

This document is a postprint version of an article published in Analytica Chimica Acta © Elsevier after peer review. To access the final edited and published work see <u>https://doi.org/10.1016/j.aca.2018.07.057</u> 1 2

Detection and quantification of the toxic marine microalgae Karlodinium veneficum and Karlodinium armiger using

3 recombinase polymerase amplification and enzyme-linked oligonucleotide assay

4	Anna Toldrà ^a , Míriam Jauset-Rubio ^b , Karl B. Andree ^a , Margarita Fernández-Tejedor ^a , Jorge Diogène ^a , Ioanis Katakis ^b ,
5	Ciara K. O'Sullivan ^{b,c} *, Mònica Campàs ^a *
6	^a IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
7	^b Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
,	
8	^c ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

* Corresponding authors: monica.campas@irta.cat; ciara.osullivan@urv.cat

10 Abstract

9

11 Karlodinium is a dinoflagellate responsible for fish-killing events worldwide. In Alfacs Bay (NW Mediterranean Sea), the 12 presence of two Karlodinium species (K. veneficum and K. armiger) with different toxicities has been reported. This work 13 presents a method that combines recombinase polymerase amplification (RPA) with an enzyme-linked oligonucleotide 14 assay (ELONA) to identify, discriminate and quantify these two species. The system was characterised using synthetic 15 DNA and genomic DNA, and the specificity was confirmed by cross-reactivity experiments. Calibration curves were 16 constructed using 10-fold dilutions of cultured cells, attaining a limit of detection of around 50,000 cells/L, far below the 17 Karlodinium spp. alert threshold (200,000 cells/L). Finally, the assay was applied to spiked seawater samples, showing an 18 excellent correlation with the spiking levels and light microscopy counts. This approach is more rapid, specific and user-19 friendly than traditional microscopy techniques, and shows great promise for the surveillance and management of 20 harmful algal blooms.

21 Keywords: Karlodinium veneficum, Karlodinium armiger, harmful algal bloom (HAB), recombinase polymerase

22 amplification (RPA), enzyme-linked oligonucleotide assay (ELONA), seawater.

23 1. Introduction

24 Harmful algal blooms (HABs) are natural phenomena whose frequency, intensity and geographical extent have increased 25 during recent years. Detection of HABs has become a challenging concern due to the direct impact on marine life, human 26 health and the economy (Anderson et al. 2012). The genus Karlodinium (initially classified as Gymnodinium or 27 Gyrodinium) is a widespread ichthyotoxic dinoflagellate implicated in numerous fish mortality events around the world, 28 negatively affecting coastal ecosystems and marine fisheries (Place et al. 2012). In Alfacs Bay (NW Mediterranean Sea), 29 Karlodinium spp. blooms have been periodically reported since the 1990s and two Karlodinium species, characterised as 30 K. veneficum and K. armiger by morphological and genetic analysis, have been described and have settled in this region 31 (Garces et al. 2006). These species produce different haemolytic toxins (Rasmussen et al. 2017; Van Wagoner et al. 2008) 32 and present different levels of ichthyotoxicity (Berge et al. 2012) resulting in different risks to marine organisms, with 33 consequences on the marine-based economy. Karlodinium spp. blooms can reach high densities (above 4,000,000 cells/L) 34 and, based on toxicological studies, a level of 200,000 cells/L for Karlodinium spp. has been established as a warning level 35 for the fauna in this important fish and shellfish aquaculture area (Fernandez-Tejedor et al. 2004).

There are many well stablished monitoring programs which periodically sample for the presence of HAB species in fish and shellfish aquaculture areas. Although not specified in the legislation, current toxic microalgae monitoring is regularly performed via light microscopy using the Utermöhl cell-counting method. However, this technique is time consuming, requires a high level of taxonomic expertise and is based on morphological characteristics, which in some cases are insufficient to discriminate among HAB species. This is the case for *Karlodinium*, since the high degree of morphological similarity between *K. veneficum* and *K. armiger* makes light microscopy inappropriate for discriminating between these species (Bergholtz *et al.* 2006; Garces *et al.* 2006).

43 Due to the difficulties and limitations of techniques based on morphological identification, there is a demand for new 44 tools to provide a more reliable early warning of HAB events in order to facilitate and implement appropriate preventive 45 measures. In this regard, the use of molecular methods for microalgae identification are being increasingly explored 46 because they are faster and more accurate than microscopic observations (Medlin and Orozco 2017; Penna and Galluzzi 47 2013). Most molecular techniques have their origin in medical diagnostics and, during the last three decades, these 48 techniques have been tested, modified, and refined for their application in microalgae identification, detection and 49 quantification (Karlson et al. 2010). Among the different molecular methods, quantitative PCR (qPCR) has been widely 50 applied to a variety of toxic microalgae, to detect one (Yuan et al. 2012), two (Eckford-Soper and Daugbjerg 2016) or 51 more than two (Nishimura et al. 2016; Andree et al. 2011) species, mainly targeting ribosomal DNA (rDNA). Specifically 52 for Karlodinium species, qPCR assays have been developed for K. veneficum (Eckford-Soper and Daugbjerg 2015; Park et 53 al. 2009; Zhang et al. 2008) and more recently to discriminate between K. veneficum and K. armiger (Toldrà et al. 2018). 54 PCR amplification has also been combined with biosensors for the electrochemical detection of Karenia mikimotoi (LaGier 55 et al. 2007). However, although PCR is the gold standard amplification method, it has limitations, such as the requirement 56 for thermal cycling equipment, which hampers the development of miniaturised and portable analysis systems for in-57 field application. A possible solution is the use of ribosomal RNA (rRNA) as a target, which may avoid DNA amplification 58 (Orozco and Medlin 2013). This approach has been exploited in microarrays with fluorescence detection (Ahn et al. 2006; Taylor *et al.* 2013) and in sandwich hybridisation systems followed by colorimetric (Cai *et al.* 2006; Diercks *et al.* 2008a) or electrochemical (Diercks *et al.* 2008b; Diercks-Horn *et al.* 2011; Metfies *et al.* 2005) detection. However, the inherent rRNA instability and the high amount of rRNA required could compromise the reliability and sensitivity, respectively, of these RNA-based assays (Bruce *et al.* 2015; Metfies *et al.* 2005). Another possibility to avoid the need for cycling control and power sources is the use of isothermal nucleic acid amplification methods.

64 There are only a few reports detailing isothermal amplification for the detection of toxic microalgae, such as nucleic acid 65 sequence-based amplification (NASBA) (Casper et al. 2004; Loukas et al. 2017) and loop-mediated isothermal 66 amplification (LAMP). The detection of DNA isothermally amplified using LAMP has mainly been achieved by fluorescence 67 or turbidity measurements (Chen et al. 2013; Zhang et al. 2009; Zhang et al. 2014). A lateral flow (LF) strip exploiting 68 LAMP has also developed for the detection of K. veneficum (Huang et al. 2017). However, LAMP is highly dependent on 69 extremely careful primer design and NASBA requires an initial DNA melting step (Mayboroda et al. 2018). Recombinase 70 polymerase amplification (RPA) is a very attractive alternative that overcomes these drawbacks and it has been chosen 71 in the present study for the detection of two Karlodinium species (K. veneficum and K. armiger). RPA is based on the use 72 of a mixture of polymerases, recombinases and DNA binding proteins that are capable of pairing oligonucleotide primers 73 with homologous sequences in single (ssDNA) and double stranded DNA (dsDNA), typically within 25 min and at a low 74 and constant temperature (37-42 °C) (Piepenburg et al. 2006). Recent publications demonstrate that RPA technology has 75 been successfully applied to the detection of viruses (Euler et al. 2013), protozoa (Crannell et al. 2016) and bacteria 76 (Santiago-Felipe et al. 2014), but its application to microalgae has not yet been described. Our RPA strategy exploits the 77 use of tailed primers that result in amplicons of dsDNA flanked by ssDNA tails (Fig. 1a). This is accomplished by a C3 78 stopper located between the primer and the tail that prevents the polymerase from further elongation (Jauset-Rubio et 79 al. 2016; Joda et al. 2015). Amplicons obtained after RPA are detected in a colorimetric sandwich enzyme-linked 80 oligonucleotide assay (ELONA) using complementary oligonucleotides: a capture probe (specific for each Karlodinium 81 species) immobilised through a thiol group on maleimide-coated microtiter plates and a reporter probe (common for the 82 two species) conjugated to horseradish peroxidase (HRP) (Fig. 1b). Compared to other detection strategies, sandwich 83 formats enhance the specificity of the assays because of the use of two hybridization events (capture and reporter). 84 Additionally, the use of tailed primers avoids the need for primer labelling and/or any post-amplification processing to 85 generate ssDNA thus reducing complexity, time and cost of the assay.

86 In this work, an RPA-ELONA method has been developed and applied to the detection and quantification of K. veneficum 87 and K. armiger. The RPA-ELONA method was combined with a rapid and easy DNA extraction commercial kit that meets 88 the criteria to perform analysis in the field due to its ease of use, short time requirement, and no need for specialised 89 equipment. Since two Karlodinium species are targeted for detection and discrimination, distinct probes and primers 90 were designed and used. Characterisation and specificity of the method was assessed by cross-reactivity experiments 91 using synthetic ssDNA and genomic DNA, while sensitivity was assessed by constructing calibration curves using serial 92 dilutions of culture cells. Finally, spiked seawater samples were analysed by RPA-ELONA and the results compared with 93 light microscopy counts.

94 2. Materials and Methods

95 **2.1. Reagents and materials**

96 Potassium phosphate monobasic and dibasic, Trizma® base, sodium chloride, sodium acetate, skimmed milk, 6-mercapto-97 1-hexanol, tween[®] 20, 3,3',5,5'-tetramethylbenzidine (TMB) liquid substrate, phenol:chloroform:isoamylalcohol 98 (25:24:1, v:v:v), chloroform, ethanol, dodecyltrimethylammonium bromide (DTAB), ethylenediaminetetraacetic acid 99 (EDTA), ethidium bromide solution and agarose were all supplied by Sigma-Aldrich (Madrid, Spain). Biomeme Sample 100 Prep Kit for DNA was obtained from Biomeme Inc. (Philadelphia, USA). Custom oligonucleotides primers and probes were 101 synthetized by Biomers (Ulm, Germany). TwistAmp Basic kit was purchased from TwistDx (Cambridge, UK). Pierce 102 maleimide-activated plates, GeneJET PCR purification kit and ultrapure DNase/RNase-free distilled water were supplied 103 by Thermo Fisher Scientific (Madrid, Spain).

104 2.2. Microalgal cultures

105 Clonal cultures of K. veneficum (strain IRTA-SMM-00-01; GenBank accession number MG642757) and K. armiger (strain 106 K-0668; GenBank accession number MG642758), isolated from Alfacs Bay, were acquired from IRTA Culture Collection of 107 Algae (Sant Carles de la Ràpita, Spain) and the Scandinavian Culture Collection of Algae and Protozoa (Copenhagen, 108 Denmark), respectively. Both cultures were maintained at a temperature of 18 ± 2 °C on a 12:12 h light:dark cycle under 109 a light intensity of 110 µmol photons m⁻² s⁻¹. K. veneficum and K. armiger cultures were grown in f/2 medium (Guillard 110 1973; Guillard and Ryther 1962) and L1 + Urea medium (Guillard and Hargraves 1993), respectively, at a practical salinity 111 of 36. Culture aliquots were fixed with Lugol's iodine (Throndsen 1978) and counted under an inverted light microscope 112 (Leica DMIL) following the Utermöhl method (Utermöhl 1958). Cultures were collected at the exponential phase (4x10⁷ 113 cells/L and 3x10⁷ cells/L for K. veneficum and K. armiger, respectively) and harvested by centrifugation (3,700 g, 25 min). 114 Pellets containing 10⁶ cells and 10-fold serial dilutions from 10⁶ to 10² cells were prepared and stored at -20 °C until DNA 115 extraction.

116 **2.3. Spiked environmental samples**

117 Natural seawater (10 L) was collected in June 2017 from L'Ametlla de Mar (40°49'51.42"N; 0°45'6.90"E; Catalonia, Spain) 118 and subsequently analysed using light microscopy to confirm the presence and absence of Karlodinium spp. as well as 119 other phytoplankton species. For this purpose, a volume of 50 mL was settled in sedimentation chambers for 24 h and 120 counted using the Utermöhl method after fixation in Lugol's iodine. Spiked samples of seawater (1 L) containing 121 Karlodinium species (previously counted as stated in section 2.2) were prepared at the warning level (200,000 cells/L) 122 and at the fish mortality level (1,000,000 cells/L). Spiked concentrations were as follows: K. veneficum (200,000 cells/L 123 and 1,000,000 cells/L), K. armiger (200,000 cells/L and 1,000,000 cells/L) and equal mixture of K. veneficum and K. armiger 124 (400,000 cells/L and 2,000,000 cells/L). The spiked samples were fixed with Lugol's iodine solution. For light microscopy 125 counts, a volume of 50 mL was settled in sedimentation chambers for 24 h and counted following the Utermöhl method. 126 For RPA-ELONA analysis, 50-mL aliquots were centrifuged at 3,700 g for 25 min and maintained at -20 °C until DNA 127 extraction.

128 2.4. DNA extraction

129 Two different extraction methods were used in this study. The phenol/chloroform/isoamylalcohol (PCI) method was used 130 to extract genomic DNA from pellets containing 10⁶ cells for the subsequent construction of calibration curves, whereas 131 the Biomeme kit was used to extract the DNA from "10-fold serial dilutions of cells" and from "spiked samples". 132 Extractions were performed following the protocol described by Toldrà et al. (2018). Briefly, for the PCI method, cell 133 pellets were resuspended in lysis buffer (1 M NaCl, 70 mM Tris, 30 mM EDTA, pH 8.6), 10% w/v DTAB and chloroform, 134 and then disrupted using a BeadBeater-8 (Biospec, USA). After centrifugation, the DNA from the resulting aqueous phase 135 was extracted by the standard phenol/chloroform/isoamylalcohol procedure (Sambrook, 1989), followed by sodium 136 acetate/ethanol DNA precipitation. The DNA was rinsed with 70% v/v ethanol and dissolved in 50 µL of molecular biology-137 grade water. For the Biomeme method, DNA was extracted according to the manufacturer's guidelines, but with some 138 adjustments. Cell pellets were resuspended in lysis buffer and disrupted using a bead beater. The homogenised samples 139 were mixed with Biomeme Lysis Buffer (500 µL), which was pumped through a syringe with an ion-exchange membrane 140 attached. The membrane was washed firstly with Biomeme Protein Wash (500 µL) and then with Biomeme Wash Buffer 141 (750 µL), and then air-dried. Purified DNA was eluted in 500 µL of Biomeme Elution Buffer. Finally, genomic DNA extracted 142 by both methods was quantified using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Madrid, Spain) 143 and stored at -20 °C until analysis.

144 **2.5.** Primers and probes design and specificity

145 Primers used in this study were based on the two species-specific primers for K. veneficum and K. armiger previously 146 designed within the ITS1 rDNA region for qPCR assay (Toldrà et al. 2018). The design aimed at minimising the number of 147 required primers: one genus-specific (for Karlodinium) and two species-specific (for K. veneficum and K. armiger) primers. The genus-specific primer described by Toldrà et al. (2018) was slightly modified 4 bp downstream in order to avoid 148 149 primer-dimer formation. Primers for K. veneficum amplified a product of 139 bp, whereas primers for K. armiger amplified 150 a product of 153 bp. Primers were modified by adding oligonucleotide tails, resulting in amplicons with one ssDNA tail at 151 each end, which enable subsequent detection via sandwich ELONA through complementary capture and reporter probes 152 (Fig. 1). All primers and probe sequences are shown in Table 1. Primer specificity was tested by electrophoresis of the 153 RPA products in 2% w/v agarose gel.

154 **2.7.** Recombinase polymerase amplification (RPA) reaction

155 RPA was performed following the indications provided in the TwistAmp Basic kit with some minor modifications. The RPA 156 conditions including reagent concentration (primers, rehydration buffer and enzyme pellet), reaction time and the 157 requirement for a final purification step were systematically optimised. Following optimisation, each RPA reaction (50 158 μL) contained: 480 nM of each primer, 14 mM magnesium acetate, 0.5x rehydration buffer, 0.5x enzyme pellet and 5 μL 159 of DNA, this DNA being: a) synthetic ssDNA and genomic DNA to check the specificity of the subsequent ELONA, b) 160 synthetic ssDNA, genomic DNA and genomic DNA extracted from cell dilutions for the calibration curves, and c) genomic 161 DNA extracted from spiked samples. All reagents except the DNA and magnesium were prepared in a master mix, which 162 was distributed into 0.2-mL reaction tubes. The DNA was then added into the tubes, and magnesium added to initiate the RPA reaction. The tubes were immediately placed into a Nexus Gradient Thermal Cycler (Eppendorf Ibérica, Madrid,
 Spain) at 37 °C for 30 min. Subsequently, RPA products were purified using GeneJET PCR purification kit following
 manufacturer instructions, with a final elution with 50 μL of TE buffer. RPA reactions were performed in triplicate and
 blanks (no DNA) were included in all cases.

167 **2.8. Enzyme Linked Oligonucleotide Assay (ELONA) detection**

168 Maleimide-activated plates were rinsed three times with 200 µL of washing buffer (100 mM potassium phosphate, 150 169 mM NaCl, 0.05 % v/v Tween-20, pH 7.4) and 50 µL of 500 nM thiolated capture probe in binding buffer (100 mM 170 phosphate, 150 mM NaCl, pH 7.4) were then added and left to incubate overnight at 4 °C. Any remaining maleimide 171 groups were subsequently blocked with 100 μ M 6-mercapto-1-hexanol in MiliQ water adding 200 μ L per well, and an 172 additional blocking step was carried out via addition of 200 µL of 5% w/v skimmed milk in binding buffer. RPA product 173 was added to the functionalised maleimide plates (45 µL per well) and 50 µL of 10 nM reporter probe labeled with HRP 174 in washing buffer were added to the wells. Finally, after incubation with 50 µL of TMB liquid substrate, the absorbance 175 was read at 620 nm with a Microplate Reader KC4 (BIO-TEK Instruments Inc., Vermont, USA). After each step, wells were 176 rinsed three times with 200 µL of washing buffer and during incubations microtitre plates were placed on a plate shaker 177 for mixing. With the exception of the capture probe immobilisation step, which was performed at 4 °C overnight, all steps 178 were conducted at room temperature for 30 min.

179 **2.9 Data analysis and statistics**

180 Calibration curves using dilutions of synthetic ssDNA, genomic DNA and cultured cells were adjusted to a sigmoidal logistic 181 four-parameter equation using SigmaPlot software 12.0 (Systat Software Inc., California, USA). The limit of detection 182 (LOD) was defined as the blank (no DNA) value plus three times the standard deviation (SD) of the blank. Spiked samples 183 were quantified from the equation obtained using the standard curves from cell dilutions. To evaluate differences in 184 genus-level cell quantifications provided by RPA-ELONA and light microscopy and also differences in species-level cell 185 quantifications between RPA-ELONA and spiking levels, a paired t test was conducted using SigmaStat software 3.1 (Systat 186 Software Inc., California, USA). Prior to analysis, a normality and equal variance test was performed. Differences in the 187 results were considered statistically significant at the 0.05 level.

188 **3. Results and discussion**

189 **3.1. Primer specificity**

Primer specificity is critical when detecting harmful algae because seawater samples commonly contain a wide range of microorganisms. Specific primer sets for *K. veneficum* and *K. armiger* were previously developed by Toldrà *et al.* (2018), and were demonstrated to be highly specific for the qPCR assay, and also deemed suitable for RPA according to the RPA primer design manual (TwistDx). However, electrophoresis of the RPA products revealed the presence of primer-dimers for *K. armiger*, and consequently the primers were slightly modified. Following primer optimisation, the estimated molecular weight of the products as visualised using gel electrophoresis was as expected, and no other bands were observed (Fig. 1 Supplementary data).

3.2. Optimisation of RPA conditions

198 RPA conditions were optimised using synthetic ssDNA and subsequent ELONA detection. RPA was performed maintaining 199 some conditions (at 37 °C for 30 min with purification step) and concentrations (14 mM magnesium acetate and 5 µL of 200 DNA), whilst varying primer (240-480 nM), rehydration buffer (0.5-1x) and enzyme pellet (0.5-1x) concentrations. Results 201 demonstrated that the LOD was remarkably decreased 110-fold using optimised RPA component concentrations. 202 Furthermore, in an effort to shorten assay time, different RPA reaction times (5, 10, 20, 30 and 40 min) were evaluated. 203 As expected, higher absorbance values were obtained at longer reaction times. Nevertheless, since the LODs obtained at 204 30 and 40 min were very similar (the LOD at 40 min was only ~2-fold lower than the LOD at 30 min), 30 min was chosen 205 as the optimum amplification time. Finally, the need for an RPA product purification step prior to detection was 206 evaluated. Results showed that without a purification step the LOD increased significantly (52-fold higher). This lower 207 performance might be explained by the presence of proteins and primers in the RPA reaction that could hinder 208 hybridisation events and/or increase the nonspecific adsorption. Optimised RPA conditions (see section 2.7) were used 209 in subsequent experiments.

210 3.3. Specificity of RPA-ELONA

To assess the specificity of the RPA-ELONA for the detection of *K. veneficum* and *K. armiger*, cross-reactivity experiments using synthetic ssDNA and genomic DNA at high concentrations (1 nM and 2.3 ng/µL, respectively), with both single and mixed DNA samples, were performed. A combination of different capture probes, primers and DNA were tested. Absorbance values showed the same trend for *K. veneficum* and *K. armiger*, using both synthetic ssDNA (Fig. 2a) and genomic DNA (Fig. 2b).

Specific detection was obtained for both *K. veneficum* and *K. armiger* when using their corresponding capture probe, primers and target DNA (in single or mixed DNA samples), using both synthetic ssDNA and genomic DNA (Fig. 2, bars with arrows). When species-specific primers and capture probes were used with non-target DNA (i.e. *K. armiger* primers and capture probes with *K. veneficum* DNA, and vice versa), non-specific detection was obtained using synthetic ssDNA (Fig. 2a, bars with asterisks), which did not appear using genomic DNA. This finding could be explained by the presence of common bases between the two species-specific primers because of the high similarity between *K. veneficum* and *K.* *armiger* ITS1-5.8S-ITS2 rDNA sequences. When using short (150bp) synthetic oligonucleotides, the upstream speciesspecific primers may bind to the non-target DNA and, together with the downstream genus-specific primer binding, nonspecific dsDNA amplicons may be generated and subsequently detected. For example, when *K. armiger* primers are combined with *K. veneficum* synthetic ssDNA, non-specific amplification occurs, generating a product flanked by *K. armiger* tails, which are complementary to the *K. armiger* capture probes, thus resulting in non-specific detection. This effect was not observed when using mixed DNA samples, probably because species-specific primers have a preference for their target DNA and non-specific amplification is hindered.

229 On the other hand, genomic DNA is a more complex and a larger matrix, in which the target represents a miniscule part 230 of the DNA. Consequently, primers might find more partial-complementary sites and the formation of non-specific dsDNA 231 amplicons is negligible and subsequently not detected. Additionally, no significant differences were observed between 232 single and mixed DNA samples, which indicates that the assay is highly specific for genomic DNA regardless of the 233 simultaneous presence of a non-specific target.

Finally, all other combinations gave negative results, showing no significant differences compared to the blanks (no DNA bars). We clearly demonstrated the strong specificity of the assay for *K. veneficum* and *K. armiger* using genomic DNA, and thus the cross-reactivity observed with short synthetic DNA does not hinder the in-field application of the developed technique. Since in a real world application genomic and not synthetic DNA is targeted, the reason for the anomaly observed with synthetic DNA target is relatively irrelevant and the explanations mentioned in the previous paragraph are subject to further investigations.

240 **3.5. Calibration curves and LOD determination**

241 Synthetic ssDNA and genomic DNA were initially used as targets to demonstrate the feasibility of the approach. 242 Calibration curves using 10-fold serial dilutions of synthetic ssDNA for both K. veneficum and K. armiger were obtained 243 (Fig. 3a), achieving LODs of 0.043 fM and 0.7 fM, respectively. Calibration curves using dilutions of total genomic DNA 244 extracted from both Karlodinium species were then constructed (Fig. 3b), which provided similar LODs: 12 pg/µL for K. 245 veneficum and 11 pg/µL for K. armiger. Afterwards, standard curves based on cell dilutions were constructed to allow 246 quantification of the number of Karlodinium cells in a sample. These calibration curves were prepared using genomic 247 DNA extracted (using the Biomeme method) from 10-fold serial dilutions of cultured cells (Fig. 3c) and the LODs attained 248 were of the same order of magnitude than with genomic DNA: 2,483 cells for K. veneficum and 2,417 cells for K. armiger. 249 Taking into account that the protocol involves the analysis of 50-mL samples, the LODs can be translated to 49,660 cells/L 250 for *K. veneficum* and 48,340 cells/L for *K. armiger*.

There are only a few reports detailing the use of molecular methods for the detection of *Karlodinium* species. In the qPCR assays described, cell dilutions have been most commonly used to construct calibration curves, achieving LODs of 100 cells for *K. veneficum* and *K. armiger* (Toldrà *et al.* 2018) and 10 cells for *K. veneficum* (Eckford-Soper and Daugbjerg 2015). On the other hand, LAMP-LF used genomic DNA to determine the LOD of the assay, which was 7 pg/µL of *K. veneficum* genomic DNA (Huang *et al.* 2017). However, it was only qualitatively applied to the analysis of field samples, without being correlated with the number of cells. A limited number of molecular methods to detect microalgae without a prior amplification step have been reported, but they have not been applied to *Karlodinium* and they are limited by poor sensitivity. For example, the electrochemical DNA-biosensor for the detection of *Alexandrium ostenfeldii* achieved an LOD of 16 ng/µL (Metfies *et al.* 2005). Our RPA-ELONA method, although it has a lower sensitivity compared to some of the described molecular methods, facilitates the quantification of *Karlodinium* species below the proposed alert threshold of 200,000 cells/L, which will enable early warnings of *Karlodinium* spp. blooms before they proliferate to critical levels. It is important to mention that this quantification limit could be reduced by centrifuging a larger sample volume or reducing the volume of elution buffer used for the DNA extraction.

264 **3.6.** Analysis of environmental spiked samples

265 To assess the performance of the RPA-ELONA method in a natural sample matrix, cultures of K. veneficum and K. armiger 266 were used to spike natural seawater at two different levels of environmentally relevant concentrations. A prior study by 267 light microscopy for the presence and abundance of phytoplankton in seawater did not reveal the presence of 268 Karlodinium species, although high densities of potentially toxic species (i.e. 40,000 cells/L of Pseudo-nitzschia spp.) and 269 negligible densities of other toxic species (i.e. 60 cells/L of Dinophysis spp. and Prorocentrum spp.) were detected. Natural 270 seawater samples spiked with known abundances of Karlodinium cells were analysed using both RPA-ELONA and light 271 microscopy (Table 2). Whereas Karlodinium species cannot be discriminated by light microscopy, the RPA-ELONA assay 272 is able to identify, discriminate and quantify these two Karlodinium species.

273 The RPA-ELONA results for each Karlodinium species were compared with the spiking level concentrations (prepared by 274 cell counting using light microscopy) and no significant differences (p > 0.05) were observed. As mentioned above, total 275 Karlodinium species were counted using the standard Utermöhl cell-counting method. Total cell quantifications provided 276 by the two methods (the sum of two RPA-ELONA assays for species-level and light microscopy for genus-level) were the 277 same at the confidence level specified (p > 0.05). This agreement between techniques also indicated that the RPA-ELONA 278 method is highly specific in the quantification of Karlodinium species, even in the presence of other microalgae species 279 at high densities. The developed RPA-ELONA method showed an excellent agreement with the microscopic method in 280 the analysis of seawater spiked with cultured cells.

281 4. Conclusions

- The present work reports the development of an RPA-ELONA method for the detection, discrimination and quantification of two *Karlodinium* species (*K. veneficum* and *K. armiger*). This approach is applied for the first time to the detection of harmful algae. The method showed high specificity and, under the current experimental conditions, attained a sensitivity around 50,000 cells/L for both species, a concentration that is below the proposed alert threshold (200,000 cells/L) in seawater. An excellent degree of correlation between cell concentrations determined by RPA-ELONA with spiking levels and light microscopy counts confirmed the reliability and applicability of the method.
- 288 This assay presents multiple benefits. It is species-specific and avoids the need for taxonomic expertise. In particular, RPA-289 ELONA can discriminate between K. veneficum and K. armiger while this is not possible using light microscopy. The 290 discrimination between K. veneficum and K. armiger is crucial because these two species present different levels of 291 ichthyotoxicity, which poses different risks to marine organisms and the marine-based economy. Additionally, it is more 292 rapid than traditional light microscopy techniques that use the Utermöhl method to estimate microalgae species 293 abundances, and it allows high throughput analysis with reduced cost. In addition to these advantages, the RPA-ELONA 294 is a versatile approach that opens up the possibility to be easily adapted to many other microalgae, to be exploited with 295 other detection systems (e.g. electrochemical), to be formatted in a multiplex configuration and to be subsequently 296 integrated into miniaturised and automated devices. Thus, the combination of the RPA-ELONA with the rapidity and ease 297 of the Biomeme DNA extraction kit paves the way towards the deployment of portable platforms for in situ detection of 298 microalgae.

299 Acknowledgements

This research has received funding from the Ministerio de Economía, Industria y Competitividad through the SEASENSING (BIO2014-56024-C2-2-R) and CIGUASENSING (BIO2017-87946-C2-2-R) projects. The authors also acknowledge support from CERCA Programme/Generalitat de Catalunya. Anna Toldrà acknowledges IRTA-Universitat Rovira i Virgili-Banco Santander for her PhD grant (2015PMF-PIPF-67). Authors would like to thank María Rey for technical support on the culture of microalgae and light microscopy counting, José Luis Costa for the sampling, and Josep Fumadó and Maria Curto for kindly helping in the analysis of the spiked samples.

306 Statement of contributions

307 Anna Toldrà has developed the RPA-ELONA assay for these microalgae and has performed all the experimental work; she 308 has written the manuscript draft. Míriam Jauset-Rubio has contributed to the RPA optimisation. Karl B. Andree has 309 contributed to design the primers. Margarita Fernández-Tejedor has coordinated the seawater sampling and the 310 phytoplankton work. Jorge Diogène has participated in the discussion of the results. Ioanis Katakis has supervised the 311 experimental work and has participated in the discussion of the results. Ciara K. O'Sullivan has provided expertise on 312 RPA-ELONA for application to microalgae in this work, supervised the experimental work and discussed the obtained 313 results. Monica Campas has designed the experimental plan, supervised the experimental work and discussed the 314 obtained results. All authors have critically reviewed the manuscript. Ciara K. O'Sullivan and Mònica Campàs have 315 contributed equally to the work as corresponding authors.

References

- Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72 (9):5742-5749
- Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. In: Carlson CA, Giovannoni SJ (eds) Annual Review of Marine Science, Vol 4. Annual Reviews, Palo Alto, pp 143-176
- Andree KB, Fernandez-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N, Garces E, Camp J, Diogene J (2011) Quantitative PCR coupled with melt curve analysis for detection of selected *Pseudo-nitzschia* spp. (Bacillariophyceae) from the Northwestern Mediterranean Sea. Appl Environ Microbiol 77 (5):1651-1659
- Berge T, Poulsen LK, Moldrup M, Daugbjerg N, Hansen PJ (2012) Marine microalgae attack and feed on metazoans. Isme J 6 (10):1926-1936
- Bergholtz T, Daugbjerg N, Moestrup O, Fernandez-Tejedor M (2006) On the identity of *Karlodinium veneficum* and description of *Karlodinium armiger* sp nov (Dinophyceae), based on light and electron microscopy, nuclearencoded LSU rDNA, and pigment composition. J Phycol 42 (1):170-193
- Bruce KL, Leterme SC, Ellis AV, Lenehan CE (2015) Approaches for the detection of harmful algal blooms using oligonucleotide interactions. Anal Bioanal Chem 407 (1):95-116
- Cai QS, Li RX, Zhen Y, Mi TZ, Yu ZG (2006) Detection of two *Prorocentrum* species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae 5 (3):300-309
- Casper ET, Paul JH, Smith MC, Gray M (2004) Detection and quantification of the red tide dinoflagellate *Karenia brevis* by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 70 (8):4727-4732
- Chen GF, Ma CS, Zhang CY, Zhou J, Wang YY, Wang GC, Zhang BY, Xu Z, Lu DD (2013) A rapid and sensitive method for field detection of *Prorocentrum donghaiense* using reverse transcription-coupled loop-mediated isothermal amplification. Harmful Algae 29:31-39
- Crannell Z, Castellanos-Gonzalez A, Nair G, Mejia R, White AC, Richards-Kortum R (2016) Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem 88 (3):1610-1616
- Diercks-Horn S, Metfies K, Jackel S, Medlin LK (2011) The ALGADEC device: a semi-automated rRNA biosensor for the detection of toxic algae. Harmful Algae 10 (4):395-401
- Diercks S, Medlin LK, Metfies K (2008a) Colorimetric detection of the toxic dinoflagellate *Alexandrium minutum* using sandwich hybridization in a microtiter plate assay. Harmful Algae 7 (2):137-145
- Diercks S, Metfies K, Medlin LK (2008b) Development and adaptation of a multiprobe biosensor for the use in a semiautomated device for the detection of toxic algae. Biosens Bioelectron 23 (10):1527-1533
- Eckford-Soper LK, Daugbjerg N (2015) Development of a multiplex real-time qPCR assay for simultaneous enumeration of up to four marine toxic bloom-forming microalgal species. Harmful Algae 48:37-43
- Eckford-Soper LK, Daugbjerg N (2016) A quantitative real-time PCR assay for identification and enumeration of the occasionally co-occurring ichthyotoxic *Pseudochattonella farcimen* and *P.verruculosa* (Dictyochophyceae) and analysis of variation in gene copy numbers during the growth phase of single and mixed cultures. J Phycol 52 (2):174-183
- Euler M, Wang YJ, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmann M (2013) Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol 51 (4):1110-1117
- Fernandez-Tejedor M, Soubrier-Pedreno MA, Furones MD (2004) Acute LD50 of a *Gyrodinium corsicum* natural population for *Sparus aurata* and *Dicentrarchus labrax*. Harmful Algae 3 (1):1-9
- Garces E, Fernandez M, Penna A, Van Lenning K, Gutierrez A, Camp J, Zapata M (2006) Characterization of NW Mediterranean *Karlodinium* spp. (Dinophyceae) strains using morphological, molecular, chemical, and physiological methodologies. J Phycol 42 (5):1096-1112
- Guillard RRL (1973) Division rates. In: Stein J (ed) Culture methods and growth measurements. Cambridge University Press, Cambridge, p 289
- Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chyrsophyte. Phycologia 32 (3):234-236
- Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. *Cyclotella nana* Hustedt, and *Detonula confervacea* (Cleve) Gran. Can J Microbiol 8 (2):229-239
- Huang HL, Zhu P, Zhou CX, He S, Yan XJ (2017) The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of *Karlodinium veneficum*. Harmful Algae 62:20-29
- Jauset-Rubio M, Svobodova M, Mairal T, McNeil C, Keegan N, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O'Sullivan CK (2016) Aptamer lateral flow assays for ultrasensitive detection of beta-conglutin combining recombinase polymerase amplification and tailed primers. Anal Chem 88 (21):10701-10709

- Joda H, Beni V, Willems A, Frank R, Hoth J, Lind K, Strombom L, Katakis I, O'Sullivan CK (2015) Modified primers for rapid and direct electrochemical analysis of coeliac disease associated HLA alleles. Biosens Bioelectron 73:64-70
- Karlson B, Godhe A, Cusack C, Bresnan E (2010) Introduction to methods for quantitative phytoplankton analysis. In: Karlson B, Cusack C, Bresnan E (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO, Paris, pp 5-12
- LaGier MJ, Jack WFB, Goodwin KD (2007) Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull 54 (6):757-770
- Loukas CM, McQuillan JS, Laouenan F, Tsaloglou MN, Ruano-Lopez JM, Mowlem MC (2017) Detection and quantification of the toxic microalgae *Karenia brevis* using lab on a chip mRNA sequence-based amplification. J Microbiol Methods 139:189-195

Mayboroda O, Katakis I, O'Sullivan CK (2018) Multiplexed isothermal nucleic acid amplification. Anal Biochem 545:20-30

- Medlin LK, Orozco J (2017) Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17 (5):21
- Metfies K, Huljic S, Lange M, Medlin LK (2005) Electrochemical detection of the toxic dinoflagellate *Alexandrium* ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20 (7):1349-1357
- Nishimura T, Hariganeya N, Tawong W, Sakanari H, Yamaguchi H, Adachi M (2016) Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate *Gambierdiscus* spp. (Gonyaulacales) in coastal areas of Japan. Harmful Algae 52:11-22
- Orozco J, Medlin LK (2013) Review: advances in electrochemical genosensors-based methods for monitoring blooms of toxic algae. Environ Sci Pollut Res 20 (10):6838-6850
- Park TG, Park YT, Lee Y (2009) Development of a SYT09 based real-time PCR probe for detection and quantification of toxic dinoflagellate *Karlodinium veneficum* (Dinophyceae) in environmental samples. Phycologia 48 (1):32-43
- Penna A, Galluzzi L (2013) The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. Environ Sci Pollut Res 20 (10):6903-6903
- Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4 (7):1115-1121
- Place AR, Bowers HA, Bachvaroff TR, Adolf JE, Deeds JR, Sheng J (2012) *Karlodinium veneficum*-The little dinoflagellate with a big bite. Harmful Algae 14:179-195
- Rasmussen SA, Binzer SB, Hoeck C, Meier S, de Medeiros LS, Andersen NG, Place A, Nielsen KF, Hansen PJ, Larsen TO (2017) Karmitoxin: an amine-containing polyhydroxy-polyene toxin from the marine dinoflagellate *Karlodinium armiger*. J Nat Prod 80 (5):1287-1293
- Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81-87
- Taylor JD, Berzano M, Percy L, Lewis J (2013) Evaluation of the MIDTAL microarray chip for monitoring toxic microalgae in the Orkney Islands, UK. Environ Sci Pollut Res 20 (10):6765-6777
- Throndsen J (1978) Preservation and storage. In: Sournia A (ed) Phytoplankton Manual. UNESCO, Paris, pp 69-74
- Toldrà A, Andree KB, Fernández-Tejedor M, Diogène J, Campàs M (2018) Dual quantitative PCR assay for identification and enumeration of *Karlodinium veneficum* and *Karlodinium armiger* combined with a simple and rapid DNA extraction method. J Appl Phycol, in press
- TwistDx Appendix to the TwistAmpTM reaction kit manuals. https://www.twistdx.co.uk/docs/default-source/RPA-assay-design/newappendix(2).pdf; searched on 15 January 2018
- Utermöhl H (1958) Zur Vervollkomnungder quantitativen Phytoplankton-Methodik. Mitt.Int.Ver.Ther.Angew.Limnol. 9:1-38
- Van Wagoner RM, Deeds JR, Satake M, Ribeiro AA, Place AR, Wright JLC (2008) Isolation and characterization of karlotoxin 1, a new amphipathic toxin from *Karlodinium veneficum*. Tetrahedron Lett 49 (45):6457-6461
- Yuan J, Mi TZ, Zhen Y, Yu ZG (2012) Development of a rapid detection and quantification method of *Karenia mikimotoi* by real-time quantitative PCR. Harmful Algae 17:83-91
- Zhang FY, Ma LB, Xu ZL, Zheng JB, Shi YH, Lu YA, Miao YP (2009) Sensitive and rapid detection of *Karenia mikimotoi* (Dinophyceae) by loop-mediated isothermal amplification. Harmful Algae 8 (6):839-842
- Zhang FY, Shi YH, Jiang KJ, Song W, Ma CY, Xu ZL, Ma LB (2014) Rapid detection and quantification of *Prorocentrum minimum* by loop-mediated isothermal amplification and real-time fluorescence quantitative PCR. J Appl Phycol 26 (3):1379-1388
- Zhang H, Litaker W, Vandersea MW, Tester P, Lin SJ (2008) Geographic distribution of *Karlodinium veneficum* in the US east coast as detected by ITS-ferredoxin real-time PCR assay. J Plankton Res 30 (8):905-922

Table 1 Summary of probes and primers used in this study.

name	Sequence (5'-3')
K. veneficum capture probe	gtc gtg act ggg aaa act ttt ttt ttt ttt tt-C6 thiol
K. armiger capture probe	ttc att gag ttc gtc gta att ttt ttt ttt ttt tt-C6 thiol
Reporter probe	HRP-act ggc cgt cgt ttt aca
Forward Karlodinium spp. primer	tgt aaa acg acg gcc agt-C3-aca cac atc caa cca tyt cac tg
Reverse K. veneficum primer	gtt ttc cca gtc acg ac-C3-ata gct tcg cag aca aag gtg aat c
Reverse K. armiger primer	att acg acg aac tca atg aa-C3- ata gct tca cag cag agg tta caa c
K. veneficum ssDNA	ata gct tcg cag aca aag gtg aat ccc aat gct gct cca cta ccc gcg aac tgc taa cgc cag ggt gcg gaa gag aac tac ccc aac ccc cgc gca aga gct cac aaa gaa gtt cac agt gaa atg gtt gga tgt gtg t
K. armiger ssDNA	ata gct tca cag cag agg tta caa cac caa tgc tgc tcc gct acc cgc gat ctc atg cac cag gga gcg gca aga agc cag agc ttc aag aca ccc cta ccc ccg tgc agg agc tca caa aga aag ttc aca gtg aga tgg ttg gat gtg tgt

	<i>Karlodinium</i> species	Spiking level (cells/L)	LM* (cells/L)	RPA-ELONA (cells/L)	LM/Spiking level (%)	RPA-ELONA/Spiking level (%)	RPA-ELONA/LM (%)
Sample 1	K. veneficum	1,000,000	1,293,906	855,205 ± 63,224	129	86	66
Sample 2	K. veneficum	200,000	152,544	186,071 ± 30,541	76	93	122
Sample 3	K. armiger	1,000,000	833,016	959,268 ± 130,310	83	96	115
Sample 4	K. armiger	200,000	115,668	157,114 ± 39,207	58	79	136
Sample 5	K. veneficum K. armiger	1,000,000 1,000,000	1,864,044	936,032 ± 108,723 700,547 ± 48,050	93	94 70	89
Sample 6	K. veneficum K. armiger	200,000 200,000	447,234	220,842 ± 27,283 214,838 ± 34,065	112	110 107	97

Table 2 Specific determination of K. veneficum and K. armiger concentrations in seawater samples by RPA-ELONA (n = 3) and light microscopy (LM).

*Spiked samples were analysed singular by LM; during the intra laboratory validation of this method the repeatability error was 41.47%.

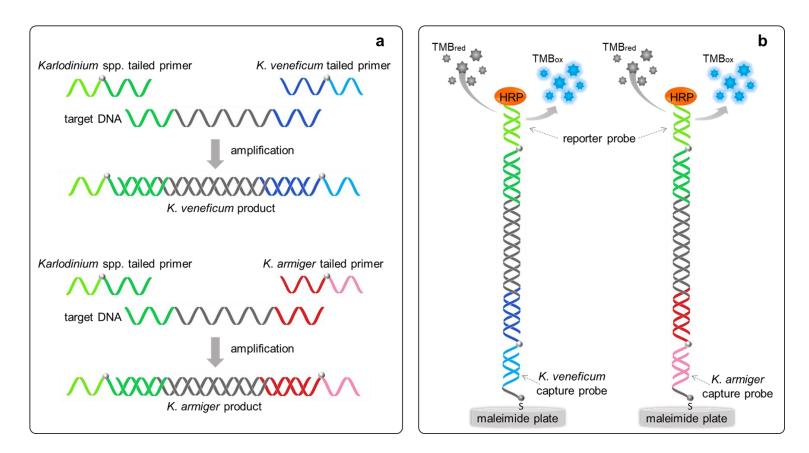
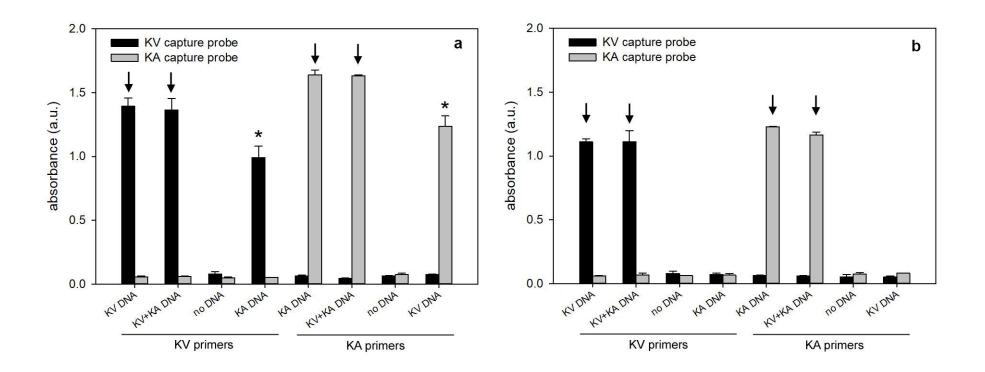



Figure 1. Schematic representation of the RPA-ELONA method for *K. veneficum* and *K. armiger*: (a) RPA with tailed primers and (b) ELONA detection.

Figure 2. RPA-ELONA results using different capture probes, primers and DNA: (a) synthetic ssDNA at 1nM and (b) genomic DNA at 2.3 ng/µL. Error bars represent the standard deviation for 3 replicates. Arrows and asterisks represent specific and non-specific detection, respectively. KV = *K. veneficum*, KA = *K. armiger*.

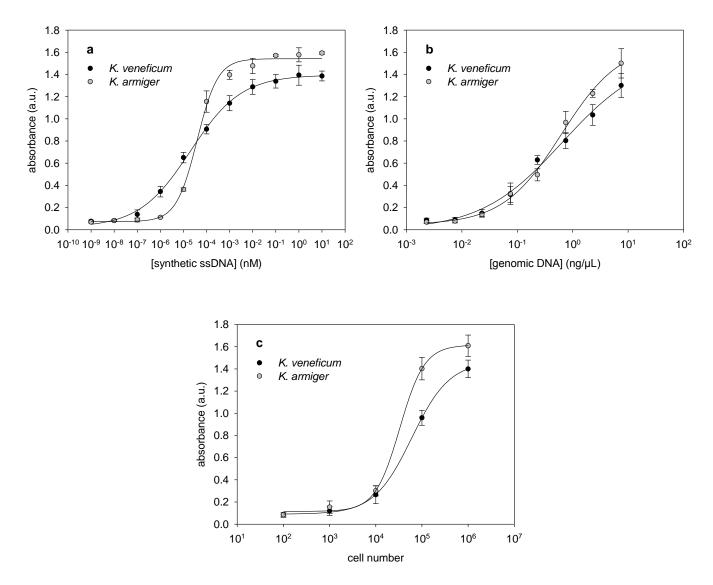


Figure 3. Calibration curves for *K. veneficum* and *K. armiger* obtained with different concentrations of: (a) synthetic ssDNA, (b) genomic DNA and (c) cultured cells. Errors bars represent the standard deviation for 3 replicates.

SUPPLEMENTARY DATA

Figure 1. Gel electrophoresis analysis of target synthetic ssDNA (100nM) amplified by RPA. KV = *K. veneficum*, KA = *K. armiger*, L = 1 Kb Plus DNA Ladder.

	purified RPA products				non-purified RPA products			
	KV primers		KA primers		KV primers		KA primers	
	KV DNA	no DNA	KA DNA	no DNA	KV DNA	no DNA	KA DNA	no DNA
	8	0						
200 bp ► 100 bp ►								