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Abstract 14 

Water stress responses during the post-harvest period were evaluated in a Chardonnay container-grown 15 

grapevines grafted onto 1103 Paulsen rootstock. The irrigation treatments were: a control treatment (C) 16 

(irrigated to match ETC demands) and a water stress treatment (WS) (irrigated when midday stem water 17 

potential reached a -1.1 MPa threshold). Photosynthesis, biomass and carbohydrate content were determined 18 

on five vines in each treatment on specific dates, from harvest until leaf fall. Stressed vines reduced leaf area 19 

due to defoliation, while well-watered vines had a higher carbon accumulation allowing the formation of new 20 

roots during the post-harvest period. No dry biomass accumulation was observed in the shoot and trunk organs 21 

after fruit harvest. Starch concentration and content were not affected by water stress. At the end of the 22 

experiment, starch concentrations were lower in the shoots and trunk than in the roots. Water stress induced a 23 

variation on biomass accumulation between above and below ground perennial organs, with the roots being the 24 

main organs in which biomass and starch concentrations were accumulated and kept, respectively. 25 
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1. Introduction 1 

Water stress can be a limiting factor in perennial crops, affecting important physiological processes 2 

such as photosynthesis and respiration (Chaves et al. 2010). Plant growth depends on the carbon balance which, 3 

in turn, is linked to photosynthesis and the respiration balance and is often limited by water availability (Flexas 4 

et al. 2006). As a result, numerous studies have focused on plant responses to water stress during the vegetative 5 

growth period, with the grapevine providing a clear example (Vitis vinifera L.) (Girona et al. 2009, Rogiers et 6 

al. 2011). 7 

The grapevine has its origin in the Mediterranean basin and its growth cycle has adapted to the climatic 8 

condition in this area (Terral et al. 2010). Grape production in the regions surrounding the Mediterranean basin 9 

is an important activity, occupying approximately 2,768,000 hectares (OIV 2017). In such regions, the onset of 10 

vegetative growth is defined by bud break (Duchêne et al. 2010). It takes place during spring and is accompanied 11 

by a significant mobilization of carbohydrates from plant reserves. This permits new vegetative growth until 12 

leaves reach 50 % of their final size to become net carbon exporters (Vaillant-Gaveau et al. 2014, Köse and 13 

Ates 2017). Depending on the grapevine cultivar, this mobilization of reserves may even be extended almost 14 

until anthesis (Zapata et al. 2003). The accumulation of carbohydrates during the previous season is therefore 15 

essential for sustaining the mobilization of reserves until photosynthesis becomes the main source of carbon in 16 

spring (Zapata et al. 2004, Smith and Holzapfel 2009). 17 

The accumulation of carbohydrates in storage tissues depends on total photosynthesis and the 18 

partitioning of carbon among different plant organs (Howell 2001, Smith and Holzapfel 2009). In temperate 19 

climate vines, several studies have demonstrated that the majority of the carbohydrate restoration in storage 20 

tissues takes place during the post-harvest period, which supports vine reserve recovery (Bennett et al. 2005, 21 

Vaillant-Gaveau et al. 2014). Although the rate of photosynthetic activity decreases in line with leaf senescence 22 

(Bertamini and Nedunchezhian 2003), functional leaves remain active and help the replenishment of reserves 23 

(Scholefield et al. 1978, Loescher et al. 1990). Even in areas with short post-harvest periods, carbohydrate pool 24 

replenishment tends to be sufficient to maintain yield levels (Bennett et al. 2005, Vaillant-Gaveau et al. 2014). 25 

In most grape-growing regions, vines retain their leaves after harvest (Bennett et al. 2005). However, the length 26 

of time that leaves are retained on the vine and the effectiveness of their photosynthetic activity depend on the 27 

cultivar, climatic conditions and viticultural practices (Williams 1996, Trought et al. 2011, Hall et al. 2016). 28 
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Starch is the primary reserve form for carbohydrates stored in trunk and root organs (Mullins et al. 29 

1992, Pellegrino et al. 2014, Köse and Ates 2017). Although starch concentration seems to be influenced by 30 

grapevine cultivar, climate and vine management (Bennett et al. 2005), the majority of starch storage is located 31 

in roots (Bates et al. 2002, Zapata et al. 2004). The root system consists of: coarse roots, which provide a 32 

structural framework, anchorage, transport and storage for carbohydrates, and nutrients for the woody organs; 33 

and fine roots, which are generally responsible for water and nutrient uptake (Comas et al. 2010). Root 34 

development in grapevines has been described as cyclical, with two main flushes of growth: in spring, between 35 

several days after bud break and bloom; and in autumn, between harvest and leaf fall (Mullins et al. 1992, 36 

Tomasi 2016). Root growth is an energy-dependent process involving endogenous sink-source relations which 37 

depend on the availability and partitioning of carbohydrates. The main environmental factors regulating root 38 

growth are soil temperature (Kaspar and Bland 1992, Rogiers et al. 2013, Clarke et al. 2015) and water 39 

availability. The latter has been described as the most important factor regulating root growth and development 40 

(Eapen et al. 2005, Tomasi 2016). However, the impact of water stress on carbon accumulation following 41 

harvest has so far received relatively little attention. Furthermore, compared with the above-ground organs 42 

(such as leaves, shoots and trunk organs), there are few studies of root processes in grapevines (Field et al. 43 

2009, de Herralde et al. 2010, Holzapfel and Smith 2012, Miranda et al. 2017). This is probably because these 44 

types of studies are highly time consuming and, to the best of our knowledge, at certain specific points in the 45 

post-harvest period (Bates et al. 2002); this is usually an overlooked period for grapevines (Hall et al. 2016). 46 

In Mediterranean climatic regions, the post-harvest period coincides with low evaporative demand and 47 

late summer rain events. As a result, numerous studies have focused on grapevine responses to water stress 48 

during the period of vine growth (spring-summer) in which the probability of heat or water stress is high (Eapen 49 

et al. 2005, Duchêne et al. 2010). However, according to climate projections, an increase in the frequency and 50 

intensity of the drought events is expected, not only throughout the growing cycle of the grapevines, but also 51 

during post-harvest (Gonçalves et al. 2014, Ramos et al. 2018). Under such a scenario, the aims of the present 52 

study were to compare the relative contributions of the shoot, trunk and root organs of Chardonnay grapevines 53 

to the restoration of carbohydrate reserves under well-watered and water stress conditions during the post-54 

harvest period.  55 
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2. Materials and methods 56 

2.1. Experimental site and plant material 57 

The experiment was carried out at Raïmat (41º40’37’’ N – 0º28’38’’ E), Lleida (Catalonia, Spain), during 58 

2015 and 2016. In spring 2015, 172 one-year-old Chardonnay grapevines that had been grafted onto 1103 59 

Paulsen rootstock were planted in 50-L containers. The growing media consisted of loose stones at the bottom 60 

of each container and a substrate mix consisting of peat, sand and silty-loam soil, in equal parts. Disease control 61 

and nutrition management were performed according to the wine grape production protocol of the ‘Costers del 62 

Segre’ Denomination of Origin (Catalonia, Spain). 63 

2.2. Experimental design, irrigation treatments and water applied 64 

The vines were fully irrigated until the beginning of the experiment, using the crop reference 65 

evapotranspiration method (Allen et al. 1998). The post-harvest irrigation study started in late August 2016, 66 

after fruit harvest (August 25). For this study, 64 uniform vines were selected and arranged in two rows, of 32 67 

vines each (with a separation between rows of 3 m). The container walls were painted white to prevent excessive 68 

root temperatures. The experiment was laid out in a complete randomized block design with two treatments and 69 

four replications of eight vines. The experimental unit consisted of eight vines (8 vines x 2 treatments x 4 70 

replications). 71 

Two irrigation treatments were applied: a control (C), scheduled to satisfy full water requirements (100% 72 

ETC), and a water stress treatment (WS). In the latter, irrigation was triggered once the midday stem water 73 

potential (SWP) threshold of -1.1 MPa was reached, following Bellvert et al. (2016). The WS vines were 74 

scheduled to receive 50%, 15% and 10% of the ETC, in August, September and October, respectively. The 75 

amount of water applied to each experimental unit was monitored using digital water meters (CZ2000-3 M, 76 

Contazara, Zaragoza, Spain). 77 

2.3. Water status and net assimilation rate measurements  78 

Midday stem water potential (SWP) and leaf net CO2 assimilation rate (An) (µmol CO2 m-2 s-1) 79 

measurements were made once per week from post-harvest (August 26) until leaf fall (October 19), measuring 80 

one leaf of three of the eight vines per experimental unit in each replication and treatment. Midday stem water 81 

potential (SWP) was determined using a pressure chamber (3005-series portable plant water status console, Soil 82 
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Moisture Equipment Corp., Santa Barbara, California, USA) following the McCutchan and Shackel (1992) 83 

procedure. Measurements were made at solar noon on shaded leaves located close to the main trunk. Leaves 84 

were covered with plastic sheathes with aluminium foil bags for at least 1 hour before measurements were 85 

taken. Leaf net CO2 assimilation rates were measured with an infrared gas analyser (model LCi; ADC 86 

BioScientific Ltd., Hoddesdon, Herts, UK). A portion of each leaf was placed in the chamber window area of 87 

6.25 cm2 and data were taken after 45 s, when the An reading had stabilized. All the measurements were taken 88 

in less than an hour. The integrated An reading for successive dates and for the whole experiment was calculated 89 

according to Basile et al. (2011), as follows: 90 

∫ 𝐴𝑛 =  ∑ |
𝐴𝑛 𝑖+𝐴𝑛 𝑖+1

2
∙ (𝑡𝑖+1 − 𝑡𝑖)|𝑖+1

𝑖        (1) 91 

Where An is the leaf net assimilation rate and t are the measurement days. 92 

The integrated An ratio between irrigation treatments was determined as: 93 

𝑅𝑎𝑡𝑖𝑜 𝐴𝑛 =   ∫ 𝐴𝑛 𝑊𝑆 ∫ 𝐴𝑛 𝐶⁄         (2) 94 

Subscripts WS and C represent the water stress and control irrigation treatments, respectively. 95 

2.4. Biomass determination 96 

Vine biomass was sampled during the post-harvest period on the following dates: August 25 (initial date 97 

from which the differential irrigation treatments were applied), September 20, October 4, October 24 and 98 

November 28. The first sampling date was scheduled before the start of the irrigation treatment, when five vines 99 

were selected. For the following sampling dates, five vines were selected per treatment. The vines were split 100 

into above-ground organs (leaves, shoots and trunk) and below-ground organ (root system). Each above-ground 101 

organ was dried in a forced-air oven at 65ºC to constant weight and then the dry weight of each organ was 102 

recorded. Leaf area (LA) was measured on a subsample of 20 leaves from each vine, except on the last day, 103 

because by then, all the leaves had naturally fallen off the vine. Leaf areas were measured with a leaf area meter 104 

(Li-COR 3200; Li-COR, Lincoln, NE, USA). After the sub-samples were measured they were placed in a 105 

forced-air oven and dried to a constant weight. The resulting values were then related to the whole vine leaf dry 106 

weights to obtain LA measures for each vine. 107 

The root system was washed in a container at the field, and subsequently classified, into 4 categories, in 108 

the lab: a) underground stem of the rootstock, b) thick roots (> 2 mm), c) fine roots (suberized), and d) new 109 
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roots (fine non-suberized). The differentiation between suberized and non-suberized fine roots was made by 110 

colour, as the new roots were lighter and finer, and the fine roots were darker (Clarke et al. 2015). The whole 111 

root system was dried and the dry weights were recorded as previously described for the above-ground organs. 112 

The proportion of new roots in relation to the total root system was expressed considering the severity and 113 

duration of the water stress effect, calculating the water stress integral from the SWP measurements for the 114 

period. 115 

2.5. Starch accumulation  116 

Vine starch concentration was determined in the shoots, trunk and thick roots (> 2 mm). For each vine, 12 117 

g fresh weight samples were taken for the shoots and trunk and 10 g samples for the thick roots. These were 118 

frozen in liquid nitrogen and then dried in a forced-air oven at 65ºC. Once the dry weight was constant, the 119 

samples were ground using a hand mill (M20; IKA-WERKE, Staufen, Germany). Starch concentration 120 

determination was carried out using a polarimetry technique in line with European regulation CE 152/2009. 121 

2.6. Statistical analysis 122 

The effect of the irrigation treatment on leaf net CO2 assimilation rate, organ dry mass and starch content 123 

were evaluated by a one-way ANOVA followed by a Tukey’s significant difference test. The same analysis 124 

was carried out on the assessment of the effect of the sampling dates on starch concentration. All the statistical 125 

analyses were performed using R software (R Core Team 2017) (R version 3.2.4 Revised) and the statistical 126 

significance was established at P<0.05. 127 

3. Results 128 

3.1. Applied water, water status and net assimilation rate  129 

Each vine received 237 L of water from bud break to harvest prior to the beginning of the experiment. 130 

Then, from harvest to leaf fall, the control (C) vines received 116 L per vine, whereas the water stress (WS) 131 

vines received 46 L per vine. During this period, the stem water potential (SWP) in the C vines ranged from -132 

0.4 to -0.6 MPa (Figure 1). In the WS treatment, the aim was to subject the vines to moderate stress levels, with 133 

a threshold value of -1.1 MPa. The irrigation threshold was exceeded on two occasions: on September 13 (-1.2 134 

MPa) (following a 2.9 mm late summer rain event typical of Mediterranean conditions); and at the end of the 135 
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experiment (-1.4 MPa), when the vine water status recovered to non-stress values, following a 21.6 mm rainfall 136 

event (Figure 1). Since the environmental conditions of the experiment were not favourable for achieving stress 137 

after October 19 in the WS vines (Figure 2), that date was taken as the end point of the differential irrigation 138 

management. 139 

The water stress imposed in the WS treatment induced some early leaf fall in mid-September (Figure 3). 140 

Thereafter, the reduction in leaf area (LA) (m2) was related to leaf senescence. In contrast, in the C treatment, 141 

only leaf senescence was responsible for reductions in LA (Figure 3). 142 

The leaf net CO2 assimilation rate (An) for the C treatment ranged from 5.9 to 10.6 µmol CO2 m-2 s-1, while 143 

that for WS was between 2.3 and 14.1 µmol CO2 m-2 s-1 (Figure 4). From the onset of the experiment until 144 

September 22, the WS leaf net assimilation rates were below those of the C treatment; for the remainder of the 145 

period, those for WS were greater than for C (Figure 4). The relation between the integrated An of WS vines 146 

and C vines was 1.00 (calculated by equation 2); this resulted from 412.40 µmol CO2 vine-1 for the WS and 147 

411.02 µmol CO2 vine-1 for the C vine values (calculated by equation 1) (Figure 4). 148 

3.2. Above-ground and below-ground biomass 149 

Irrigation restrictions did not induce any differences in biomass accumulation of perennial above-ground 150 

vine organs. Shoots and trunk did not indicate any significant differences in carbon accumulation for any of the 151 

sampling dates during the period analysed (Figure 5a and 5b). 152 

The accumulated biomass measurements for the root systems were not significantly different between 153 

irrigation treatments (Figure 5c). Considering only new root biomass, a significant (P<0.05) increase was 154 

observed for the C treatment with respect to the WS treatment throughout the study; with the October 24 155 

exception (Figure 5c). Differences in accumulated biomass in new roots between the C and WS treatments were 156 

63.4, 44.6 and 50.8 % for the September 20, October 4 and November 28 sampling dates, respectively. 157 

The proportion of new root biomass compared total roots biomass was greater in the C treatment compared 158 

to the WS treatment and increased as a function of accumulated waster stress (Figure 6). Since leaf fall occurred 159 

at the end of October, it was not possible to measure water status on the last measurement date (November 28).  160 

3.3. Starch accumulation 161 

Starch concentrations during the whole period were significantly different between sampling dates for 162 



7 

 

shoot and trunk organs, in both of the irrigation treatments (Table 1). Significant differences were observed 163 

(P<0.05) between the treatments on the last measurement date (November 28), when the lowest starch 164 

concentrations were registered and ranged from 10.6 and 11.6 %. The highest average starch concentration in 165 

C treatment shoots was 16.7 % for the September 20, October 4 and October 24 sampling dates. The C vines 166 

had the highest starch concentrations in the trunk on the September 20 and October 4 sampling dates, with an 167 

average of 15.7 % (Table 1). The highest starch concentrations in the WS treatment occurred on October 4, in 168 

shoots were registered 16.3 % and 15.2 % in the trunk. No significant differences in starch concentration were 169 

found in root organs for any sampling date or irrigation treatment, during the experiment. 170 

As observed for dry mass, in all of the perennial organs, the starch content was not significantly different 171 

between irrigation treatments for any sampling dates (Figure 7). There were statistical differences between the 172 

first (August 25) and the last (November 28) sampling dates within the same irrigation treatments. Shoot starch 173 

content did significantly decline from 9.3 g of starch to 7.1 g in the C vines and 6.7 in the WS vines by November 174 

28 (Figure 7a). As with shoots, the minimum starch content in trunk was registered on the last sampling date 175 

(November 28), with 8.8 g in both treatments (11.2 g of starch was measured on August 25) (Figure 7b). Over 176 

time the starch content in the roots of the C and WS treatments appeared to diverge, but the differences were 177 

not statistically significant (Figure 7c). 178 

4. Discussion 179 

One of the most noticeable effects of water stress during post-harvest was the rapid reduction of leaf area 180 

through defoliation, with plants accelerating the normal process of leaf senescence apparently to compensate 181 

for unfavourable water status conditions (Figure 3). During post-harvest, leaf functioning is considered to play 182 

an important role in carbohydrate assimilation until leaf senescence (Loescher et al. 1990, Köse and Ates 2017). 183 

In spite of the imposed water stress in our study, the total amount of assimilated carbon per leaf surface area 184 

was similar for both treatments throughout the experiment (∫ An leaf WS / ∫ An leaf C = 1) (Figure 4). However, the 185 

leaf biomass in WS vines was considerably reduced in comparison with C vines, due to defoliation (Figure 3), 186 

which it could have allowed a lower carbohydrate assimilation. The differences between the treatments with An 187 

were smaller than expected, because the remaining WS leaves demonstrated greater photosynthetic activity than 188 

the C vines (Figure 4). In the C vines, the photosynthetic rate was similar to that reported in other studies 189 

(Sauvignon blanc, 5 – 11 µmol CO2 m-2 s-1) (Greven et al. 2016). Abiotic factors such as temperature, light 190 
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and/or water are known to affect the photosynthetic capacity of vine leaves (Escalona et al. 1999). In the present 191 

experiment, however, the main factor responsible for the differences between treatments was the different leaf 192 

area (Figure 3). During the stress period, the remaining leaves on the WS vines had a greater An, which partially 193 

compensated for the impact of the reduction in leaf area attributable to water stress (Figure 4). This 194 

compensation may have been the reason why the starch content presented no clear treatment effects (Table 1, 195 

Figure 7). 196 

No significant differences were found between the treatments in terms of shoot and trunk dry mass during 197 

the course of the experiment (Figure 5a and 5b). The figures 5a and 5b showed a hint of less biomass in the WS 198 

vine treatment, but the differences were not statistically significant. At the root level, however, new root 199 

formation took place in both treatments, but at different rates (Figure 6). The level of the initial stress imposed 200 

on WS on this study may be high enough to restrict the growth rate of new roots and keep this below that of the 201 

C treatment, even during periods when the plant water status recovered (Figure 1 and Figure 6). This argument 202 

is supported by Figure 6, where is presented a comparison between the water stress integral and the growth of 203 

new roots. This was probably related to the reduction in leaf area after the initial stress was applied in WS 204 

(Figure 3); this may have limited the photosynthetic capacity of the vine. 205 

Respiration processes necessary for growth and organ maintenance are affected by water stress and, as a 206 

consequence, starch content could be also influenced (Flexas et al. 2006, López et al. 2013). Previous studies 207 

of vines subjected to water stress conditions have shown differences in starch concentrations and contents 208 

(Holzapfel et al. 2010). However, despite the different root growth rates, no significant differences were found 209 

in total root biomass (Figure 5c) and the same was true for starch content (Figure 7c). But since the biomass 210 

already present in the roots probably was large enough to mask differences, no differences were expected in 211 

root biomass and starch content. Although no statistically differences were found on total root dry mass between 212 

treatments (Figure 5c), it should not be ignored the apparent differences in root dry mass among vine treatments. 213 

Furthermore, no differences between treatments were found in starch concentration (Table 1). The differences 214 

that were found were in shoot and trunk starch concentrations corresponding to the last series of measurements 215 

taken in the experiment (Table 1). The last measurement date also coincided with the lowest starch content 216 

(Figure 7a and 7b) (Greven et al. 2016). In previous studies, starch concentration was evaluated in perennial 217 

organs for several grapevine cultivars and locations. Reported trunk starch concentrations ranged from 4 to 14 218 
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% (Bates et al. 2002, Zapata et al. 2004, Sadras and Moran 2013), and 10 % for a Chardonnay cultivar in New 219 

Zealand (Bennett et al. 2005). The same studies of vine roots reported starch concentrations of 8 to 30 %, and 220 

13 % for Chardonnay (in New Zealand). Our starch concentration values were similar to previous Chardonnay 221 

study (14 % in trunk and 12 % in roots, on average) (Table 1). This indicates that the level of water stress 222 

applied was not enough to influence the starch concentration in these organs. The differences between the 223 

concentrations in the shoots and trunk observed at the end of the experiment may have been related to the 224 

conversion of starch into other carbohydrates because no remobilization appeared to take place at the root level 225 

(starch values remaining constant, Table 1). The decrease on starch concentration in shoots and trunk after leaf 226 

fall (November 28, Table 1) could have been associated with the demand for carbohydrates for new root growth, 227 

maintaining organ respiration, or acclimatization of the grapevines to low temperatures. This is because 228 

increasing vine hardiness to winter conditions requires the conversion of starch into soluble sugars when 229 

temperatures fall below 5 ºC and the days become shorter in the middle of winter (Hamman et al. 1996, Keller 230 

2010, Zufferey et al. 2012). These environmental conditions were similar to those corresponding to the last 231 

sampling measurements taken in the study (Figure 2). 232 

Maintaining starch concentrations and root biomass in the WS treatment responded to a redistribution of 233 

carbohydrate assimilates on shoot and trunk reserves organs. Also, it responds to a conservative strategy for 234 

preserving carbohydrates in the form of starch to ensure carbon reserves for subsequent spring growth. Water 235 

stress is known to affect root growth in vines (Eapen et al. 2005, Comas et al. 2010, Maihemuti et al. 2016). 236 

The reduction in root growth induced by the water stress added to the lack of fruits in the post-harvest period 237 

reduced the potentially available sinks and favoured the allocation of new photosynthates towards reserves 238 

(Iniesta et al. 2009). Furthermore, pre-harvest reserve replenishment has been reported to begin during fruit 239 

maturation, when berry sugar accumulation slows; this means that reserve accumulation in roots could have 240 

started before and they may be replenished enough by harvest (Candolfi-Vasconcelos et al. 1994, Holzapfel et 241 

al. 2006, Rossouw et al. 2017). If this is so, even though the WS vines were stressed, they may have still been 242 

able to keep similar concentrations of reserves as the well-watered plants and this would have allowed them to 243 

regrow in the next season. This would imply that vines either have a conservation strategy that allows them to 244 

maintain carbohydrates in the form of starch, which gives priority to the survival of permanent structures over 245 

any increase in vine size (Greven et al. 2016). According to Greven et al. (2016), the carbohydrate dynamics 246 
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related to storage in reserve organs suggests that the trunk may serve as a relevant, albeit transitional, reserve 247 

storage organ between the root system and the rest of the vine, and as the most accessible storage sink. Roots, 248 

on the other hand, are widely considered to be the most important storage reserve organs in vines (Scholefield 249 

et al. 1978, Loescher et al. 1990, Bates et al. 2002). 250 

Containers do not adequately recreate and represent field conditions (Bravdo 2005), because they prevent 251 

roots from spreading as widely as they would in soil conditions (Zapata et al. 2001). Furthermore, different 252 

stomatal closure processes could be involved with vines grown in soil, such as abscisic acid signalling 253 

(Vandeleur et al. 2009). This experiment may point out that water stress during post-harvest “forces” allocation 254 

of assimilates towards reserves, thereby allowing plants to maintain their reserves for the following season. 255 

The early defoliation of vines, after several consecutive years under warm conditions and water limitations, 256 

has been reported to influence carbohydrate reserves. As a result in the subsequent seasons, it occurred the 257 

reductions in yields and poorer vegetative growth, because new growth is dependent on pre-existing reserves 258 

(Vaillant-Gaveau et al. 2014, Greven et al. 2016, Köse and Ates 2017). Under the conditions where our study 259 

was developed, we did not evaluate variations on carbohydrate reserves in front of water limitation. But it could 260 

be hypothesised that an accumulative effect on vine reserves during post-harvest period under these conditions 261 

may deplete them. As it has showed on this work, the most significant effect evaluated due to water stress was 262 

the reduction of fine root growth, which it may hinder the vegetative growth on the following season. Recent 263 

research related to climate change within the same study area has reported reductions in annual precipitation, 264 

in both autumn and winter, and an increase in temperatures, especially during summer (Gonçalves et al. 2014). 265 

Which it coincided according with the environmental conditions in which the work was tried to be carried out. 266 

Moreover, phenological shifts associated with increasing temperatures have been reported in several wine-267 

growing regions (Jones and Davis 2000, Duchêne et al. 2010, Petrie and Sadras 2008). One of the main possible 268 

consequences of this shifts may be the enlargement of the post-harvest, its occurrence into warmer conditions 269 

and the increase of the irrigation water requirements (Hall et al. 2016). It is substantial to consider the possible 270 

interactions in grapevine behaviour, taking into consideration changes in environmental conditions, shifts in 271 

phenological events and carbon balances and partitioning (Ollat and Touzard 2014). 272 
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5. Conclusions 273 

The main effect of water stress on grapevines during the post-harvest period was the defoliation of the 274 

vines and reduction in their total leaf area. Supplying full water demands until leaf fall permitted the 275 

maintenance of photosynthetic leaf area and consequently a higher level of carbohydrate accumulation, along 276 

with the formation of new roots which are responsible for high water and nutrient uptake. The lack of water 277 

caused vines to respond with variations on biomass accumulation between above and below ground perennial 278 

organs, indicating a high response in carbon economy in order to favour the survival of the permanent structures 279 

rather than total increases in vine size. Moreover, water stress did not influence the main storage organ, the 280 

roots, keeping the biomass and starch concentrations.  281 
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Table 1. Starch concentrations of shoots and trunk (perennial above-ground organs) and roots (below-ground 1 

reserve organ) for vines harvested during the course of the post-harvest treatments. 2 

Sampling date 

(month/day) 

Treatment 

Control (%)  Water Stress (%) 

Shoots Trunk Tick roots  Shoots Trunk Tick roots 

Starting date 08/25 14.2 ± 0.5b 13.5 ± 0.3b 12.3 ± 1.2a  14.2 ± 0.5b 13.5 ± 0.3b 12.3 ± 1.2a 

09/20 16.7 ± 0.2a 15.7 ± 0.2a 12.5 ± 0.8a  15.1 ± 0.5ab 14.9 ± 0.4ab 13.0 ± 1.6a 

10/04 16.6 ± 0.2a 15.8 ± 0.2a 14.0 ± 1.0a  16.3 ± 0.2a 15.2 ± 0.2a 12.2 ± 0.4a 

10/24 16.8 ± 0.5a 15.0 ± 0.2ab 11.3 ± 0.7a  15.7 ± 0.5ab 14.8 ± 0.4ab 12.5 ± 0.5a 

11/28 11.6 ± 0.3c 10.7 ± 0.3c 13.3 ± 1.1a  10.9 ± 0.3c 10.6 ± 0.4c 11.3 ± 0.7a 

Different letters mean significant differences on starch concentration between sampling dates in the same organ 3 

and in the same irrigation treatment (P<0.05). 4 
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Figure 1. Post-harvest period patterns of midday stem water potential for vines under control (C) and water 

stress (WS) treatments. Natural leaf fall occurred on October 19. The irrigation threshold in the WS 

treatment was defined as -1.1 MPa. The bars indicate the standard error of the mean.  
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Figure 2. Climate summary during the experimental period with daily maximum and minimum temperature 

and daily global solar radiation. Environmental data was retrieved from the nearest weather station (1 km) 

from the study location (Raïmat, www.ruralcat.net/web/guest/agrometeo.estacions). 
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Figure 3. Leaf area pattern until leaf fall on vines under control (C) and water stress (WS) treatments. 

Natural leaf fall occurred on October 19.The values represent the means for five vines per treatment and 

the bars indicate the standard error of the mean.  
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Figure 4. Post-harvest period patterns of leaf net CO2 assimilation rate for vines under control (C) and 

water stress (WS) treatments. Natural leaf fall occurred on October 19. Bars indicate the standard error of 

the mean. Different letters indicate significant differences between irrigation treatments for the same date 

(P<0.05). 
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Figure 5. Post-harvest period patterns for dry mass in shoot (a), trunk (b), total root and new root organs 

(c) under control (C) and water stress (WS) treatments. The values represent the means of five vines per 

treatment and the bars indicate the standard error of the mean. There were no significant differences 

between irrigation treatments for the same sampling date (P<0.05). 
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Figure 6. Proportion of new root to total root weight in response to the cumulative water stress integral of 

vines under the control (C) and water stress (WS) treatments. The values represent means for five vines per 

treatment on the August 25, September 20, October 4 and October 24 sampling dates. Bars indicate the 

standard error of the mean. Equations represent the polynomial adjustment of the measures. 
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Figure 7. Post-harvest patterns of starch content in shoot (a), trunk (b) and total root (c) organs under 

control (C) and water stress (WS) treatments. The values represent the means for five vines per treatment 

and the bars indicate the standard error. There were no significant differences between irrigation treatments 

for the same sampling date (P<0.05). 




