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a b s t r a c t

Streptococcus pneumoniae is a common human commensal that causes a sizeable part of the overall child-
hood mortality in low income settings. Populations affected by humanitarian crises are at especially high
risk, because a multitude of risk factors that are enhanced during crises increase pneumococcal transmis-
sion and disease severity. Pneumococcal conjugate vaccines (PCVs) provide effective protection and have
been introduced into the majority of routine childhood immunisation programmes globally, though sev-
eral barriers have hitherto limited their uptake during humanitarian crises. When PCV coverage cannot
be sustained during crises or when PCV has not been part of routine programmes, mass vaccination cam-
paigns offer a quick acting and programmatically feasible bridging solution until services can be restored.
However, we currently face a paucity of evidence on which to base the structure of such campaigns. We
believe that, now that PCV can be procured at a substantially reduced price through the Humanitarian
Mechanism, this lack of information is a remaining hurdle to PCV use in humanitarian crises.
Considering the difficulties in conducting research in crises, we propose an evidence generation pathway
consisting of primary data collection in combination with mathematical modelling followed by quasi-
experimental evaluation of a PCV intervention, which can inform on optimal vaccination strategies that
consider age targeting, dosing regimens and impact duration.
� 2019 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Approximately 68.5 million people, nearly 1% of the world’s
population, were forcibly displaced due to insecurity and war in
2017. In those who are refugees, more than half are under the
age of 18, and 17% under the age of five [1,88]. In the same year,
hundreds of millions were affected by armed conflicts [2,3], and
almost 100 million were impacted by natural disasters [4].
Whether in the acute emergency or the protracted phase, crises
substantially affect people’s lives, and can dramatically increase
premature mortality [5–7]. In most crises, excess deaths are often
attributable to the indirect effects of crisis-emergent factors such
as the breakdown of public health services, food insecurity, inade-
quate water and sanitation, and overcrowding; factors that
increase both the incidence and severity of disease [8,9].

Infectious diseases are of particular concern, and require speci-
fic control measures that include, but are not limited to, vaccines.
To date, only a small subset of licensed vaccines that are routinely
used in most stable settings is commonly used in humanitarian
crises. These usually include measles, polio, and (recently) cholera,
with context-specific threats such as meningococcal disease or yel-
low fever infrequently addressed [10]. However, the prioritisation
of pathogens targeted by these vaccines may not comprehensively
address the local anticipated preventable disease burden. More
recent additions to the vaccine portfolio, such as vaccines protect-
ing against HPV (particularly in settings with high rates of sexual
violence), rotavirus, and Streptococcus pneumoniae, have rarely
been used in humanitarian settings. Using the example of Strepto-
coccus pneumoniae, we here propose a framework to overcome
some of the barriers for vaccine use in humanitarian settings,
and to help prevent the likely substantial disease burden associ-
ated with respective pathogens in crises settings.

2. Streptococcus pneumoniae in crises

Streptococcus pneumoniae (the pneumococcus) is a human com-
mensal that commonly resides in the nasopharynx, and occasion-
ally causes disease (e.g. pneumonia, meningitis, and sepsis),
especially in young children and people with weakened immune
systems [11]. The pneumococcal disease burden in crises is largely
unknown, but likely substantial. Outbreaks are thought to occur,
but often go unnoticed due to non-existent or under resourced
surveillance systems and the low specificity of symptoms [12].
Pneumococcal meningitis outbreaks have occasionally been

reported in humanitarian settings [13,14], and pneumococcal
pneumonia is a major concern. During crises, acute respiratory
tract infections (ARI) and diarrhoeal disease make up the top two
causes of morbidity in all age groups, with ARIs alone accounting
for 20–35% of mortality in children younger than five years of
age [15]. The exact aetiology of these ARIs remains unknown, but
more than half of all ARI-related deaths worldwide were caused
by pneumococci in the pre-pneumococcal conjugate vaccination
era [16]. Risk factors that are commonly exacerbated in crises, such
as malnutrition, indoor air pollution, and overcrowding, can
increase pneumococcal carriage, transmission, disease, and mortal-
ity (Table 1). This likely amplifies this burden in crises. Many of
these risk factors were also present in pneumococcal outbreaks
that have been identified in stable settings [17]. In addition, the
displacement and crowding of people from a range of different
communities may expose them to a range of circulating serotypes
that they have not seen before, increasing the risk of disease and
probably extending the risk even more into older age groups.

3. Pneumococcal conjugate vaccines

Pneumococcal conjugate vaccines (PCVs) effectively protect
against pneumococcal disease [11]. There are currently two PCV
products available, protecting against 10 (PCV10) or 13 (PCV13)
of more than 90 known pneumococcal serotypes, and PCVs with
increased valency (PCV15 and PCV20) are currently in develop-
ment [36,37]. In contrast to (unconjugated) pneumococcal polysac-
charide vaccines [38], PCVs are recommended for use in children
and, in addition to the direct protection against pneumococcal dis-
ease, also elicit indirect protection through interrupted transmis-
sion of vaccine-targeted serotypes (VT) [11]. Although their
impact is dampened by replacement colonisation of the nasophar-
ynx by non-vaccine serotypes, these serotypes are generally less
likely to cause severe disease, resulting in a net benefit [39]. PCVs
have now been introduced in the routine childhood immunisation
programmes of the majority of countries [40]. In most places
where PCVs are used at high coverage, the marked reduction in
VT transmission has expanded the benefit beyond vaccinees alone
[41–44].

4. Vaccination in crises

Vaccination strategies can be categorized into routine immuni-
sation, which aims to reduce the disease burden by sustainable and

Table 1
Crisis-emergent risk factors that can plausibly affect the pneumococcal burden.

Risk factor Increased transmission
(carriage)

Increased probability that
carriage leads to disease

Increased case-fatality
ratio

Selected
references

Acute malnutrition ++* +++* +++* [18,19]
Measles outbreaks and other viral respiratory tract infections ++ ++ ++ [20–22]
Overcrowding and altered social contact patterns +++* � � [18,19,24,24]
Disrupted routine pneumococcal conjugate vaccine use +i +++ � [25–27]
Low access to curative care +ii + +++ [28–31]
Smoke inhalation � + � [32,33]
Inadequate water and sanitation ++ + � [34,35]

� no effect on outcome; + small effect on outcome; ++ medium effect on outcome; +++ large effect on outcome.
* Potential shift in the age-specific risk (younger average acquisition and increased carriage and disease among all age groups).
i Increase in carriage of vaccine-targeted serotypes, but not in overall carriage.
ii Increased transmission due to reduced bystander effect as a result of limited antibiotic usage in the community.
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equitable vaccination of new birth cohorts [45], or mass vaccina-
tion campaigns, which aim for a quick but short lived (additional)
reduction in disease burden. However, this distinction has become
blurred with recent use of ‘periodic intensification of routine
immunisation’ (PIRI) activities [46].

Routine immunisation is highly effective and cost-effective [47],
but as a strategy faces a number of challenges during crises, includ-
ing access to regular timely services, disruption of the cold chain,
lack of personnel to deliver vaccines, safety of health care workers,
and access of health workers to the affected population [48,49].
Consequently, in the acute phase of a crisis routine immunisation
often breaks down and cannot ensure population immunity. Vacci-
nation coverage may drop to levels too low to interrupt transmis-
sion in susceptible parts of the population. This is most
pronounced in mass displacement scenarios; where overcrowding
alone increases the transmission intensity of infections and, in
combination with an accumulation of susceptible individuals,
increases vaccination requirements to achieve herd immunity.

Accordingly, humanitarian actors including non-governmental
organizations (NGOs) emphasise the role of mass vaccination cam-
paigns. These campaigns are regularly used for outbreak control
[50], but should in this instance not only aim to quickly control dis-
ease but also sustain impact for sufficient time until subsequent
campaigns can be performed or routine immunisation can be
resumed. The high number of vaccine doses given to extended
age groups in a shorter time-frame usually make mass vaccination
campaigns more feasible to execute and faster in reducing the dis-
ease burden.

Insufficient evidence on the causes underlying the disease bur-
den during crises and limited guidance on vaccine priorities for
humanitarian decision-makers may partly explain the hitherto
narrow uptake of vaccine interventions. In an attempt to improve
this situation the World Health Organization (WHO) introduced a
Framework for Decision-Making on Vaccination in Humanitarian
Emergencies in 2012, which was updated in 2017 [51]. This
three-step framework aims to implement the most appropriate
vaccination interventions in each crisis given the local epidemiol-
ogy, vaccine characteristics, and other context-specific considera-
tions. The framework emphasises expanding the range of
vaccines offered to crisis-affected populations, but also recom-
mends adapted vaccination strategies, including expanded age
ranges and reduced-dose regimens.

5. PCV use in crises

Although the WHO Framework lists PCVs as one of the vaccines
to be considered for use in crises [51], and despite a likely high pre-
ventable pneumococcal disease burden, they have rarely been used
during crises [53–57]. The rationale for integrated PCV vaccination
strategies in crises is clear: mass vaccination campaigns delivered
as part of the initial package of interventions in the acute emer-
gency phase of new crises could rapidly establish direct and indi-
rect protection when vulnerability due to malnutrition,
congestion of unplanned settlements, and lack of curative health
services is likely to peak. These campaigns should ideally be
multi-antigen interventions (e.g. bundling measles and cholera)
or multi-interventional (e.g. bed nets or micronutrient
supplementation).

A PCV-specific barrier to vaccination in crises has long been its
price. If not supported by Gavi, lower and middle income countries
(LMIC) spend about 20, 50, and 3 times as much for one complete
regimen of PCV (50US$) compared to measles containing vaccine,
oral polio vaccine, or rotavirus vaccine, which is indicative for
prices paid by humanitarian actors until 2017 [57]. While PCVs
have been prohibitively expensive, a ‘‘Humanitarian Mechanism”

sponsored in 2017 by the WHO, Unicef, Médecins Sans Frontières
and Save the Children now guarantees more affordable PCV pro-
curement by humanitarian actors and affordable expedited deliv-
ery [58]. Although some 600,000 doses of PCV have been
delivered through this mechanism to date [55], this only covers a
small proportion of crises affected populations at risk. In addition,
only multi-dose PCV vials are available through the humanitarian
mechanism. Whereas this eases transportation and storage of the
vaccine, it also increases wastage and may therefore decrease their
cost-effectiveness, especially when used routinely in small
populations.

A key barrier that has not yet been addressed is the insufficient
evidence on optimal PCV deployment strategies via mass vaccina-
tion campaigns and their expected impact in crises [59,60]. In
places where they have been used, they have been administered
through different strategies targeted at different age groups [61–
64]. The impact of those alternative approaches has not been
assessed.

The WHO recently updated their recommendations on the use
of PCVs in children [65]. These now include a recommendation to
use PCV in children under one year of age and consider for children
under five years of age during humanitarian crises and other emer-
gencies. This is in line with the aforementioned WHO Framework
[51]. However, in the absence of any evidence [66], no further
guidance is given to the optimal age range to target in a campaign,
the number of doses needed, and the frequency of campaigns.

There is no clear rationale to limit mass vaccination campaigns
to those under one, two, or even five years of age. These are the age
groups that usually bear the heaviest burden of pneumococcal
pneumonia, but in crisis settings where high pneumococcal car-
riage prevalence likely extends to adulthood, targeting a larger
proportion of the transmitting population is probably needed to
control VT circulation. This would maximize herd protection,
which is crucial in optimising vaccine use, as it protects unvacci-
nated children and adults. Such control is particularly needed if
the effects of a campaign need to sustain protection for months
or years until a subsequent campaign is feasible or routine immu-
nisation can be restored. It is also key in settings where high preva-
lence of acute malnutrition may shift the age spectrum for
pneumococcal disease towards older children [67]. Using an
extended age range to 14 years of age for example, could be oper-
ationally convenient as it may allow co-administration with
measles vaccine.

Multi-dose schedules are recommended in routine programmes
[65] but may be unfeasible in crisis settings. If, for operational rea-
sons, only a single dose of PCV can be administered, extended age
ranges may partially compensate for a lack of optimal direct pro-
tection. Single dose strategies only provide moderate direct protec-
tion to infants if not followed by a booster dose [68], but this
reduced direct protection may be offset by enhanced indirect pro-
tection from older age groups, provided that vaccine coverage
levels are sufficiently high. Single-dose strategies are being inten-
sively tested in stable settings [68–70], but their exact indirect
effects remain unknown.

6. Evaluating optimal vaccination strategies

Vaccination strategies must consider both direct and indirect
protection. The former will require estimation of age specific pneu-
monia burden, which is likely to vary considerably between crisis
settings depending on malnutrition rates and other factors. The
best evidence of vaccine impact comes from cluster-randomised
controlled trials (cRCT). However, these are resource-intensive
and exceptionally challenging to conduct during crises, with
additional ethical concerns related to randomisation of vulnerable
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populations to potentially less protected trial arms [71]. Moreover,
only a small subset of many possible combinations of potentially
viable dosing strategies and age ranges can be investigated.

We propose instead a sequential evidence generation pathway,
consisting of primary data collection in combination with mathe-
matical modelling followed by quasi-experimental evaluation of
PCV intervention. Mathematical models are increasingly used to
synthesize a multitude of evidence for vaccine decision making,
particularly if indirect vaccine effects form a key part of the desired
impact [72–74]. If adequately parameterised, these models are
useful to simulate the pneumococcal epidemiology of a specific
setting and predict PCV impact under various vaccination strate-
gies, as has been done in stable settings such as Kenya [25,52]
and Vietnam [75]. However, the use of modelling to inform and
evaluate vaccine decision making in crises is limited. It has pre-
dominantly been used to assess reactive strategies for outbreaks
[76–78], e.g. the potential of ring-vaccination strategies for Ebola
control [79], but has for instance also been used for pre-emptive
strategies for Hepatitis E in displaced populations [80].

PCV vaccination strategies have, to our knowledge, only been
explored in stable settings. A limitation to the use of modelling
to inform PCV use in crises-affected populations is the lack of
context-specific data for model parameterisation. The key drivers
of pneumococcal transmission are social contact behaviour (a
proxy for disease transmission routes) and the pre-PCV prevalence
of nasopharyngeal carriage that helps identifying pockets of the
population driving pneumococcal transmission. Consequently
studies have measured both in a multitude of settings [81,82],
but few have been done in LMICs and evidence from crisis-
affected populations is entirely absent. The main drivers of trans-
mission are often children, due to the nature and frequency of their
contacts in combination with high prevalence of pneumococcal
carriage [83,84]. However, in displaced populations, both social
contact patterns and pneumococcal carriage may be considerably
altered from their pre-crisis baseline (see Table 1). As this may sig-
nificantly affect the appropriate strategy, primary data is needed to
construct meaningful models for hypothesis generation.

Specifically, we argue that a seemingly natural assessment of
age targeting through PCV use in the age groups with highest inci-
dence of pneumococcal disease is unlikely to make best use of PCV.
Whereas this strategy would indeed provide direct protection to
those at highest risk, it may lead to either under or over use of
PCV. Without an assessment of transmission dynamics, such strat-
egy could end up providing PCV to an age group that is too narrow
so that no herd immunity is achieved. This would leave the rest of
the population vulnerable, and upcoming generations who are at
exceptionally high risk unprotected. Alternatively, the age group
may be too broad, and many who would have been protected
through herd effects will receive PCV without much added benefit.

Mathematical modelling can be used to study transmission
dynamics, needed to predict vaccine impact. Specifically, it can for-
mally integrate available evidence and their associated uncertainty
into a prediction framework that can explore and propose vaccina-
tion strategies to potentially optimize impact, namely: (i) PCV tar-
get age groups for mass vaccination in crises; (ii) minimum
vaccination coverage needed; (iii) single vs. multi-dose vaccination
options; and (iv) the frequency with which campaigns should be
implemented to sustain PCV effects until routine immunisation
can be re-established. It can also be used to extrapolate to different
crises settings such as overcrowded acute displacement camps or
slow-onset food security crises in rural areas.

Although modelling can narrow down the range of potential
strategies, pilot implementation of these strategies should be
accompanied by impact measures. At a minimum this should
include cross-sectional nasopharyngeal carriage studies in the tar-
get population before and after PCV use, though ideally extend to

measures of impact on morbidity or even mortality. Quasi-
experimental designs can be used to evaluate their impact with
relatively low resources [85], as has been done in multiple post-
licensure PCV studies where no or only a limited number of control
sites is available [43,44,86,87]. In addition, such results can feed
back into mathematical models [52], leading to more robust pre-
dictions of vaccine strategies and impact.

7. Conclusions

Vaccines that are most commonly used in humanitarian crises
settings have not necessarily been prioritised based on the current
or expected local preventable disease burden. More recent addi-
tions to the vaccine portfolio that could potentially prevent a dis-
proportionally large burden, such as PCVs, are infrequently
deployed. The high costs of PCVs are now largely mitigated by
the availability of PCV through the Humanitarian Mechanism, but
the lack of specific PCV usage recommendations is among the
key factors that hinder uptake as a routine part of humanitarian
responses. Evidence on practical, effective, and cost-effective ways
to use PCV is critical for humanitarian actors to better evaluate the
role of PCV in the vaccine portfolio for crises use.

Preventing a large proportion of the pneumococcal disease bur-
den through PCV use would contribute to the overarching aim of
humanitarian action: to save lives. We propose that a combination
of targeted data collection in combination with mathematical
modelling can be used to generate evidence-based hypotheses on
optimal vaccination strategies for PCVs in crises, and ultimately
pave the way for rational PCV use in crises. This evidence pathway
could similarly be applied to other vaccine-preventable diseases,
for which indirect effects are a key part of their overall effects, to
eventually achieve an evidence based prioritisation strategy for
optimal vaccine use in humanitarian crises.
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