infrared region at 3049 nm (ν1, 260 

symmetric stretch), 6079 nm (ν2, bend), and 2865 nm (ν3, asymmetric stretch). 261 

Several higher overtones of the vibrational modes can be found at the detection 262 

area of our equipment between 750-1800nm and therefore the whole spectrum 263 
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from each sample will be used for the construction of the predictive model in order 264 

not to exclude any informative part of the spectrum. 265 

  

Figure 1: The mean spectrum for each temperature for SCiO (A) and Polychromix (B). 266 

3.2 Pretreatment of raw spectra 267 

Figure 2 shows the effect of the pretreating methods upon 5 different SCiO spectra 268 

collected from samples stored at 25 o C. As expected the SNV and MSC are returning 269 

almost identical spectra with the only difference to be the offset of the intensity. 270 

The spectra obtained from the two spectral derivatives methods shows distinct 271 

differences between them, because of the different methods used for the 272 

computation of the derivatives. The spectral derivatives need thoroughly tuning 273 

because they have a number of parameters that are critical for building a 274 

predictive model, such as the order and length of the polynomial for the SG, and 275 

the size of the gap and the segment size of the smoothing filter for the gap-segment. 276 

A B 
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Figure 2: SCiO spectra without any pretreatment (A), with MSC pretreatment (B), with SNV pretreatment (C), 277 

with SG-1Der pretreatment (D), and with gap-segment derivative pretreatment (E). 278 

Several pretreatments have been used in order to build a PLSR model with the 279 

best overall predictive ability for the two different spectrometers. For scatter 280 

A B 

C D 

E 
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correction, we have selected to use only SNV for practical reasons. The signal-281 

correction concept behind the SNV and MSC is similar except that a reference 282 

spectrum is needed for the MSC correction. Usually, the reference spectrum is the 283 

mean spectrum of all the measurements and that can lead to the so-called data 284 

leakage.  Data leakage is when unexpected information is being added to the 285 

training dataset that can allow the model to learn something that it otherwise 286 

would not know. This will hinder the performance of the predictive model under 287 

construction (Nisbert, Elder, & Miner, 2009). Therefore, the selection of the MSC 288 

reference spectrum is a great challenge and that gives to SNV a practical advantage 289 

(Rinnan, van den Berg, & Engelsen, 2009). As for spectral derivatives, the gap-290 

segment method performs better with the SCiO data compared to the SG method 291 

that performs better with the Polychromix data. 292 

3.3 Predictive ability of NIR devices with two different data partitioning 293 

methods 294 

Table 1 and Table 2 show, for both NIR devices the predictive ability of the 295 

different PLSR models created by using the random stratification method and the 296 

KS method respectively for partitioning the data into training and testing datasets. 297 

The predictive models were constructed on the SNV+gap-seg and SNV+SG 298 

pretreated datasets. Fat, protein and moisture content of the samples were 299 

accurately predicted with the lowest value of the coefficient of the determination 300 

to be R2=0.92 and with 4 LVs for protein estimation at 25 ᵒC. The RPD values for 301 

all the predictions are above 3 and in some cases above 8, which means that our 302 

PSLR modelling could be accurate enough for quality control of fat and moisture 303 

contents and for screening purposes of protein content. It should be noted that 304 

RMSEP, R2 and RPD for fat and moisture prediction are worst in frozen samples, 305 

especially with SCiO device. RMSEP values for fat and moisture prediction are 306 

similar to the results reported in previous studies where benchtop spectrometers 307 

have been used in minced mass of pork sausages, for example SEP: 0.94-1.41% for 308 

fat and 0.76–1.01% for moisture (Ortiz-Somovilla, Espana-Espana, Gaitan-Jurado, 309 

Perez-Aparicio, & De Pedro-Sanz, 2007), RMSEP= 0.622-0-675% for moisture 310 

(Collell C. , Gou, Picouet, Arnau, & Comaposada, 2010), and in minced Biceps 311 
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femoris muscle of dry-cured ham RMSEP: 0.31-0.43% for fat and 0.44-0.51% for 312 

moisture (Prevolnik, et al., 2011).  313 

The results obtained with datasets built with the KS method for partitioning the 314 

data (Table 2) are comparable to those obtained with datasets built with the 315 

stratified random partitioning based on Y values (Table 1). KS method is 316 

concentrating most of the diversity of the data at the training set that in some cases 317 

can lead to overoptimistic results (Wested & Marini, 2015), which is not the case 318 

for our study since the two data partitioning methods are returning similar results. 319 

Similar methods to KS, such as the Duplex algorithm (Daszykowski, Walczak, & 320 

Massart, 2002), have great potential for building new predictive models with 321 

smartphones because they require less computational effort compared to the 322 

random stratification. 323 

Table 1: Results of PLSR analysis after dataset partitioning based on random stratification sampling applied to 324 

response values (Y) for each temperature of spectra acquisition. 325 

Parameter Pretreatment LVs RMSEC RMSEP R2 RPD 

SCiO, Temp=-14ᵒC 

Fat  

SNV+gap-seg 

6 1.26% 1.47% 0.97 6.89 

Moisture 6 1.23% 1.36% 0.96 5.48 

Protein  6 0.43% 0.54% 0.93 3.89 

Polychromix, Temp=-14ᵒC 

Fat  

SNV+SG (1D) 

4 0.99% 0.92% 0.99 10.34 

Moisture 5 0.78% 0.76% 0.99 7.46 

Protein  5 0.49% 0.48% 0.94 3.91 

SCiO, Temp=5ᵒC 

Fat  

SNV+gap-seg 

5 0.97% 1.00% 0.99 6.99 

Moisture 5 0.89% 1.06% 0.98 6.86 

Protein  5 0.49% 0.43% 0.95 3.87 

Polychromix, Temp=5ᵒC 

Fat  

SNV+SG (1D) 

6 0.85% 0.74% 0.99 14.11 

Moisture 6 0.82% 0.88% 0.98 7.99 

Protein  5 0.42% 0.49% 0.93 4.76 
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SCiO, Temp=12oC 

Fat  

SNV+gap-seg 

4 1.05% 0.94% 0.99 12.05 

Moisture 5 0.96% 0.83% 0.98 8.55 

Protein  5 0.41% 0.45% 0.96 4.18 

Polychromix, Temp=12ᵒC 

Fat  

SNV+SG (1D) 

6 0.86% 0.92% 0.99 10.79 

Moisture 4 0.79% 0.88% 0.98 9.76 

Protein  4 0.46% 0.45% 0.95 5.04 

SCiO, Temp=25ᵒC 

Fat  

SNV+gap-seg 

6 0.97% 0.74% 0.99 12.65 

Moisture 4 0.85% 0.71% 0.98 9.05 

Protein  5 0.45% 0.47% 0.95 3.99 

Polychromix, Temp=25ᵒC 

Fat  

SNV+SG (1D) 

5 0.92% 0.86% 0.99 10.65 

Moisture 5 0.76% 1.01% 0.98 9.56 

Protein  6 0.38% 0.36% 0.96 4.09 

Table 2: Results of PLSR after dataset partitioning based on the KS method applied to X descriptors (NIR 326 

spectra). 327 

Parameter Pretreatment LVs RMSEC RMSEP R2p RPD 

SCiO, Temp=-14ᵒC 

Fat  

SNV+gap-seg 

6 1.23% 1.43% 0.98 7.12 

Moisture 6 1.29% 1.02% 0.97 6.34 

Protein  5 0.48% 0.49% 0.92 3.29 

Polychromix, Temp=-14ᵒC 

Fat  

SNV+SG (1D) 

4 1.13% 0.76% 0.99 7.51 

Moisture 5 0.82% 0.72% 0.98 8.79 

Protein  4 0.50% 0.45% 0.94 2.64 

SCiO, Temp=5ᵒC 

Fat  

SNV+gap-seg 

4 1.11% 0.83% 0.99 11.64 

Moisture 4 0.99% 0.78% 0.99 8.57 

Protein  6 0.46% 0.43% 0.94 3.87 
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Polychromix, Temp=5ᵒC 

Fat  

SNV+SG (1D) 

4 0.95% 0.90% 0.99 9.38 

Moisture 5 0.83% 0.90% 0.98 7.96 

Protein  6 0.42% 0.47% 0.93 4.11 

SCiO, Temp=12ᵒC 

Fat  

SNV+gap-seg 

5 1.00% 1.19% 0.98 10.15 

Moisture 5 0.93% 1.12% 0.97 7.95 

Protein  6 0.46% 0.52% 0.93 3.21 

Polychromix, Temp=12ᵒC 

Fat  

SNV+SG (1D) 

4 1.02% 0.76% 0.99 8.54 

Moisture 5 0.83% 0.79% 0.98 6.83 

Protein  4 0.48% 0.43% 0.93 3.35 

SCiO, Temp=25ᵒC 

Fat  

SNV+gap-seg 

6 1.01% 0.80% 0.99 10.50 

Moisture 6 0.87% 0.78% 0.98 7.54 

Protein  5 0.49% 0.37% 0.95 3.37 

Polychromix, Temp=25ᵒC 

Fat  

SNV+SG (1D) 

4 0.98% 0.68% 0.99 9.46 

Moisture 4 0.76% 0.84% 0.99 7.82 

Protein  4 0.44% 0.47% 0.92 3.41 

3.4 Global Model 328 

For constructing the global model, the datasets of different temperatures were 329 

merged and the training and testing datasets were obtained with the random 330 

stratification on the Y-dataset. Table 3 shows that when a global temperature 331 

model is applied, in most of the cases the SCiO has results similar to those obtained 332 

with local temperature models. The predictive ability for the fat content of the 333 

SCiO global model has slightly improved for the -14 ᵒC  samples from 334 

RMSEP=1.47% to RMSEP=1.18% and for the 5 ᵒC samples from RMSEP=1.00% to 335 

RMSEP=0.88%. Predictive errors do not show any specific pattern related to the 336 

temperature (Figure 3a-c).  337 
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However, Figure 3b shows that the predicted values of moisture are always lower 338 

than the measured values at the midrange (53-59%). Figure 3a for fat predictions 339 

has a similar trend at the midrange but to a lesser extent. There is a non-linear 340 

relationship between moisture or fat content and spectral response over large 341 

ranges of fat or moisture. PLS, as a linear regression method, cannot handle this 342 

non-linear relationship and some part of the explanatory information is going to 343 

the residuals of the model. Therefore, for estimating correctly the predicted values 344 

of moisture and fat, non-linear regression methods are needed such as Random 345 

Forest (RF) regression that has the ability of fully utilizing the explanatory 346 

information from various types of data (Hastie, Tibshirani, & Friedman, 2009).   347 

RF is an ensemble learning algorithm that can be used for both classification and 348 

regression. It is using a large number of decision trees (ntree) to split the data into 349 

an equal number of bootstrap samples that will be randomly sampled by a number 350 

of predictors (mtry). This adds randomness to the model while growing the 351 

number of the decision trees, and the algorithm chooses the best split between the 352 

sampled variables leading to a wide diversity that generally results in a better 353 

model (Breiman, 2001).  354 

Figure 3e-f depicts the new prediction plots and it is obvious that the RF 355 

regression has corrected the non-linear relationship between moisture and fat 356 

content. The RMSEC values at Table 2 have significantly improved because the 357 

model captures all the explanatory information from the data, but the RMSEP 358 

values are at the same levels as PLS results.  359 

Therefore, the RF regression global temperature model build with smartphone-360 

based NIR spectrometers has the potential to predict fat and moisture contents at 361 

different temperatures, even in frozen samples, with high accuracy and protein 362 

content with good accuracy. 363 

Table 3: Results of the global PLS and RF regression after datasets selection based on random stratification 364 

sampling applied to response values (Y) for all temperatures of spectra acquisition. 365 

Parameter Pretreatment Parameter RMSEC RMSEP R2p RPD 

 PLS SCiO Global 

Fat  SNV+gap-seg 8 LVs 1.21% 1.07% 0.99 8.89 
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Moisture 7 LVs 1.01% 1.03% 0.98 7.16 

Protein  7 LVs 0.46% 0.49% 0.94 3.94 

RF SCiO Global  

Fat 

SNV+gap-seg 

ntree=500 

mtry=104 
0.58% 1.18% 0.98 7.91 

Moisture 
ntree=500 

mtry=106 
0.47% 0.98% 0.98 6.88 

Protein 
ntree=500 

mtry=105 
0.21% 0.48% 0.94 4.21  

 366 

  

a b 
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Figure 3: Prediction plots for the SCiO global model using PLS regression (a-c) and RF regression (d-f).  367 

3.5 Prediction error 368 

The whole procedure of this study has resulted in a predictive model with high 369 

RPD values. However, NIRS-based predictions were used for obtaining the 370 

reference values of Y instead of using wet chemistry methods and this introduces 371 

an additional error to our final predictive model. The Foss FoodScan has the 372 

following Standard Errors of Prediction (SEP): for fat 1.01%, for moisture 0.72% 373 

and for protein 0.62%. By following simple error propagation, our global RF 374 

predictive model has the following SEPs: for fat 1.56%, for moisture 1.21% and for 375 

protein 0.78%. 376 

4. Conclusion 377 

c d 

f e 
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Robust, efficient and reliable methods for predicting minced meat composition at 378 

four temperatures (-14oC, 5oC, 12oC and 25oC) have been demonstrated by using 379 

a smartphone-based spectrometer. The predictive ability of the smartphone-380 

based spectrometer is comparable with the one obtained from a benchtop 381 

spectrometer with in-house developed predictive analytics. Two different data 382 

partition techniques were applied to construct a PLSR predictive model, which 383 

perform well for moisture and fat contents even for frozen meat samples (RPD>7). 384 

Furthermore, a global model with all the temperatures was constructed for 385 

further examining the abilities of the smartphone-based spectrometer. In this case, 386 

the PLS modelling has shown problems to capture all the explanatory information 387 

from the global model, which was leaked to the residuals of the model. Random 388 

Forest regression was used instead of PLS, which improved the predictive 389 

modelling.  390 

It is expected that as the technological improvements will continue, the 391 

smartphones will include greater computational power, high-end sensing 392 

technologies and higher connectivity. This together with the massive volume of 393 

smartphone users, which is over than 7 billion, will provide a paradigm shift in 394 

how measurement science for food quality and safety will be practiced globally.  395 
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