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Abstract. Enteric disease in pigs is usually of multifactorial etiology, including infectious and 19 

non-infectious factors. In many cases of endemic diarrhea in weaner-to-finisher pigs, the 20 

combination of 2 or more microorganisms leads to aggravation of intestinal lesions and, 21 

consequently, clinical signs. We autopsied a 4-mo-old fattening pig with diarrhea and diagnosed 22 

severe fibrinonecrotizing typhlocolitis. Numerous spiral-shaped bacteria and amoeba-like PAS-23 

positive protozoa were observed in the cecal and colonic mucosa and submucosa. Brachyspira 24 

hyodysenteriae was detected by PCR from colonic content. By in situ hybridization, large 25 

numbers of Entamoeba polecki were found within the lamina propria and submucosa; moderate 26 

numbers of Blastocystis and scattered trichomonads were present in intestinal content. In 27 

addition, Entamoeba polecki, Balantidium spp., Blastocystis spp., and Trichomonas spp. were 28 

also detected by PCR. 29 

 30 

Key words: Brachyspira hyodysenteriae; diarrhea; Entamoeba polecki; fibrinohemorrhagic 31 

necrotizing colitis; pigs; swine dysentery. 32 

33 



Page 3 of 15 

Enteric disorders in swine are usually of multifactorial origin, including combinations of 34 

microorganisms plus the concurrence of different non-infectious risk factors.4 Coinfection with 2 35 

or more agents often causes enhanced mucosal inflammation. In addition, damage to the 36 

intestinal epithelial barrier may allow the uncontrolled proliferation of other organisms that 37 

would be harmless under healthy conditions. 38 

Swine dysentery (SD) is one of the most severe enteric diseases of pigs. Brachyspira 39 

hyodysenteriae, its etiologic agent, is a beta-hemolytic spirochete able to cause significant large 40 

intestinal lesions, without the need for other coinfecting agents.5 However, several coinfecting 41 

agents have been described in pigs affected by SD, including Campylobacter spp., 42 

Fusobacterium necrophorum, and Bacteroides vulgatus.2,6,20 Protozoan overload is also a usual 43 

finding in enteric lesions, including in cases of SD.1,16,19 44 

We describe herein the coinfection of B. hyodysenteriae and Entamoeba polecki leading 45 

to severe necrotizing lesions in colon and cecum in a diarrheic pig. A 4-mo-old, crossbred pig, 46 

from a fattening unit (site 3) on an indoor pig production farm, with ongoing problems of 47 

diarrhea died and was submitted to the Servei de Diagnòstic de Patologia Veterinària of the 48 

Veterinary Faculty of the Universitat Autònoma de Barcelona (Spain) for diagnostic purposes. 49 

The farm of origin was a 1,350 sow farm that was positive-stable for porcine respiratory and 50 

reproductive syndrome virus (PRRSV), seropositive to porcine circovirus 2 (PCV-2) and 51 

Mycoplasma hyopneumoniae, and negative to pseudorabies virus. Sows and piglets were 52 

vaccinated with a modified-live PRRSV vaccine. The affected pig belonged to a batch of 450 53 

grower–finishers allocated to pens with a complete slatted floor; animals received a conventional 54 

finishing feed. Clinical problems were observed only in fatteners (14–16-wk-old), with ~10% of 55 

animals with mucoid-red diarrhea starting 1 mo after entering the fattening unit. The field 56 
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veterinarian established a differential diagnostic list including porcine proliferative enteropathy, 57 

SD, and colibacillosis. 58 

At autopsy, the pig was emaciated and pale. Severe diffuse fibrinonecrotizing 59 

hemorrhagic typhlocolitis was observed, with abundant mucous exudate and bloody fluid in the 60 

lumen (Fig. 1). Nasal turbinates had severe bilateral atrophy. No other lesions were observed 61 

grossly. 62 

Samples of lung, spleen, liver, kidney, mandibular and superficial inguinal lymph nodes, 63 

skeletal muscle, heart, stomach, ileum, colon, cecum, and brain were collected and fixed by 64 

immersion in 10% buffered formalin at room temperature for 48 h before routine processing; 65 

slides were stained with hematoxylin and eosin. Immunohistochemical staining to detect 66 

PRRSV11 and PCV-218 was performed on lung and lymphoid tissues (tonsil, lymph nodes, and 67 

spleen) as part of the investigation. In both cases, samples were negative. 68 

Histologically, severe diffuse necrosis of the apical two-thirds of the colon and cecal 69 

mucosa, or complete mucosal necrosis, was observed in the colon and cecum (Fig. 2). Necrotic 70 

and sloughed epithelial cells were present in the lumen admixed with abundant mucus, 71 

degenerate neutrophils, fibrin, and myriad rod- and spiral-shaped bacteria. The latter finding was 72 

confirmed by Warthin–Starry stain, in which numerous spiral-shaped bacteria were observed 73 

within the crypt lumina (Fig. 2 inset). Numerous protozoan structures suggestive of amoeba 74 

trophozoites were observed free in the necrotic debris, the lamina propria, submucosa, and within 75 

lymphatic vessels (Figs. 3, 4). These structures were round, 10–15 μm diameter, with a single 76 

nucleus and intracytoplasmic vacuoles. Amoeba-like structures were periodic acid–Schiff (PAS)-77 

positive and Grocott-negative. No fungal structures were observed in the Grocott stain. Scattered 78 

Balantidium coli were also seen throughout the intestinal lumen. Based on these results, further 79 
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microbiologic and molecular investigations were pursued to identify the lesion-associated 80 

bacteria and protozoa. 81 

Routine bacterial cultures were attempted for Escherichia coli (blood agar and 82 

MacConkey agar) and Salmonella spp. (brain-heart infusion– and Rappaport-Vassiliadis–83 

enriched broths) on samples of ileum and colon, which yielded growth of non-hemolytic E. coli 84 

colonies and no growth of Salmonella spp. DNA was extracted from 200 mg of intestinal content 85 

(QIAamp DNA stool mini kit, Qiagen, Vienna, Austria). B. hyodysenteriae, B. pilosicoli, and 86 

Lawsonia intracellularis DNA were tested by specific PCR methods8,9 on samples of colon 87 

contents. B. hyodysenteriae was detected in colon, but no PCR products for B. pilosicoli or L. 88 

intracellularis were obtained by PCR. 89 

In situ hybridization (ISH) was used to probe for several protozoa (Table 1) on paraffin-90 

embedded intestinal tissue (colon) based on a previously described protocol.3 Briefly, proteolysis 91 

with proteinase K (2.5 μg/mL; Roche, Basel, Switzerland) in Tris-buffered saline was carried out 92 

for 30 min at 37°C. For hybridization, slides were incubated overnight at 40°C with 93 

hybridization mixture and a final probe concentration of 20 ng/mL for the labeling of 94 

Blastocystis spp. and trichomonads, and 10 ng/ml for Entamoeba spp. (Microsynth, Balgach, 95 

Switzerland). Digoxigenin-labeled hybrids were labeled with anti-digoxigenin–alkaline 96 

phosphatase Fab fragments (1:200; Roche) for 1 h at room temperature. The detection reaction 97 

was carried out using the color substrates 5-bromo-4-chloro-3-inodyl phosphate and 4-nitro blue 98 

tetrazolium chloride (Roche). Slides were evaluated by light microscopy using semiquantitative 99 

scoring. ISH yielded positive signals for all 3 tested protozoa. Large numbers of Entamoeba 100 

were predominantly present within the lamina propria and submucosa (Fig. 4, inset), whereas 101 
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moderate numbers of Blastocystis were exclusively located in superficial necrotic debris and 102 

intestinal contents. Scattered trichomonads were confined to crypt lumina. 103 

To support the ISH results, PCR to detect Balantidium spp., Blastocystis spp., Entamoeba 104 

spp., and Trichomonas spp. was used (Table 2). The PCR reaction master mixture consisted of 105 

12.5 µL of KAPA2G Fast HotStart ready mix with dye (Sigma-Aldrich, Vienna, Austria), 0.4 106 

µM of each primer, 2 µL of template DNA, and distilled water to a total volume of 25 µL per 107 

reaction. An aliquot of 10 μL of each PCR product was analyzed by gel electrophoresis using 2% 108 

Tris acetate–EDTA–agarose gel. The agarose gel was stained (GelRed nucleic acid gel stain; 109 

VWR, Vienna, Austria), and bands were detected (BioSens gel imaging system software; 110 

GenXpress, Wiener Neudorf, Austria). PCR products of the expected sizes (Table 2) were 111 

evaluated positively. Finally, PCR products were extracted (MinElute PCR purification kit; 112 

Qiagen) and were submitted for Sanger DNA sequencing (Microsynth). Nucleotide sequences 113 

were analyzed using a BLAST search of the GenBank database. 114 

The intestinal content was PCR-positive for Entamoeba spp., Balantidium spp., 115 

Blastocystis spp., and Trichomonas spp. Sanger DNA sequencing of the Trichomonas spp. PCR 116 

product had 100% identity to the 18S rRNA gene sequence in GenBank (accession JF742057), a 117 

sequence of porcine origin with 96–97% similarity to Trichomitus batrachorum.16 Furthermore, 118 

the PCR products had 100% identity to the 18S rRNA gene sequences of Balantidium coli 119 

(accession GQ903678), Blastocystis spp. subtype 5 (accession KF410605), and E. polecki 120 

(accession MG747668). 121 

To our knowledge, B. hyodysenteriae coinfection with E. polecki associated with 122 

fibrinonecrotizing typhlocolitis has not been described previously in a domestic pig. Although 123 

other protozoa were found by PCR (Balantidium coli, Trichomonas spp., and Blastocystis spp.), 124 
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no tissue damage was associated with the presence of trophozoites of these agents. This was in 125 

contrast with E. polecki, in which trophozoites were in mucosa, submucosa, and lymphatic 126 

vessels of the colon wall, and were associated with severe fibrinonecrotizing inflammation. 127 

Importantly, B. hyodysenteriae can also produce necrotizing lesions in large intestine by itself. It 128 

is possible that the severity of macroscopic and microscopic lesions observed was the result of 129 

the interaction between B. hyodysenteriae and E. polecki. E. polecki was found in the lamina 130 

propria and submucosa only in areas of erosion and ulceration, suggesting that it can be an 131 

opportunistic pathogen secondary to ulceration. However, the high number of trophozoites may 132 

also indicate that E. polecki, under certain circumstances, is able to multiply extensively in 133 

tissues and cause severe local damage. Immune suppression may be a contributing factor; 134 

however, no significant lesions were observed in lymphoid organs, and 2 well-known 135 

immunomodulating viruses—PCV-2 and PRRSV—were not found by immunohistochemistry in 136 

the affected animal. 137 

The proliferation of E. polecki may be explained by intestinal dysbiosis caused by B. 138 

hyodysenteriae infection. Changes in the intestinal nutrient content caused by inflammatory 139 

exudates, mucus, and blood can induce alterations in proportions of microorganisms in the 140 

intestinal lumen,1,4,7,8,17,19 including amoebae.12 Loss of epithelial barrier integrity secondary to 141 

B. hyodysenteriae infection may have allowed invasion of E. polecki into the lamina propria, 142 

submucosa, and even invasion of lymphatic vessels. 143 

To date, the pathogenicity of E. polecki in domestic pigs has not been fully studied. There 144 

are few reports of amoebiasis in the large intestine of pigs. E. polecki subtype 3 and E. suis have 145 

been detected in pigs from Japan with colonic ulcerative and hemorrhagic lesions,13,14 146 

respectively. In the case of E. suis, the presence of Brachyspira spp. was ruled out. Interestingly, 147 
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E. polecki has been identified in the small intestine of a pig with proliferative ileitis caused by L. 148 

intracellularis, and was it suggested that coinfection exacerbated the lesions.12 Amoebae were 149 

found in the injured ileum, but not the colon in that case. 150 

Balantidium spp., Blastocystis spp., and Trichomonas spp. were also detected in colonic 151 

feces. These protozoa are considered normal intestinal commensals in porcine intestine, and they 152 

do not typically cause disease or intestinal lesions. However, host immunosuppression, intestinal 153 

dysbiosis, or disruption of the epithelial layer can predispose to overgrowth of these intestinal 154 

commensals.1,17,19 The 2 latter possibilities may account for the proliferation of these protozoa, 155 

given that the farm used antimicrobials to control the problem (potential dysbiosis associated), 156 

and SD is a well-known cause of disruption of the mucosa epithelium. In any case, only B. coli 157 

was observed microscopically, and was limited to the colon lumen. 158 
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Table 1. In situ hybridization protocols applied to detect genomes of different protozoa. 218 

Protozoa Targeted genomic region Probe sequence (length in nucleotides) Comments Reference 

Blastocystis sp. 18S rRNA 5’-ggatgttttcattaatcaagaacgaaagctaggggatc-3’ (38 nt) Cross-reactive with Entamoeba spp., 

Eimeria spp., Sarcocystis spp., 

Cryptosporidium spp., Balantidium spp., 

Candida spp., Aspergillus spp. 

10 

Entamoeba spp. 18S rRNA 5’-gatcatgaattttcacctctccc-3’ (23 nt) None 17 

Trichomonadida 18S rRNA 5’-ttgcggtcgtagttcccccagagcccaagaact-3’ (33 nt) None 15 

 219 

220 
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Table 2. Primer sequences and temperature conditions of the PCR methods used to detect different protozoan genomes. 221 

Protozoan 

Targeted 

genomic 

region 

PCR 

amplicon 

(bp) Primer sequences PCR temperature conditions Reference 

Balantidium spp. 18S rRNA 462 fw: 5’-gataggggatcaaagacaatca-3’ 

rv: 5’-acatataagggcatcacagacc-3’ 

95°C/3 min 

40×: 95°C/15 s, 55°C/15 s, 72°C/25 s 

72°C/1 min 

This study 

Blastocystis sp. 18S rRNA 479 fw: 5’-ggaggtagtgacaataaatc-3’ 

rv: 5’-tgctttcgcacttgttcatc-3’ 

95°C/3 min 

40×: 95°C/15 s, 55°C/15 s, 72°C/25 s 

72°C/1 min 

This study 

Entamoeba spp. 18S rRNA 472 fw: 5’-attggagggcaagtctggtg-3’ 

rv: 5’-gttaggactacgacggtatc-3’ 

95°C/3 min 

40×: 95°C/15 s, 55°C/15 s, 72°C/25 s 

72°C/1 min 

This study 

Trichomonas spp. 18S rRNA 250 fw: 5’-ggtaggctatcacgggtaac-3’ 

rv: 5’-actygcagagctggaattac-3’ 

95°C/3 min 

40×: 95°C/15 s, 58°C/15 s, 72°C/25 s 

72°C/1 min 

Adapted protocol based on 

ref. 16 

fw = forward primer; rv = reverse primer. 222 
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Figures 1–4. Macroscopic and microscopic lesions of colon and cecum of a pig coinfected with 223 

Brachyspira hyodysenteriae and Entamoeba polecki. Figure 1. Diffuse severe subacute 224 

fibrinonecrotizing typhlocolitis with abundant liquid and hemorrhagic content. Figure 2. 225 

Apical-to-transmural necrosis of the mucosa with abundant production of mucus. Inset: 226 

numerous Warthin–Starry-positive, spiral-shaped bacteria are present in the mucosa. Figure 227 

3. Presence of numerous amoebic structures in crypt lumina and expanding the lamina propria 228 

and submucosa. Figure 4. Amoebae are round bodies with a single nucleus and a few 229 

intracytoplasmic vacuoles, observed in mucosa, submucosa, and in the lumen of lymphatic 230 

vessels (arrow). Inset: in situ hybridization with an Entamoeba-specific probe shows clear 231 

labeling of the protozoal structures in the lamina propria. 232 
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