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(ABSTRACT) 

Systematic comparisons of species interactions in urban vs. rural environments can 

improve our understanding of shifts in ecological processes due to urbanization. 

However, such studies are relatively uncommon and the mechanisms driving 

urbanization effects on species interactions (e.g. between plants and insect herbivores) 

remain elusive. Here we investigated the effects of urbanization on leaf herbivory by 

insect chewers and miners associated with the English oak Quercus robur by sampling 

trees in rural and urban areas throughout most of the latitudinal distribution of this 

species. In performing these comparisons, we also controlled for the size of the urban 

areas (18 cities) and gathered data on CO2 emissions. In addition, we assessed whether 

urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits 

(phosphorus and nitrogen), and whether such changes correlated with herbivory levels. 

Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In 

addition, we found that leaves from urban locations had lower levels of chemical 

defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen 

and phosphorus) compared to leaves in rural locations. The magnitude of urbanization 

effects on herbivory and leaf defences was not contingent upon city size. Importantly, 

while the effects of urbanization on chemical defences were associated with CO2 

emissions, changes in leaf chewer damage were not associated with either leaf traits or 

CO2 levels. These results suggest that effects of urbanization on herbivory occur 

through mechanisms other than changes in the plant traits measured here. Overall, our 

simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances 

our understanding of the main drivers of urbanization effects on plant–herbivore 

interactions. 

 

Keywords: chemical defences, city size, leaf chewers, leaf miners, nutrients, Quercus 

robur, rural, urban 
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INTRODUCTION 

Urban landscapes now occupy a major fraction of the globe, and are expected to further 

increase in area during this century (United Nations Department of Economics and 

Social Affairs 2014). Urbanization produces abrupt and strong changes in the local 

biotic or abiotic environment, which influence remnant or restored ecological 

communities found within urban areas (McDonnell and Pickett 1990, McDonnell et al. 

1997, Johnson and Munshi-South 2017). For instance, urbanization often results in local 

increases in temperature and CO2 levels, as well as in changes in soil water or nutrient 

availability (Johnson and Munshi-South 2017). Such changes in turn directly or 

indirectly influence plant and animal species and the outcome of their interactions (Hahs 

et al. 2009, Lambert et al. 2015, El‐Sabaawi 2018). Within this context, recent work has 

focused on describing the effects of urbanization on broad descriptors of plant and 

animal communities (e.g., diversity and species composition) by comparing urban vs. 

rural habitats or urban-rural gradients (reviewed by Beninde et al. 2015). However, 

comparatively less work has focused on evaluating the impact of urbanization on 

species interactions (but see Turrini et al. 2016, Kozlov et al. 2017). This gap limits our 

understanding of how urbanization alters the function of ecological communities as well 

as our ability to design more sustainable and environment-friendly urban environments.  

Overall, plant-herbivore interactions represent one of the most widespread and 

dominant ecological interactions on our planet, with the two species groups accounting 

for most of the species and biomass on the planet (Carmona et al. 2011). Plant-

herbivore interactions also play a pivotal role in ecosystem functioning (Stam et al. 

2014, Turcotte et al. 2014). Nonetheless, studies on herbivory, particularly by insects, in 

urban settings or along transitions between urban and rural environments have received 

relatively little attention (Dreistadt et al. 1990, Raupp et al. 2010). In addition, the few 
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studies conducted over the last two decades have reported contrasting patterns of insect 

herbivory on trees and herbaceous plants; some studies have reported higher insect 

herbivory in urban areas relative to rural habitats (e.g., Cuevas-Reyes et al. 2013, 

Turrini et al. 2016) whereas other studies have found the opposite pattern (e.g., Bode 

and Gilbert 2016, Kozlov et al. 2017). Unfortunately, the causes behind these patterns 

are not always clear (Raupp et al. 2010). Further work on the underlying ecological 

factors driving urbanization effects on insect herbivory is needed to understand the 

mechanisms behind changes in species interactions and ecological function in urban 

environments.  

Most previous studies have directly evaluated the effect of urbanization on insect 

diversity or abundance, and seldom explored the abiotic or biotic factors that may drive 

these direct or indirect urbanization effects (Raupp et al. 2010). However, apart from 

any direct effects of urbanization on insect herbivory, regulatory processes could be 

indirectly mediated by changes in plant traits such as chemical defences and nutritional 

quality (Thompson et al. 2016) or by changes in predation pressure on herbivore 

populations (Burkman and Gardiner 2014, Turrini et al. 2016, Kozlov et al. 2017). 

Accordingly, information on shifts in the relative strength of bottom-up and top-down 

effects on herbivore populations in urban vs. rural environments is needed to better 

explain changes in species interactions due to urbanization. Similarly, we know that 

urbanization causes changes in the relative abundance and species composition of insect 

herbivore communities (Herrmann et al. 2012), and such changes are likely to influence 

the amount and type damage (Kozlov et al. 2017). Yet few studies have reported 

separate measures of damage caused by different herbivore species or guilds (but see 

Kozlov et al. 2017). In addition, abiotic factors presumably underlie effects of 

urbanization on plant-herbivore interactions but are usually not accounted for (Turrini et 
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al. 2016). This limitation is of key importance, since abiotic correlates of urbanization 

such as CO2 emissions or temperature can influence both plants and insects (Zvereva 

and Kozlov 2006, Stiling and Cornelissen 2007, Robinson et al. 2012, Searle et al. 

2012, Youngsteadt et al. 2015), and are therefore likely to play an important part in 

mediating direct and indirect effects of urbanization on herbivory (Thompson et al. 

2016). Finally, in considering the effects of biotic or abiotic factors, it is important to 

control for other landscape-level aspects associated with urban areas, such as city size, 

area, or vegetation cover (Youngsteadt et al. 2015, Kozlov et al. 2017). Such features 

may alter both direct and indirect mechanisms influencing herbivory.  

In this study, we investigated the effects of urbanization on insect herbivory 

associated with the English oak Quercus robur L. (Fagaceae). We compared damage on 

oak trees in urban vs. adjacent rural areas spanning most of the distribution of this 

species in Western Europe (across 19° latitude and 33° longitude). In addition, we also 

controlled for city size by sampling urban areas of different population size (18 cities, 

Fig. 1). To assess the potential causes behind patterns of herbivory, we further measured 

leaf damage by two insect feeding guilds (leaf miners and chewers), leaf chemical 

defences (multiple groups of phenolic compounds) and nutritional traits (phosphorus 

and nitrogen), and obtained data on CO2 emissions. In doing so, we sought to answer 

the following questions: (1) Does urbanization affect insect herbivory and plant traits, 

and is the magnitude of such effect contingent upon city size? (2) Does urbanization 

have similar effects on damage by both guilds of insect herbivores or are there guild-

specific patterns? And (3) are effects of urbanization on herbivory associated with 

changes in leaf traits (chemical defences and nutrients), and do abiotic factors (CO2 

emissions) mediate urbanization effects on leaf traits and insect damage? In addressing 

the associations, it is important to consider that the effect of urbanization may operate in 
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different ways: (i) urbanization could drive changes in plant traits which in turn 

influence herbivory, (ii) urbanization could drive insects and herbivory which in turn 

influences leaf defences (i.e., via differences in plant induction), (iii) urbanization could 

affect herbivory and leaf traits independently (as evidenced by the absence of a 

relationship between the effects of urbanization on herbivory and leaf traits). Overall, 

this work provides a robust assessment of effects of urbanization on plant-herbivore 

interactions, and uniquely addresses the factors or mechanisms underlying such effects.  

 

MATERIAL AND METHODS 

Natural history 

The English oak, Quercus robur, offers an ideal species for measuring effects of 

urbanization on plant-herbivore interactions, since it has a broad geographic 

distribution, sustains a diverse community of associated insects, and is present in high 

densities both in rural and urban environments throughout Western Europe. Overall, Q. 

robur is distributed from northern Portugal (40ºN) to southern Finland (61ºN), across a 

wide range of climatic conditions (Petit et al. 2002). Individual trees are long-lived, up 

to 200 years. Leaf burst in this deciduous species usually occurs during April in 

southern Europe and in May for northern Europe, whereas leaf senescence and leaf drop 

typically start in September for northern Europe and in October for southern Europe. In 

its native range, Q. robur supports a diverse community of specialist (and a few 

generalist) insect herbivores such as leaf chewers, miners and gallers (Southwood et al. 

2005, Tack et al. 2010, Tack and Roslin 2011, Castagneyrol et al. 2012, Giffard et al. 

2012, Moreira et al. 2017, 2018). 

 

Study sites 
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For this study, we selected 18 European cities (in six countries; i.e., three cities per 

country) varying in population size (small: 21,000-46,000 inhabitants; medium-sized: 

152,000-292,000 inhabitants; large: >1,000,000 inhabitants), spanning 19
º
 in latitude 

(from 41ºN to 60ºN, Fig. 1). Associated to each city, we selected one urban and one 

rural sampling location (Kozlov et al. 2017). The experiment followed a split-plot 

design replicated in six blocks (i.e., countries), with city population size (three levels: 

large, medium and small) as the whole plot factor and urbanization (urban or rural 

locations) as the split factor. Urban locations included streets, parks and small gardens 

as close to the city centre as possible, whereas rural locations were represented by 

stands of natural forest located 10–80 km from the city limits (Kozlov et al. 2017). 

From north to south across sampling locations, trees and herbivores experience over a 

three-fold increase in mean annual precipitation (518 to 1,630 mm) and an increase of 

11.2ºC in mean annual temperature (from 4.6 ºC to 15.8ºC), covering most of the 

latitudinal and climatic gradients experienced by this tree species throughout its 

distribution range (Moreira et al. 2018).  

 

Field sampling and leaf herbivory measurements   

We sampled plants at the end of the growing season of each site, i.e., late August to 

early September at the northernmost sites and from late September to early October at 

the southernmost sites. This procedure minimized phenological differences in herbivory 

and plant defensive traits among sites (Moreira et al. 2018). In addition, sampling plants 

at the end of the growing season offers two advantages: it provides an assessment of 

cumulative leaf herbivory occurring over the entire growing season and it is the time of 

year when oak leaf herbivory and chemistry are relatively stable (Salminen et al. 2004). 

To estimate herbivory, we randomly selected five individuals per site. For each 
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tree, we randomly selected two low-hanging branches (2-3 m from the ground) and 

collected 25 leaves from each branch. Leaves measured at our study sites were mostly 

damaged by insect chewers and miners (X. Moreira, personal observastion). For each 

leaf, we visually estimated percent leaf area removed by leaf chewers using the 

following scale: 0 = undamaged; 1 = 1-5% damaged; 2 = 6-10% damaged; 3 = 11-25% 

damaged; 4 = 26-50% damaged; 5 = 51-75% damaged; 6 = >75% damaged) (“leaf 

chewer damage” hereafter) (Castagneyrol et al. 2013), and then averaged values across 

all leaves to obtain mean values per tree. In addition, we counted mines on each leaf and 

estimated the number of mines per 25 leaves for each branch (“leaf miner abundance” 

hereafter). Then we averaged values across branches to obtain a mean value per tree for 

statistical analyses. To avoid biases in our herbivory estimates, the same person (XM) 

scored all the leaves during the entire study.  

For chemical analyses, we collected four fully expanded (mature) leaves per 

tree. We only collected leaves with little or no herbivore damage in order to minimize 

variation in defence levels caused by site-specific induction (Abdala-Roberts et al. 

2016a). However, there may still be systemic induced responses that are not accounted 

for with this procedure, and therefore measured levels of chemical defences presumably 

represented a combination of constitutive defences, plus an unknown level of systemic 

induction (Abdala-Roberts et al. 2016a). After collection, we oven-dried leaves for 48 h 

at 40°C, ground them with liquid nitrogen, and stored the samples for subsequent 

quantification of phenolic compounds and nutrients. Leaves from each tree were pooled 

into a single sample for chemical analyses. 

 

Quantification of phenolic compounds 

We chose phenolic compounds as defensive traits because they are widely recognized as 
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herbivore feeding deterrents across many plant taxa (Mithöfer and Boland 2008, 

Salminen and Karonen 2011), and because they have been previously shown to confer 

resistance against leaf herbivores in Q. robur (Feeny 1970, Roslin and Salminen 2008, 

Abdala-Roberts et al. 2016b, Moreira et al. 2017, 2018). We extracted phenolic 

compounds using 20 mg of dry plant tissue with 1 mL of 70% methanol in an ultrasonic 

bath for 15 min, followed by centrifugation (Moreira et al. 2014). We then transferred 

these methanolic extracts to chromatographic vials to perform the chromatographic 

analyses. Chromatographic analyses were carried out using an Ultra-High-Performance 

Liquid-Chromatograph (UHPLC Nexera LC-30AD; Shimadzu) equipped with a Nexera 

SIL-30AC injector and one SPD-M20A UV/VIS photodiode array detector. The 

UHPLC column was a Kinetex™ 2.6 µm C18 82-102 Å, LC Column 100 × 4.6 mm, 

protected with a C18 guard cartridge. The flow rate was 0.4 mL min
-1

 and the oven 

temperature was set at 25 ºC. The mobile phase consisted of two solvents: water-formic 

acid (0.05%) (A) and acetonitrile-formic acid (0.05%) (B), starting with 5% B and using 

a gradient to obtain 30% B at 4 min, 60% B at 10 min, 80% B at 13 min and 100 % B at 

15 min. The injection volume was 30 µL. We recorded chromatograms at 330 nm and 

processed data on a computer with the LabSolutions software (Shimadzu). We 

quantified flavonoids as rutin equivalents, condensed tannins as catechin equivalents, 

hydrolysable tannins as gallic acid equivalents, and lignins as ferulic acid equivalents. 

We achieved the quantification of these phenolic compounds by external calibration 

using calibration curves at 0.25, 0.5, 1, 2 and 5 μg mL
-1

. Phenolic compound 

concentrations were expressed in mg g
-1

 tissue on a dry weight basis. 

 

Quantification of nutrients  

We chose phosphorus and nitrogen as proxies for leaf nutrient status because these 
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macro-nutrients are typically found in low concentrations in plant tissues across many 

plant taxa and are therefore assumed to be limiting relative to herbivore nutritional 

requirements (Mattson 1980). Accordingly, they are frequently strongly correlated with 

levels of leaf herbivory (Mattson 1980, Huberty and Denno 2006), a pattern that has 

previously been reported for several oak species (e.g., Forkner and Hunter 2000, 

Abdala-Roberts et al. 2016b, Moreira et al. 2018). To quantify leaf nutrient 

concentrations, we digested approximately 0.1 g of ground dried leaf material in a 

mixture of selenous sulphuric acid and hydrogen peroxide (Moreira et al. 2012). We 

then used a colorimetric analysis of diluted aliquots of the digestion to quantify nitrogen 

(indophenol blue method) and phosphorus (molybdenum blue method) concentration 

using a Biorad 650 microplate reader (Bio-Rad Laboratories, Philadelphia, PA, USA) at 

650 nm and 700 nm, respectively (Walinga et al. 1995). Nitrogen and phosphorus 

concentrations were expressed in mg g
-1

 dry tissue.  

 

Geographic and abiotic factors 

We obtained the geographic coordinates of each Q. robur site using a Global 

Positioning System device (Garmin, Kansas, USA). We obtained the anthropogenic 

CO2 emissions of each site from the ODIAC2017 fossil fuel CO2 emission dataset 

(http://db.cger.nies.go.jp/dataset/ODIAC/) at 1 km resolution. We used the average 

yearly CO2 emissions from 2007 to 2016 for the statistical analyses (mean value for 

urban areas: 1406.8 ± 310.6 PgC, mean value for rural areas: 241.0 ± 93.4 PgC). The 

procedure to calculate this variable is described at Oda et al. (2018). We did not account 

for climatic variables in our analyses because we lacked direct measurements of 

temperature changes in urban areas (i.e., urban heat islands) and rainfall patterns are not 

expected to differ between urban areas and nearby rural sites.  
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Statistical analyses 

Effects of urbanization and city size on herbivory and leaf traits – We ran linear mixed 

models (LMMs) testing for the effects of urbanization (urban vs. rural locations), city 

population size (“city size” hereafter; small, medium and large cities), and their 

interaction (all fixed factors) on herbivory and plant chemical defences and nutrients 

(separate models for each group of phenolic compounds and each nutrient). In addition, 

for each model we also included the effects of country and the country × city size 

interaction as random factors in order to analyze the main effects of the split-plot design 

with the appropriate error terms (Littell et al. 2006). For all models, we used data at the 

level of sampling location by analysing the mean values across plants within each 

location. Preliminary analyses including latitude as a covariate indicated no significant 

association between latitude and any of the response variables measured, and we 

therefore removed it from the models. 

Test of underlying variables associated with urbanization effects on herbivory 

and plant traits – In those cases where urbanization or city size had significant effects, 

we again run the above LMMs including effects of urbanization, city size, and their 

interaction (as fixed factors), as well as covariates potentially associated with (and 

presumably explaining) such effects on leaf damage and traits. For instance, leaf traits 

may explain differences in damage such that accounting for them in the herbivory 

model can inform on whether urbanization effects on insect herbivory were mediated by 

changes in the plant’s phenotype. In the case of herbivory, rather than including all leaf 

traits in the LMMs which would result in a complex model, we first ran an AIC-based 

backward stepwise multiple regression including all leaf traits as predictors of leaf 

damage. Leaf traits retained in this regression model were then used as covariates in the 
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herbivory LMMs including the main effects and interaction. In addition to these 

selected leaf traits, we also included CO2 emissions as a covariate. If CO2 or leaf traits 

mediate effects of urbanization or city size on herbivory, then significant main effects in 

the prior models (without covariates) should turn non-significant after including the 

covariates. We expected CO2 effects on herbivory to be mediated by changes in plant 

traits associated with insect leaf damage. Therefore, a significant effect of CO2 while 

accounting for leaf traits would mean that CO2 effects on herbivory are mediated by 

unmeasured leaf traits or some other mechanism unrelated to changes in plant traits.  

In the case of leaf traits, we also re-run LMMs when one or both main effects 

were significant and also included CO2 as a covariate. We expected direct effects of CO2 

on leaf traits based on results from previous work (e.g., increased carbon-based 

defences such as phenolics as a result of ‘excess’ C under elevated CO2; Robinson et al. 

2012). Although our goal was to test for effects of urbanization on herbivory via 

changes in leaf traits, urbanization may affect leaf defences via changes in herbivory 

(due to plant induced responses). This would be the case if urbanization affected leaf 

insect herbivory through changes in herbivore activity or predation. In this sense, a 

positive association between leaf traits and herbivory would suggest that herbivory 

drives defences (via induction), whereas a negative association suggests defences drive 

herbivory (Abdala-Roberts et al. 2016a). There were, however, no significant 

associations between leaf traits and herbivory (see Table SM1 in the Supplementary 

Material), which precluded reaching either of these interpretations. In addition, 

herbivory could also influence leaf nutrient concentrations (e.g., through effects on plant 

vigour or growth), but these traits are usually considered predictors of damage 

(Carmona et al. 2011) rather than the inverse. We thus did not include damage in the 

leaf trait models but rather included these traits as covariates in the herbivory models as 
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described above. 

We performed all LMMs with PROC MIXED in SAS 9.4 (SAS Institute, Cary, 

NC) (Littell et al. 2006), whereas the stepwise multiple regression for effects of plant 

traits on herbivory was run with PROC REG. For condensed and hydrolysable tannins, 

we log-transformed original variables to achieve normality of the residuals. In all cases, 

we report least-squares means and standard errors as descriptive statistics. 

 

RESULTS 

Effects of urbanization and city size on herbivory and leaf traits 

There was a significant effect of urbanization (urban vs. rural locations) on leaf chewer 

damage, but not on leaf miner abundance (Table 1, Fig. 2). Specifically, we found that 

leaf chewer damage was, on average, 30% lower for trees in urban than in rural 

sampling locations (Fig. 2a). There was no significant effect of city size and no 

interaction between urbanization and city size on either leaf chewer damage or leaf 

miner abundance (Table 1, Fig. 2).  

Urbanization had a significant effect on the concentration of leaf condensed 

tannins, hydrolysable tannins, nitrogen and phosphorus, but not on flavonoids or lignins 

(Table 1). Levels of leaf condensed and hydrolysable tannins were, on average, 36% 

and 33% lower, respectively for trees in urban than in rural sampling locations (Fig. 3c, 

d), whereas leaf nitrogen and phosphorus were 7% and 19% greater, respectively for 

trees in urban than in rural locations (Fig. 4a, b). City size and the urbanization by city 

size interaction did not significantly affect any of the studied leaf traits (Table 1, Fig. 3, 

4).  

   

Variables associated with urbanization effects on herbivory and plant traits  
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Results from the stepwise multiple regression indicated that phosphorous concentration 

was the only leaf trait retained in the model after backward elimination (slope estimator 

[] = -0.0914 ± 0.0615), and we therefore included it as a covariate together with CO2 

in the LMM model for leaf chewer damage. Results from the LMM including these 

covariates indicated that the effect of urbanization on leaf chewer damage remained 

significant after accounting for CO2 and leaf phosphorus (Table 2), suggesting that 

unmeasured abiotic factors or plant traits mediated the urbanization effect. The effects 

of CO2 and phosphorus were not significant (Table 2). 

Results from LMMs for leaf traits including CO2 emissions as covariate 

indicated that the effect of urbanization on leaf condensed and hydrolysable tannins 

turned non-significant after accounting for CO2 in these models (Table 2), suggesting 

that this variable mediated urbanization effects on such traits. For both these traits, CO2 

levels were significantly negatively associated with compound concentrations (slope 

estimator [] for condensed tannins = -0.00023 ± 0.00011;  for hydrolysable tannins = 

-0.00032 ± 0.00015). In contrast, effects of urbanization on leaf nitrogen and 

phosphorus remained significant after accounting for CO2 (Table 2), suggesting that 

other unmeasured factors accounted for such effects.  

 

DISCUSSION 

Our results indicated that urbanization significantly affected damage by leaf chewers 

(but not miners) and leaf traits associated with Q. robur. In particular, we found that 

trees in urban locations exhibited lower levels of leaf-chewing damage and chemical 

defences (condensed and hydrolysable tannins), and increased levels of leaf nutrients 

(nitrogen and phosphorus) compared to trees in rural forest locations. In all these cases, 

the magnitude of these urbanization effects was not contingent upon city size. The fact 
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that urbanization significantly affected leaf chewer damage, but not leaf miner 

abundance, suggests that the effects of urbanization are guild-specific. In addition, 

effects on leaf defences were accounted for by CO2 emissions, but differences in leaf 

chewer damage were not associated with changes in either leaf traits or CO2 emission 

levels. This suggests that effects of urbanization on leaf chewer damage and leaf 

defences are independent of each other. Overall, these findings illustrate the complex 

nature of urbanization effects on plant-herbivore interactions and that investigations 

must account for direct and indirect dynamics operating independently or interactively 

on plants and insects. In the case of Q. robur, our results suggest that urbanization 

effects may not take place through the bottom-up effects mediated by changes in plant 

traits envisaged a priori for this species (Moreira et al. 2018), and instead point at 

alternative direct or indirect mechanisms involving other biotic or abiotic factors which 

are discussed next. 

 

Effects of urbanization on leaf damage by different insect guilds 

Urbanization significantly decreased leaf chewer damage, and this finding was 

remarkably consistent across sites throughout most of the geographic distribution of Q. 

robur. The observed reduction in leaf chewer damage in urban sites relative to rural 

sites contradicts initial work on this subject proposing that herbivory should be higher in 

urban habitats, presumably because urban conditions limit investment in anti-herbivore 

defences or weaken predator top-down control of herbivore populations (reviewed by 

Dreistadt et al. 1990, Raupp et al. 2010). Interestingly, our results are not alone in 

showing this pattern as a few recent studies have similarly reported decreases in insect 

herbivory, particularly by leaf chewers, with urbanization (e.g., Herrmann et al. 2012, 

Bode and Gilbert 2016, Kozlov et al. 2017). Notably, Kozlov et al. (2017) found that 
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leaf area loss to insect herbivores was, on average, 16.5% lower in urban than in rural 

habitats across 11 tree species in Europe. These recent findings, combined with our 

results for leaf chewers, support the notion that insect herbivory is lower in urban 

environments. Nonetheless, it is important to keep in mind that patterns may differ 

depending on the herbivore species or guild studied. In this sense, we found that, 

contrary to leaf chewers, leaf miners associated with Q. robur were not significantly 

affected by urbanization. Thus, where effects may be in some cases consistent in 

magnitude or sign among different guilds (e.g., Kozlov et al. 2017), our results instead 

suggest differences between insect guilds in susceptibility to changes in abiotic and 

biotic conditions in urban environments. Such guild-specific responses may reflect 

changes in species or guild composition which can influence the amount and type of 

herbivory. 

 

Mechanisms behind urbanization effects on herbivory and leaf traits 

Quercus robur trees located in urban environments exhibited lower levels of leaf 

defences and higher levels of leaf nutrients, suggesting overall higher plant quality for 

insect herbivores relative to trees in rural habitats. In addition, observed differences in 

leaf defence levels between trees in urban vs. rural habitats appeared to be linked to CO2 

emission levels, with higher CO2 levels being associated with lower defence levels. 

These findings contradict work proposing that increased levels of carbon-based defence 

compounds such as phenolics are a result of the ‘excess’ C under elevated CO2 

(Robinson et al. 2012). This being said, a meta-analysis including 102 plant species 

found no clear pattern in the direction of the effect of CO2 levels on plant phenolic 

compounds (Ryan et al. 2010). Accordingly, a plausible explanation for our findings 

relies on previous work showing that elevated CO2 levels suppress the production of 
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plant hormones such as jasmonic acid and ethylene, which are involved in the synthesis 

of secondary metabolites (Zavala et al. 2013). Lower levels of leaf chewer damage in 

urban areas could also explain reduced defences due to weaker herbivore induction, but 

none of the phenolic compounds studied were found to be associated with herbivory 

which argues against this (see discussion ahead). 

In contrast to chemical defences, differences in leaf nutrient levels were not 

explained by CO2 emissions, indicating that urbanization affects these leaf traits through 

some other factor. This finding is in agreement with results of a recent meta-analysis, 

which found that leaf nitrogen concentrations increase as often as they decrease under 

elevated CO2 (Ryan et al. 2010). Other unmeasured abiotic factors associated with 

urbanization such as nitrogen deposition are known to positively influence foliar 

nitrogen concentration in a number of plant species (Hicks et al. 2000), and may explain 

changes in this leaf trait. Similarly, elevated levels of phosphorus have often been 

reported in urban areas due to human activities that result in this nutrient being washed 

into water bodies (Bouwman et al. 2009).  

Despite the effects of urbanization on Q. robur leaf traits observed here, changes 

in leaf chewer damage were not presumably associated with changes in either leaf traits 

or CO2 emissions. Such a lack of association between damage and plant traits runs 

counter to our previous work in rural forests with this oak species showing that higher 

contents of phenolic compounds, particularly condensed tannins, were associated with 

decreased insect leaf damage (Moreira et al. 2018). There are several non-exclusive 

explanations for the observed reductions in leaf chewer damage in urban environments. 

One is that higher temperatures in cities relative to rural habitats (i.e., heat islands) 

could have direct negative effects on herbivore movement or performance (Bale et al. 

2002). However, increases in mean annual temperature between urban and rural habitats 
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across the studied region range from 0 to 3.5ºC, a range which does not exceed the 

thermal safety limit of insect herbivores living in temperate areas (Oke 1973). Indirect 

effects of temperature on insects via some unmeasured plant trait is also possible, 

though previous studies in controlled environments reported that increases of 4-6°C are 

necessary to produce detectable changes in plant traits (Zvereva and Kozlov 2006, 

Bidart-Bouzat and Imeh-Nathaniel 2008). Although these findings suggest that changes 

in temperature did not mediate urbanization effects on insect herbivores, further work is 

needed to corroborate this. In addition, it is also possible that changes in some 

unmeasured abiotic factor directly or indirectly (via some other plant trait) influenced 

herbivory. The inclusion of other abiotic factors and plant traits is therefore desirable in 

future work. For instance, Kozlov et al. (2017) found that lower insect herbivory in 

urban sites was presumably associated with reduced specific leaf area, which is 

correlated with leaf toughness. Accordingly, measurements of leaf physical or structural 

traits could be a good candidate to help explain the observed effects of urbanization on 

insect herbivory.  

Increased top-down control by predators could be another explanation for lower 

herbivory in urban sites. For example, a recent study by Kozlov et al. (2017) reported 

that increased predation rates by birds and ants in urban (relative to rural) areas were 

associated with concomitant reductions in damage by insect leaf miners. Similarly, 

Turrini et al. (2016) found higher predation rates on aphids feeding on Vicia faba 

growing in urban than in agricultural areas. These findings contradict predictions form 

ecological theory and contrast with empirical work suggesting weaker top-down 

regulation of herbivore populations in more simplified communities, which are typical 

of agricultural, disturbed habitats, or urban environments (Burkman and Gardiner 

2014). These recent findings, including our present work, instead suggest that the 
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mechanisms driving urbanization effects may lead to alternative outcomes that differ 

from traditional expectations. Further work is still needed to reach stronger conclusions 

and a better understanding of underlying mechanisms across a larger number of plant 

taxa and locations. 

 

Landscape-level factors and urbanization effects on herbivory  

Our findings indicated no effect of city size on either leaf herbivory or leaf traits. This 

result is somewhat surprising, particularly in the case of plant defences, since CO2 was 

significantly associated with such traits and gas emissions in large cities were two-fold 

and 5.5-fold greater (respectively) than in medium-sized and small cities. In addition, 

the magnitude of differences in CO2 emissions between urban and rural sites associated 

with large cities was two-fold and six-fold greater (respectively) than the difference for 

medium-sized and small cities. Such differences in CO2 would have presumably led to 

an effect of city size on chemical defences, as well as differences in the magnitude of 

urbanization effects depending on city size. However, there was no interaction between 

city size and urbanization, suggesting that CO2 levels did not mediate effects of city size 

on plant defences. To our knowledge, only one previous study by Kozlov et al. (2017) 

investigated whether city size influences urbanization effects on insect herbivory and 

plant traits and reported negative effects on leaf herbivory only for sites associated with 

large cities. Our findings instead suggest that the nature and types of processes driving 

urbanization effects on herbivory and plant traits remain fundamentally unaltered across 

urban environments of varying size. Still, we consider that landscape-level factors 

deserve further attention in comparisons of urban vs. rural areas. For example, variables 

such as the total area covered by vegetation, spatial configuration and connectivity 

between forested sites in urban areas, or the relative extent of industrial vs. residential 
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areas may vary independently of city size and influence plant-insect interactions.  

 

Conclusions  

Our simultaneous assessment of insect herbivory, plant traits, and abiotic correlates 

advances our understanding of the drivers of plant-herbivore interactions in urban 

environments. Importantly, our results also highlight the asymmetric nature of 

urbanization effects on different insect herbivore guilds feeding on Q. robur. Such 

effects will result in changes not only in the overall magnitude of damage but also in the 

predominance of different types of plant-herbivore interactions. In addition, we show 

that Q. robur leaf traits respond to biotic and abiotic conditions in urban environments 

(e.g., in our case we found an association with CO2 emissions), but such effects may not 

necessarily trigger bottom-up effects on insect herbivory. Accordingly, phenotypic 

changes in leaf traits with urbanization appear to be uncoupled from concomitant effects 

on insect leaf herbivory. Within this context, a key challenge towards understanding 

how species interactions are modified in urban settings will be to identity the biotic and 

abiotic factors that (a) exert the strongest controls on interactions and (b) are most 

affected by urbanization. Knowledge on the direct and indirect mechanisms by which 

these factors shape species interactions can inform strategies for controlling insect 

herbivore outbreaks or promoting beneficial interactions in urban environments, 

restoring ecological communities in degraded habitats adjacent to or within urban areas, 

as well as designing urban environments that support more diverse or resilient 

ecological communities.  
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FIGURE LEGENDS 

Figure 1. Maps for emissions of CO2 in petagrams of carbon (log-transformed) 

including a spatial layout of the cities where we sampled rural and urban locations with 

Quercus robur (N = 18 cities). The size of the circle indicates the size of the city 

population: small: 21,000-46,000 inhabitants; medium-sized: 152,000-292,000 

inhabitants; large: >1,000,000 inhabitants.  
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Figure 2. (a) Leaf chewer damage and (b) leaf miner abundance in Quercus robur trees 

growing in urban (grey bars) and rural (white bars) habitats of large, medium and small 

cities. Leaf chewer damage was visually estimated using an ordinal scale based on the 

percentage of leaf area removed. Leaf miner abundance was measured by counting 

mines on each leaf and used the number of mines per 25 leaves. Bars are least square 

means ± standard error (N = 6). Results of the linear mixed models are presented in 

Table 1.  
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Figure 3. Concentration (in mg g
-1

 d.w.) of (a) flavonoids, (b) lignins, (c) condensed 

tannins and (d) hydrolysable tannins in leaves of Quercus robur trees growing in urban 

(grey bars) and rural (white bars) habitats of large, medium and small cities. Bars are 

least square means ± standard error (N = 6). Results of the linear mixed models are 

presented in Table 1. 
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Figure 4. Concentration (in mg g
-1

 d.w.) of (a) nitrogen and (b) phosphorus in leaves of 

Quercus robur trees growing in urban (grey bars) and rural (white bars) habitats of 

large, medium and small cities. Bars are least square means ± standard error (N = 6). 

Results of the linear mixed models are presented in Table 1.  
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Table Legends 

Table 1. Summary of results from linear mixed models testing for the effects of 

urbanization (urban vs. rural habitats), city size (large, medium and small) and their 

interaction on leaf damage by chewing insects, leaf miner abundance, and concentration 

of leaf chemical defences (flavonoids, lignins, condensed tannins, and hydrolysable 

tannins) and nutrients (nitrogen and phosphorus) for Quercus robur trees. In all cases, 

we used the mean value across plants within each sampling location (see sampling 

design in the Methods). F-values with degrees of freedom (numerator, denominator) and 

associated significance levels (P-values) are shown. Significant P-values (P < 0.05) are 

highlighted in bold face. 

 

 

 

 Urbanization (U) Size (S) U × S 

 F1,15 P-value F2,10 P-value F2,15 P-value 

Chewer damage 10.66 0.005 0.08 0.924 0.37 0.696 

Miner abundance 0.04 0.846 2.97 0.097 1.54 0.246 

Flavonoids 4.18 0.059 1.12 0.364 0.02 0.982 

Lignins 3.74 0.072 2.20 0.162 0.01 0.990 

Condensed tannins 12.62 0.003 0.11 0.899 0.40 0.675 

Hydrolysable tannins 8.74 0.010 0.30 0.751 0.28 0.757 

Nitrogen 8.07 0.012 0.87 0.449 0.32 0.731 

Phosphorus 9.33 0.008 1.02 0.395 0.33 0.724 
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Table 2. Summary of results from linear mixed models testing for the effects of 

urbanization (urban vs. rural habitats), city size (large, medium and small), and their 

interaction on leaf damage by leaf chewing insects and concentration of condensed 

tannins, hydrolysable tannins, nitrogen and phosphorus in leaves of Quercus robur 

trees. For all models, we included CO2 emissions as a covariate to test if urbanization 

effects on herbivory and leaf traits were determined by this abiotic factor. For the model 

of chewer damage, we also included phosphorus as a covariate to test if urbanization 

effects on herbivory were indirectly mediated by changes in this leaf trait. In all cases, 

we used the mean value across plants within each sampling location. F-values with 

degrees of freedom (numerator, denominator) and associated significance levels are 

shown. Significant P-values (P < 0.05) are in bold. 

 

 Urbanization (U) City size (S) U × S CO2 emission Phosphorus 

Response variable F1,13 P F2,13 P F2,13 P F1,13 P F1,13 P 

Chewer damage 5.33 0.038 0.02 0.980 0.37 0.699 0.07 0.798 0.12 0.737 

           

 F1,14 P F2,14 P F2,14 P F1,14 P   

Condensed Tannins  1.26 0.281 0.52 0.608 0.14 0.873 4.76 0.046 - - 

Hydrolysable Tannins 0.61 0.449 0.28 0.759 0.37 0.696 4.69 0.048 - - 

Nitrogen 4.81 0.046 0.86 0.453 0.49 0.622 0.21 0.658 - - 

Phosphorus 5.61 0.033 0.49 0.628 0.16 0.857 0.00 0.964 - - 

 




