
 
 
 
 

 
 
 
 
 
 
 

 

This is a post-peer-review, pre-copyedit version of an article published in. Journal of 

Food Science and Technology The final authenticated version is available online at:  

https://doi.org/10.1007/s13197-018-3097-y. 

 

 
 
 
 
 
 

http://www.springerlink.com/content/121580/?p=40c9b9732e7f45348cce567ff7a0d7b9&pi=1187
http://www.springerlink.com/content/121580/?p=40c9b9732e7f45348cce567ff7a0d7b9&pi=1187


 1 

Effect of kaolin silver complex on the control of populations of 1 

Brettanomyces and acetic acid bacteria in wine.  2 

 3 

P. M. Izquierdo-Cañas1, R. López-Martín2, E. García-Romero1, L. González-4 

Arenzana2, S. Mínguez-Sanz3, P. Chatonnet4, A. Palacios-García5, A. Puig-Pujol6 5 

 6 

1 Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha 7 

(IRIAF-IVICAM). Crta. Toledo-Albacete s/n. 13700, Tomelloso (Ciudad Real). pmizquierdo@jccm.es 8 

2 Instituto de Ciencias de la Vid y el Vino, ICVV (Gobierno de la Rioja, Universidad de la Rioja, CSIC), 9 

Finca La Grajera. Ctra de Burgos, km 6, 26007 Logroño. 10 

3 CERPTA-Facultad de Veterinaria. Universidad Autónoma de Barcelona. 08193 Cerdanyola (Barcelona) 11 

4 Laboratoire Excell, Parc Innolin, 10 rue du Golf, 33700 Mérignac, Francia. 12 

5 Laboratorios Excell Ibérica S.L, Planillo, 12, Pabellón B, Polígono La Portalada II. 26006 Logroño. 13 

6 Institut Català de la Vinya i del Vi (INCAVI-IRTA). Plaça Àgora, 2. 08720 Vilafranca del Penedès 14 

(Barcelona).   15 

 16 

 17 

Title Page

mailto:pmizquierdo@jccm.es


 1 

Abstract   1 

The aim of this work was to study the effects of kaolin silver complex (KAgC) on the 2 

control of populations of Brettanomyces and acetic acid bacteria in winemaking.  3 

We show that the KAgC in wine at doses of 1 g/L provides effective control against the 4 

development of Brettanomyces and acetic acid bacteria. In the wines artificially contaminated 5 

with an initial population of 104 CFU/mL of B. bruxellensis, it was possible to reduce almost 3 6 

log on the third day of treatment with KAgC and only residual populations of the 7 

contaminating yeast (24 CFU/mL) remained after 24 days of contact with the additive. 8 

Irrespective of the initial population of Brettanomyces, wines with KAgC showed lower 9 

concentrations of acetic acid and 4-ethyl-phenol than wines without KAgC. The population of 10 

acetic bacteria inoculated in wine at concentrations of 102 and 104 CFU/mL was reduced to 11 

negligible levels after 72 hours of treatment with KAgC.  12 

The antimicrobial effect of KAgC in a wine naturally contaminated with Brettanomyces 13 

bruxellensis was similar to that which occurs in the treatment with chitosan, decreasing at 10 14 

days and in both cases by 2 log with regard to the initial contaminating population. The 15 

effect of the treatment with KAgC also reduced the population of acetic bacteria by 2 log the 16 

initial level of population. Silver concentration of KAgC added in finished wines was below the 17 

legal limits.  18 

 19 

Keywords: Acetic acid bacteria, Brettanomyces, Chitosan, Kaolin-Silver, Wine 20 

 21 

Introduction  22 

Wine quality is greatly influenced by the microorganisms which occur throughout the 23 

winemaking process. It has been shown that yeasts belonging to the species Dekkera 24 

bruxellensis, or its anamorph Brettanomyces bruxellensis, have the capacity of spoiling wines 25 

by producing ethyl phenols (Loureiro and Malfeito-Ferreira 2006), which are the compounds 26 

responsible for the off-flavors described as animal odors, farmyards, horse sweat, medicine 27 

and animal leather (Chatonnet et al. 1995). For many years, barrel aging has been 28 

considered a source of spoilage. However, better surveys of the yeast population and 29 

spoilage has clearly shown that the problem could occur even during alcoholic fermentation 30 

in stainless steel tanks and also during aging process.  31 
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 2 

Brettanomyces associated problems have seemingly become more prominent in recent 32 

years as a consequence of lower sulfur dioxide (SO2) usage due to pressing consumer 33 

demands, the increase of pH that lowers the SO2 efficiency and the favorable conditions 34 

during aging in barrels (Du Toit et al. 2005, Renouf et al. 2006). Various authors have 35 

concluded that controlling the growth of Brettanomyces is the most important challenge for 36 

modern winemaking (Wedral et al. 2010). 37 

Moreover, acetic acid bacteria (AAB) play a negative role in wine, being one of the main 38 

reasons for wine spoilage (Drysdale and Fleet 1988) because of an undesirable production of 39 

acetic acid, acetaldehyde, ethyl acetate and dihydroxyacetone (Sponholz and Dittrich 1984). 40 

Till now, sulfur dioxide addition has been the main way to inactivate spoilage 41 

microorganisms. Nevertheless, there is a worldwide trend to reduce sulfur dioxide levels in 42 

wine due to several factors such as increasing health concerns, consumer preferences, 43 

possible organoleptic alterations in the final product and potential legislation on preservatives 44 

(García-Ruiz et al. 2013). For this reason, there is particular interest within the scientific 45 

community in the development of alternatives to the traditional use of sulfur dioxide in 46 

winemaking (Izquierdo-Cañas et al. 2012, González-Arenzana et al. 2015, González-47 

Arenzana et al. 2016). 48 

Among these alternatives, chitosan has received considerable attention due to the 49 

approval of its use in treatments for wine by the International Organization of Vine and Wine 50 

at the OIV Resolution 338A-2009 (OIV, 2015) notably for the Brettanomyces control. There 51 

are several studies dealing with the application of chitosan in various food products 52 

(Giatrakou et al. 2010, Huang et al. 2012, Giner et al. 2012). The effectiveness of chitosan 53 

against Brettanomyces bruxellensis has been examined in mixed culture fermentations 54 

(Gómez-Rivas et al. 2004), in vitro conditions (Elmaci et al., 2015, Petrova et al. 2016), in a 55 

wine-model synthetic medium (Taillander et al. 2014), and in real vinifications and 56 

commercially produced wines (Blateyron-Pic et al. 2012, Ferreira et al. 2013, Petrova et al. 57 

2016). However, as Petrova et al. (2016) concluded, wines treated with chitosan were not 58 

completely stable after treatment, as populations eventually increased. Furthermore, 59 

chitosan can negatively affect some physicochemical characteristics of wine (Ferreira et al. 60 

2013). 61 

An alternative to the addition of SO2, from the point of view of its antimicrobial action, is 62 

the use of silver. Silver has been used for its antimicrobial properties since ancient times and 63 
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 3 

recent studies have shown that silver nanomaterials are antimicrobial towards a broad 64 

spectrum of Gram-positive and Gram-negative bacteria and also exert some antifungal and 65 

antiviral activities (Rathnayake et al. 2012, García-Ruíz et al. 2015). Despite the great 66 

interest in the applications on these materials in the field of enology, so far studies on the 67 

use of silver as an antimicrobial in winemaking have been very scarce (Monge et al. 2016). 68 

This study shows the results of two trials that examine the effects of kaolin silver complex 69 

(KAgC) (Enosan Micro. Laboratorios Enosan, S.L., Zaragoza, Spain, 70 

www.laboratoriosenosan.com) on the control of populations of Brettanomyces and acetic acid 71 

bacteria in winemaking and provides comparison with chitosan on Brettanomyces control. 72 

The effect of KAgC treatment on the metabolites of a Brettanomyces and AAB contamination 73 

(acetic acid and volatile phenols) is also shown.  74 

 75 

Material and methods 76 

KAgC (Kaolin Silver Complex) 77 

KAgC is produced under patent (PCT/ES2015/070532). It is a grey powder with particle 78 

size of around 30 nm and it is insoluble in ethanol and water, composed of an inorganic inert 79 

material (kaolin), used as support, on whose surface silver nanoparticles (<10 nm) are 80 

deposited (colloidal silver). KAgC was supplied in permeable bags that contained 1 g of 81 

KAgC. 82 

 83 

Initial wines  84 

In trial 1 a red wine was used (Table 1, Wine 1) which has been produced without the 85 

addition of sulfur dioxide, but with a natural presence as a secondary metabolite of total SO2 86 

(≤ 4 mg/L). The wine was fined with egg white and filtered through 0.22 microns in order to 87 

eliminate any naturally occurring contaminating microorganism in the wine. Prior to 88 

commencing the experiment, a check that the wine is sterile was performed by filtering 100 89 

mL of wine through a 0.22 micron pore membrane and incubating it on a Sabouraud agar 90 

medium. After 48 h of incubation at 28 °C growth was null. The red wine was distributed in 91 

36 aliquots of 1 L in previously sterilized glass bottles, with a magnetic stirrer in its interior 92 

to produce gentle agitation.  93 
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 4 

In the second trial a naturally contaminated wine (Table 1, Wine 2) with a population of 94 

Brettanomyces yeasts of 1.0E+04 CFU/mL and a population of AAB of 1.10E+05 CFU/mL 95 

was used. According to the results of the microbiological analysis, this wine did not contain 96 

lactic acid bacteria. The wine had a moderately high acetic acid content related to the 97 

presence of AAB. Also, the initial wine had high ethyl phenol and ethyl guayacol content 98 

related to the presence of the Brettanomyces yeasts.  99 

 100 

Strains used to contaminate the wine from Trial 1 101 

Brettanomyces 102 

The initial culture of Brettanomyces bruxellensis consisted of a mixture of four strains 103 

isolated from a naturally contaminated wine that contained 742 μg/L of 4‐ethyl-phenol. 104 

These four strains were identified at specie level as Brettanomyces bruxellensis by molecular 105 

techniques. The amplification of the internal transcribed spacers (ITS1 and ITS2) of the rRNA 106 

5.8S was used. DNA from each culture was isolated and PCR amplification was carried out 107 

following conditions described by Guillamón et al. 1998 and Esteve-Zarzoso et al. 1999. PCR 108 

products were electrophoresed on 1.4 % agarose (Roche Diagnostics, Spain), stained with 109 

ethidium bromide and photographed (Figure 1). Results of the amplicon size were compared 110 

with those described in the bibliography (Guillamón et al. 1998 and Esteve-Zarzoso et al. 111 

1999) and identified as Brettanomyces bruxellensis. 112 

To obtain enough population to be inoculated in the Wine 1, these 4 strains were initially 113 

multiplied in YPD media. The experiment was carried out with a culture of Brettanomyces 114 

with an initial concentration of 1.7E+07 CFU/mL. Different volumes of this culture were 115 

added to Wine 1 to get a population of 1.0E+02 CFU /mL, 1.0E+04 CFU/mL and 1.0E+06 116 

CFU/mL respectively. 117 

 118 

AAB (acetic acid bacteria) 119 

To contaminate the Wine 1, two different species of acetic acid bacteria, Gluconobacter 120 

oxydans (Colección Española de Cultivos Tipo CECT 360) and Acetobacter aceti (CECT 298) 121 

were used. Bacteria were initially multiplied on Mannitol media (0,5 % yeast extract, 0,3 % 122 

peptone, 2,5 % Mannitol) to obtain sufficient population to be subsequently inoculated in 123 

wine to reach concentrations of 1.0E+02 CFU/mL, 1.0E+04 CFU/mL and 1.0E+06 CFU/mL, 124 

respectively. 125 
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 5 

 126 

Experiments and treatments 127 

In trial 1, two experimental series (Brettanomyces and AAB) were made. Each 128 

experimental series consisted of bottles containing wine 1: 3 bottles were inoculated with 129 

Brettanomyces and 3 with AAB cultures to obtain 1.0E+02 CFU/mL, the same was done with 130 

1.0E+04 CFU/mL and with 1.0E+06 CFU/mL concentrations. One bag of KAgC was added to 131 

3 bottles of each series (triplicates), so the dose of treatment was 1 g/L and in each 132 

experimental series (Brett or AAB) 3 bottles without KAgC were used as a control.  133 

Bottles were gently stirred (100 rpm) in order to put the bag that contained KAgC in 134 

contact with the whole volume of the wine. Samplings were taken at different contact times 135 

and plate count analysis, and acetic acid and 4-ethyl-phenol content were evaluated. The 136 

duration of the experiment of Brettanomyces inactivation was 24 days and 3 days for AAB. 137 

In trial 2, three batches of 3 bottles each were prepared using Wine 2 (Table 1). One 138 

batch was used as a control; 1 g/L of KAgC was added to  the bottles of the second batch 139 

and 7 g/HL of chitosan (NoBrettInside®, Lallemand, Montreal, Canada) to  the last one. Each 140 

bottle was stirred daily and Brettanomyces and AAB populations were measured at day 10 of 141 

the treatment. 142 

 143 

Microbiological counts  144 

Enumeration by counts in plates  145 

In Trial 1, the Brettanomyces population was controlled at day 0, just after being 146 

inoculated, and at 3, 10, 17 and 24 days after the treatment. Serial dilutions (from 10-1 to 147 

10-6) in sterile saline solution were plated onto Sabouraud-chloramphenicol agar plates 148 

(Cultimed, Panreac, Barcelona, Spain). Plates were incubated under aerobic conditions at 149 

28ºC for 10 days. After this time colonies were counted and the results were expressed as 150 

colony forming units (CFU) per milliliter of wine. 151 

The AAB population was counted in each bottle at day 0, just after being inoculated in the 152 

wine, and at 1, 2 and 3 days after starting the treatment with KAgC. 0.1 mL of the sample 153 

was taken and serial dilutions (from 10-1 to 10-6) in a sterile saline solution were spread onto 154 

plates of GYC medium (5% glucose, 1% yeast extract, 0.5% calcic carbonate, 2% agar) to 155 

which 50 mg/L nystatin (Sigma-Aldrich) was added. The plates were incubated under aerobic 156 
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 6 

conditions at 30ºC for 5 days. Counts were expressed as colony forming units (CFU) per 157 

milliliter of wine. 158 

In Trial 2, cell population was evaluated by qPCR based on Scorpions (Whitcobe et al. 159 

1999; Umiker et al., 2013). qPCR detection was performed using the Scorpions Wine 160 

Spoilage Systems module (ETS Laboratories, St. Helena, CA).  161 

After mixing, a 1.5 mL sample was removed and centrifuged (9,000 x g). The pellet was 162 

suspended in 1x wash buffer from the lysis module (LYR-50-01) and centrifuged. The pellet 163 

was then suspended in 15 mL of 1x wash buffer prior to transfer to a 15 mL centrifuge tube 164 

for recentrifugation. Cell lysis was accomplished by suspending cell pellets in 200 µL of 1x 165 

lysis reagent (LYR-50-01). Pellets were then incubated at 37ºC for 30 min, mixed and 166 

incubated for an additional 30 min adding 20 µL Proteinase K with 200 µL of PBS and buffer 167 

AL 200 uL (DX Reagent Qiagen Pack for QIAxtractor #950107, Qiagen, Inc., Valencia, CA) to 168 

the suspension and incubated for 30 min at 55ºC, mixed and incubated for an additional 30 169 

min. Cell debris was removed by centrifugation (15,000 x g for 6 min) before removal of 420 170 

µL supernatant used for DNA extraction and purification using the QIAxtractor and DX 171 

reagent pack according to the manufacturer’s instructions.  172 

For Brettanomyces purified nucleic acid (5 µL) was combined with 20 µL Scorpions Yeast 173 

Assay Multiplex Mastermix and 5 µL Scorpions Reagent (YDR1-50-01) along with 15 µL Taq 174 

Polymerase Mastermix containing dNTPs, MgCl2 and supplied buffer. Some way for acetic 175 

acid bacteria using purified nucleic acid (5 µL) was combined with 20 µL Scorpions Bacteria I 176 

Assay Multiplex Mastermix and 5 µL Scorpions Reagent. Amplification and detection of DNA 177 

was conducted with a Q-Gene thermocycler (Qiagen, Inc.). Quantification of samples and 178 

efficacy of the assay was determined using standard curves generated by isolating DNA from 179 

serial dilutions (106–101) of a Brettanomyces and AAB respectably cultures grown in wine. 180 

The Scorpions Yeast and Bacteria Multiplex assay contain an internal control reaction 181 

consisting of primers and a probe to amplify target DNA spiked into the mastermix. Signal 182 

strength of the internal control reaction is monitored to avoid false negatives due to the 183 

presence of PCR inhibitors.  184 

Positive controls, samples with a known population of Brettanomyces and acetic bacteria 185 

in wine, were lysed, extracted and amplified along with samples being analyzed. A non 186 

template control consisting of 20 µL yeast Scorpions Assay Multiplex Mastermix and 5 µL of 187 
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 7 

molecular biology grade ddH2O was also conducted. Populations of Brettanomyces were 188 

calculated by the analysis software provided with the Q-Gene thermocycler. 189 

 190 

Determination of acetic acid and volatile phenols  191 

Evolution of acetic acid was analyzed in each sampling in Trial 1. Acetic acid was 192 

determined in a Lisa 200 multi-parametric analyzer (Hycel diagnostics, TDI Tecnología 193 

Difusión Ibérica, S.L., Spain) by enzymatic methods in accordance with Commission 194 

Regulation (EC 2676/1990, E.E.C., 1990) and the International Organization of Vine and 195 

Wine (OIV, 2016). 196 

Ethylphenol in wines was analyzed by gas chromatography (Chatonnet et al. 1995) at the 197 

end of Trial 1 (day 24) in the treatment of Brettanomyces inactivation with KAgC. Ten mL of 198 

wine were extracted three times with successively 5 ml, 2 mL and 2 mL of dichloromethane. 199 

The combined organic extracts were slowly concentrated to 1 ml at room temperature by 200 

evaporation under nitrogen gas flow. Gas chromatography was performed with a HP5890 201 

series II instrument by injecting 1 L of the concentrate extract by means of a splitless 202 

injector (splitless time: 30 s; split ratio: 1/50; temperature: 250ºC) into a capillary column 203 

(Suprawax 280, 30 m, 0.53 mm internal diameter), programmed from 45ºC to 230ºC at 204 

3ºC/min, final isotherm 30 min, with hydrogen as carrier gas (1 mL/min). The detection was 205 

performed with a flame ionization detector (FID) at 260ºC. Quantification was carried out by 206 

reference to a standard range prepared under the same conditions.  207 

 208 

Analysis of the content ion silver in wines  209 

Content of silver was determined at the end of the experiments in all wines using a 210 

Zeeman graphite furnace atomic absorption spectrometer Varian model AA240ZGTA 120 211 

(Varian Inc. Walnut Creek, CA, USA), after ashing the sample and dissolving in nitric acid 212 

following the official analytical method OIV-MA-AS322-09 (OIV, 2016).  213 

 214 

Statistical analysis  215 

Data were subjected to the Student’s t test and Student-Newman Keuls test to identify 216 

any statistically significant differences between treatments, using SPSS software (version 217 

12.0). 218 
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 219 

Results and discussion 220 

Inactivation of Brettanomyces  221 

Figure 2 shows the evolution of the viable population of Brettanomyces in CFU/mL at 0, 222 

3, 10, 17 and 24 days of the Trial 1. When the wine was inoculated with a population of 223 

1.0E+2 CFU/mL (Figure 2a), a reduction almost 1 log of the initial population of 224 

Brettanomyces was observed in the wines treated with KAgC at day 3 of contact with the 225 

product. In the control wine, without KAgC, an increase of the population of Brettanomyces 226 

was detected from day 3, further increasing to 4 log on day 10. In wines with KAgC a small 227 

increase was also observed on days 10 and 17, probably due to the growth inertia of the 228 

vegetative cells caused by the growth of a culture in a synthetic medium (YPD). But this 229 

growth ceased and the population clearly decreased in the sample taken on day 24 of 230 

treatment, when the count in the wine with KAgC indicated a reduction of more than 2.5 log 231 

compared to the one conducted on day 17, more than 1.5 log compared to the baseline 232 

population and approximately 5 log compared to the control wine without KAgC.  233 

Figure 2b shows the behavior of Brettanomyces when the initial population was about 234 

1.0E+4 CFU/mL. The KAgC showed strong action at day 3 reducing almost 3 log with respect 235 

to the initial population. This inactivation was virtually total at day 10 from the start of 236 

treatment. After this sampling, the population of Brettanomyces remained well below the 237 

initial concentration of cells added to the wine: from 14000 CFU/mL at day 0 to only 49 238 

CFU/mL at day 24 (reduction of 2.45 log). 239 

In wines with a population of 1.0E+06 CFU/mL (Figure 2c) the level of inactivation of the 240 

Brettanomyces population of the previous experiments was not achieved, although a smaller 241 

population (between 1 and 1.5 log) was found on day 24 of treatment, while the control 242 

maintains the same initial population at 24 days. It should be mentioned that it is very 243 

difficult to find such high populations of Brettanomyces in real conditions, in naturally 244 

contaminated wines. In these cases, the results indicate that perhaps it would be necessary 245 

to treat the wines with doses of over 1g/L of KAgC.  246 

Acetic acid is a parameter that could be indicative of contamination of wine with 247 

Brettanomyces (Garijo et al. 2017). Table 2 shows the values of this parameter in wines 248 

from Trial 1 with different initial concentration of Brettanomyces cells, with or without KAgC 249 
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 9 

(control). Control wines were those in which acetic acid had a considerable increase over the 250 

24 days of the trial, reaching values between 1.20 and 1.56 g/L of acetic acid.  251 

In the case of wines inoculated with Brettanomyces populations of 1.0E + 02 CFU/mL and 252 

1.0E + 04 CFU/mL where KAgC was added, no significant increases in the acetic acid were 253 

detected during the 24 days of the study. In the KAgC wines initially inoculated with 254 

populations of 1.0E+06 CFU/mL where high population of Brettanomyces cells were 255 

detected, the acetic acid also increased, a fact which demonstrates that the strains used in 256 

the trial produce acetic acid. In this case, higher concentrations of KAgC (above 1 g/L) or 257 

combination of KAgC with other antimicrobial substances or techniques may be required to 258 

stop Brettanomyces growth.  259 

4-ethypl-phenol concentration was analyzed at the end of the trial (24 days) in wines 260 

contaminated with Brettanomyces. 4-ethyl-phenol in control wines (without KAgC) was 261 

higher than those where 1 g/L of KAgC was added, whatever the initial inoculum of 262 

Brettanomyces (Table 2). Values of this metabolite in control wines with 1.0E+04 and 263 

1.0E+06 initial Brett cells exceeded the perception threshold 425 µg/L (Chatonnet et al. 264 

1992). In wines treated with KAgC, although 4-ethyl-phenol was produced by Brettanomyces 265 

cells, never exceeded this threshold. The concentration of this metabolite in the samples with 266 

KAgC was 79% lower than the control wine starting from an initial inoculate of 267 

Brettanomyces of 102 CFU/mL,  95 % lower in the case of 104 CFU/mL and 55% less starting 268 

from a population of  106 CFU/mL  Brettanomyces. These results show that KAgC was able to 269 

slow the growth and viability of Brettanomyces and, consequently, decrease the possibility of 270 

unpleasant odors being produced due to this contaminating yeast which would have a 271 

negative effect of the sensory profile of the wine.  272 

In Trial 2, both KAgC and chitosan treatments allowed a significant reduction of 273 

Brettanomyces population (Table 3). Thus, when 1g/L of KAgC was added to the 274 

Tempranillo wine naturally contaminated with of 1.0 x 104 GU/mL (Genomic Units) of B. 275 

bruxellensis, populations declined to 1.2 x 102 GU/mL ten days after addition, however in the 276 

control wines at the same period, B. bruxellensis increased 0.57 log. When 7 g/HL of fungal 277 

chitosan was added to the same initial wine, populations of B. bruxellensis declined to 3.0 x 278 

102 GU/mL ten days after addition. There were no significant differences between samples 279 

treated with KAgC or chitosan. Hence, according this data, both KAgC and chitosan would 280 

reduce, but would not eliminate, this spoilage yeast. Regarding to chitosan, similar results 281 
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were obtained by Petrova et al (2016) when they inoculated 8.8 x 105 CFU/mL of B. 282 

bruxellensis in a Merlot wine. In that trial, populations of B. bruxellensis declined to 102 283 

CFU/mL eleven days after addition of 4 or 10 g/HL of fungal chitosan. Blateyron-Pic et al. 284 

(2012), in wines naturally contaminated with 105 CFU/mL of Brettanomyces, found a residual 285 

population 10 days after treatment with 4 g/HL of chitosan of near to 100 CFU/mL. Ferreira 286 

et al (2013) found that the anti-yeast activity of chitosan was strain dependent because 287 

when they inoculated 7 log CFU/mL of two Brettanomyces strains on a red wine from the 288 

Alentejo region of Portugal, one yeast strain was inactivated, while the other yeast strain 289 

was more resistant (3 log cycle reduction). 290 

Therefore, according to the data obtained by the Q-PCR, both treatments would give the 291 

impression of being effective in reducing populations of B. bruxellensis in a naturally 292 

contaminated wine, but not to obtain the elimination them completely. It is therefore of 293 

interest to check the status of the Brettanomyces residual population after treatments with 294 

KAgC and chitosan.  295 

 296 

Inactivation of acetic acid bacteria  297 

Figure 3 shows the evolution of the population of acetic acid bacteria in CFU/mL at 0, 1, 298 

2 and 3 days of the Trial 1. When the wine was inoculated with a population of 1.0E+2 299 

CFU/mL (Figure 3a) the population of AAB fell by 2 log during the first day of treatment 300 

with KAgC and no culture-viable cells were detected after 3 days from commencement of the 301 

experiment. Although there was also a decrease in the control wine between T0 and T3 (1 302 

log) due to the inhibitory effect that the wine itself has on AAB, this drop was not as great as 303 

in the samples with KAgC.  304 

The evolution of the population with a baseline AAB concentration of 1.0E+04 CFU/mL 305 

(Figure 3b) was similar to the previous case. There was a reduction in the population of 306 

1.89 log during the first 24 hours of contact with the KAgC complex. And 3.37 log after 48 307 

hours. After the third day the inactivation of the AAB was complete in KAgC wines. In the 308 

control wine the population also fell slightly, 0.62 log in 3 days.  309 

In wines with a population of 1.0E+06 CFU/mL (Figure 3c) the anti-bacterial effect of 310 

KAgC was detected on day one in the bottles which contained it, with a reduction of 1.9 log, 311 

the same as in the initial concentration of 1.0E+04 CFU/mL and very similar to that with 312 

1.0E+02 CFU/mL. In the control wine, over the same period, the loss of viability was only 313 
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0.52 log. After 3 days contact with KAgC a decrease in AAB of 2.9 log was achieved while in 314 

the control batch, due to the effect of the master itself, the reduction was 0.97 log.  315 

Similar results were obtained by Izquierdo-Cañas et al (2012) when a colloidal silver 316 

complex at doses of 1 g/Kg was applied in Merseguera and Monastrell musts, achieving a 317 

decrease between one and two orders of magnitude in AAB populations at the end of 318 

alcoholic fermentation. Garde-Cerdán et al (2013) compared the action of colloidal silver 319 

particles (KAgC) and SO2 on viable AAB counts in the Tempranillo winemaking process in 320 

must and 24 h after treatment with SO2 or KAgC and concluded that the addition of SO2 did 321 

not affect de AAB population whereas the presence of KAgC reduced it by 2 log CFU/mL. 322 

Finally, García-Ruiz et al (2015) using silver-based, biocompatible nanoparticles to evaluate 323 

their antimicrobial activity against enological AAB, among other microorganisms, also 324 

demonstrated the efficiency of ion Ag in controlling microbial processes in winemaking. 325 

In this study, the data showed that KAgC had a rapid antimicrobial effect on a group of 326 

wine spoilage microorganisms such as the AAB, achieving irrespective of the initial 327 

population a fall of almost 2 log during the first day of contact with KAgC and between 2.3 328 

and 3.97 log reduction by the third day.  329 

Moreover, the action of KAgC on these spoilage bacteria reveals an additional advantage 330 

compared to other alternatives to SO2 in microbiological control, such as lysozyme, which 331 

only acts against gram-positive bacteria and not against gram-negative ones such as AAB.  332 

As in the case of Brettanomyces, it would be necessary to test the effect of a treatment at 333 

a concentration of above 1 g/L of KAgC when the initial AAB concentrations were around 334 

1.0E+06 CFU/mL.  335 

In trial 2, both KAgC and chitosan treatments allowed a significant reduction of acetic acid 336 

bacteria population (Table 3). Thus, when 1 g/L of KAgC was added to a Tempranillo red 337 

wine naturally contaminated with populations of 1.1 x 105 GU/mL of acetic acid bacteria, 338 

populations declined to 1,72 x 103 GU/mL. Thus, as occurred with Brettanomyces, KAgC 339 

reduced acetic acid bacteria by 2 log GU/mL although it did not completely eliminate these 340 

spoilage bacteria. When 7 g/HL of fungal chitosan was added to the same initial wine, 341 

populations of acetic acid bacteria declined to 3.47 x 103 GU/mL ten days after addition. In 342 

this sense, when Valera et al. (2017) compared chitosan and SO2 effects in artificially 343 

contaminated wines with two strains of the species of acetic acid bacteria Acetobacter, they 344 

detected that their viability decreased with the application of chitosan. In our study there 345 
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 12 

were no significant differences between samples treated with KAgC or chitosan. Hence, 346 

according this data, both KAgC and chitosan would reduce, but would not eliminate, these 347 

spoilage bacteria. 348 

 349 

Concentration of ion Ag in final wines 350 

Regarding silver content in the final wines, it was far below the legal limit of 100 µg/L 351 

(0.1 mg/L) established by the OIV-OENO 145-2009, (OIV, 2015). This corroborates the 352 

results by Izquierdo-Cañas et al (2012) who studied the application of colloidal silver 353 

complex in winemaking. 354 

 355 

Conclusion 356 

According to these results, the viability of the yeast Brettanomyces bruxellensis and AAB, 357 

the main microorganisms which can affect wines organoleptic features, reduced by the 358 

presence of KAgC. In the case of Brettanomyces and AAB with populations of 1.0E+06 359 

CFU/mL, the effect is less marked and it would be necessary to test whether a greater 360 

concentration of KAgC would have the desired effect.  361 

In the case of acetic acid producing strains of Brettanomyces, it has been shown that the 362 

presence of KAgC decreases the risk of their production although in the wine there may be 363 

small residual populations of this yeast. In the same way, the risk of producing 4-ethyl-364 

phenol is decreased in the presence of KAgC correlated with the inactivation of the strains of 365 

Brettanomyces which produce this metabolite.  366 

The effectiveness of KAgC in the reduction of populations of B. bruxellensis and AAB has 367 

been demonstrated by two methods of microbiological analysis: plate counts and Q-PCR. Its 368 

action on Brettanomyces cells in naturally contaminated wines was very similar to that 369 

achieved with Chitosan.  370 
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 452 

 453 

Figure 1: Amplification of the internal transcribed spacers (ITS1 and ITS2) of the rRNA 5.8S 454 

of four Brettanomyces bruxellensis strains used in the study. Lanes 1 to 4: strain, 1, strain 2, 455 

strain 3, strain 4. MWM: molecular weight marker 100 pb Ladder.  456 

 457 

Figure 2: Populations of Brettanomyces in wine artificially polluted along 24 days after KAgC 458 

treatment. 459 

 460 

Figure 3: Populations of acetic acid bacteria in wine artificially polluted along 3 days after 461 

KAgC treatment. 462 

 463 

Table 1: Physicochemical parameters of initial wines. 464 
 465 
 466 
Table 2: Acetic acid and 4-ethylphenol concentration in wines artificially polluted with 467 

increasing amounts of Brettanomyces. 468 

 469 

 470 
Table 3:  Populations of B. bruxellensis and acetic acid bacteria (GU/mL) in wine naturally 471 

contaminated (or polluted) before and after ten days of treatments with KAgC and chitosan.  472 

 473 
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Table 1:  
 

 Wine 1 Wine 2 

Alcohol content (% v/v) 11.48 14.26 

Volatile acidity (g/L of acetic acid) 0.50 0.76 

Total acidity (g/L of tartaric acid) 6.40 5.35 

pH 3.48 3.66 

Glucose +Fructose (g/L) 0.20 0.25 

Total SO2 (mg/L) 4 85 

Free SO2 (mg/L) n.d. 7 

4-ethylphenol (µg/L) n.d. 1087 

4-ethylguaiacol (µg/L) n.d. 146 

         n.d.: Not Detected. 
 
 
 

Table 1



 
Table 2:  

 

Initial CFU/mL 1.0E+02 1.0E+04 1.0E+06 

Time (Days) Control  KAgC Control KAgC Control KAgC 

Acetic acid 

(g/L)       

0 0.51 ± 0.01a 0.51 ± 0.01a 0.50 ± 0.01a 0.50 ± 0.01a 0.49 ± 0.01a 0.50 ± 0.01a 

24 1.20 ± 0.30b 0.53 ± 0.01a 1.56 ± 0.15b 0.61 ± 0.20a 1.50 ± 0.09b 1.39 ± 0.03b 

4-ethylphenol 

(µg/L)       

0 32.5 ± 5.2a 29.1 ± 6.4a  34.2 ± 4.3a 30.7 ± 6.1a 33.8 ± 4.6a 33.8 ± 4.6a 

24 143.4 ± 10.6b 30.1 ± 5.8a 516 ± 19.1b 26.3 ± 7.8a 785 ± 50.8b 352 ± 31.8b  

Different superscripts (a, b, c) in the same column indicate significant differences for α = 0.05 according to the Student- Newman-Keuls test. 

Values are the mean of triplicates.  
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Table 3:   

 

 Brettanomyces Acetic acid bacteria 

 Initial wine 
10 days after 

treatment Initial wine 
10 days after 

treatment 

Control 

1.00E+04 

3.73E+04b 

1.10E+05 

8.27E+05b 

KAgC 1.17E+02a 1.72E+03a 

Chitosan 3.00E+02a 3.47E+03a 

Different superscripts (a, b,) indicate significant differences in the same column for α = 0.05 according to the Student- Newman-Keuls test. Values are 

the mean of triplicates.  

 

 

Table 3



 

Figure 1: 

 

 

  

 

Figure 1



Figure 2:  
 

a) 

 
b) 

 
c) 

 

 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 3 10 17 24

C
FU

/m
L 

Days of treatment

Brettanomcyes (1.0E+02 CFU/mL)

Control

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 3 10 17 24

C
FU

/m
L

Days of  treatment

Brettanomyces (1.0E+04 CFU/mL)

Control KAgC

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 3 10 17 24

C
FU

/m
L

Days of treatment

Brettanomyces (1.0E+06 CFU/mL)

Control KAgC

Figure 2



Figure 3:  
a) 

 
b) 

 
c) 
 

 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 1 2 3

C
FU

/m
L

Days of treatment

Acetic acid bacteria (1.0E+02 CFU/mL)

Control KAgC

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0 1 2 3

C
FU

/m
L

Days of treatment

Acetic acid bacteria (1.0E+04 CFU/mL)

Control KAgC

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 1 2 3

C
FU

/m
L

Days of treatment

Acetic acid bacteria (1.0E+06 CFU/mL)

Control KAgC

Figure 3



Copyright Transfer Statement




