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OPINION

Deployment and utilization 
of next-generation sequencing of Plasmodium 
falciparum to guide anti-malarial drug policy 
decisions in sub-Saharan Africa: opportunities 
and challenges
Deus S. Ishengoma1* , Queen Saidi2, Carol H. Sibley3, Cally Roper4 and Michael Alifrangis5,6

Abstract 

Parasite resistance against anti-malarial drugs is a major threat to the ongoing malaria control and elimination 
strategies. This is especially true since resistance to the currently recommended artemisinins and partner drugs has 
been confirmed in South East Asia (SEA) and new anti-malarial compounds are not expected to be available in the 
near future. Spread from SEA or independent emergence of artemisinin resistance in sub-Saharan Africa (SSA) could 
reverse the achievements in malaria control that have been attained in the past two decades and derail the ongoing 
elimination strategies. The current surveillance of clinical efficacy and resistance to anti-malarial drugs is based on 
efficacy trials to assess the clinical performance of anti-malarials, in vivo/ex vivo assessment of parasite susceptibility 
to anti-malarials and prevalence of known molecular markers of drug resistance. Whereas clinical efficacy trials are 
restricted by cost and the complex logistics of patient follow-up, molecular detection of genetic mutations associated 
with resistance or reduced susceptibility to anti-malarials is by contrast a simple and powerful tool for early detection 
and monitoring of the prevalence of resistant parasites at population level. This provides needed information before 
clinical failure emerges, allowing policy makers to anticipate problems and respond. The various methods previously 
used in detection of molecular markers of drug resistance share some limitations: low-throughput, and high costs per 
sample and demanding infrastructure. However, recent technological advances including next-generation sequenc-
ing (NGS) methodologies promise greatly increased throughput and reduced costs, essentially providing unprec-
edented potential to address different research and operational questions of relevance for drug policy. This review 
assesses the potential role of NGS to provide comprehensive information that could guide drug policies in malaria 
endemic countries and looks at the foreseeable challenges facing the establishment of NGS approaches for routine 
surveillance of parasite resistance to anti-malarials in SSA.

Keywords: Next-generation sequencing, Malaria, Plasmodium falciparum, Drug resistance, Sub-Saharan Africa

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Malaria Journal

*Correspondence:  deusishe@yahoo.com 
1 National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2040-3416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-019-2853-4&domain=pdf


Page 2 of 10Ishengoma et al. Malar J          (2019) 18:267 

Background
The Global Technical Strategy for malaria (GTSm) 
2016–2030 (https ://www.who.int/malar ia/publi catio ns/
atoz/97892 41564 991/en/) was formulated by the World 
Health Organization (WHO) to provide a framework 
to guide endemic counties toward malaria elimination. 
It sets out targets for the coming decade which include; 
90% reduction of global malaria mortality and case inci-
dence by 2030 (compared to 2015); eliminating malaria 
in at least 35 countries; and preventing re-introduction 
of malaria in all countries that are disease-free [1]. The 
interventions recommended by GTSm include current 
vector control methods [with long-lasting insecticide-
treated bed nets (LLINs) and/or insecticide-treated bed 
nets (ITNs), and indoor residual spraying (IRS)] and 
effective case management [involving prompt diagnosis 
with rapid diagnostic tests (RDTs) and treatment using 
artemisinin-based combination therapy (ACT)]. GTSm 
also recommends promoting and implementing malaria 
surveillance as a core intervention [1]. However, the 
impact of these interventions on malaria burden will be 
undermined by insufficient funding for malaria [2], weak 
health systems [3, 4], resistance to insecticides by Anoph-
eles vectors [5] and emergence of parasites resistant to 
commonly used anti-malarials [6]. Drug resistance is pri-
marily a challenge facing control of the Plasmodium fal-
ciparum species, and includes resistance to artemisinins 
[7–9] and partner drugs [10, 11], arising in South East 
Asia (SEA). In particular, the threat to ACT efficacy calls 
for sustained surveillance to ensure prompt detection of 
resistance emergence and containment of its spread to 
other endemic countries and particularly to sub-Saharan 
Africa (SSA), where it is still highly effective.

Thus, parasite resistance to anti-malarial drugs is a 
major obstacle to current initiatives for effective control 
and elimination of malaria. Drug pressure is the key fac-
tor driving the emergence and spread of resistant para-
sites. However, other factors (related to human host, 
mosquito vectors and the parasites) and conditions lead-
ing to malaria treatment failure may also contribute to 
development of resistance [12].

Assessment and/or confirmation of resistance to anti-
malarial drugs is usually determined by therapeutic 
efficacy studies (TES) in which the clinical efficacy of 
different drugs is assessed. This remains the gold stand-
ard for guiding formulation of malaria treatment policies 
[13]. However, TES are challenging to implement on a 
regular basis due to costs and issues related to logistics 
[12]. Alternatively, ex  vivo/in vitro laboratory assess-
ment of sensitivity of P. falciparum field isolates to anti-
malarial compounds is possible and has the advantage 
that parasite susceptibility to individual drugs is obtained 
without interference or confounding by host immunity. 

However, the methodology is available only where there 
is adequate laboratory infrastructure and skilled human 
resources, and furthermore it cannot assess susceptibility 
to drug combinations [14].

Drug susceptibility in P. falciparum populations is 
influenced by specific mutations [single nucleotide poly-
morphisms (SNPs)] or to a lesser extent, amplifications of 
certain genes leading to copy number variants (CNVs) in 
the P. falciparum genome [15, 16]. By consecutive meas-
urement of the occurrence of these molecular markers of 
drug resistance within populations, effective surveillance 
of temporal changes and geographical spread is feasible. 
A strong and reliable surveillance framework which uses 
molecular markers could potentially inform drug policy 
and support timely intervention to forestall widespread 
treatment failure. However, until now, the operational 
relevance of molecular markers of resistance for drug 
policy has also been limited to the few areas where sur-
veillance is adequate. Thus, without investment in large-
scale routine sampling of malaria parasites across malaria 
endemic regions, the provision of timely, comprehensive 
molecular surveillance data to guide policy has been out 
of reach in SSA.

Over the past three decades, molecular surveillance 
has largely relied on traditional low throughput geno-
typing methods to generate data and map the status of 
parasite resistance to different anti-malarial drugs [17]. 
Due to recent technological advancement and reduction 
in the costs, next-generation sequencing (NGS) meth-
ods have the potential to address different research and 
operational questions in a timely manner. In particular, 
these methods could support high quality biological and 
epidemiological studies, including tracking resistance 
to anti-malarial drugs. However, the methods need to 
be refined and tailored to address the operational chal-
lenges, which currently limit their application in SSA. An 
adaptive system would generate information to guide the 
choice, implementation and use of effective anti-malarial 
drugs in SSA.

This review paper explores opportunities and chal-
lenges of using new genomic screening tools and associ-
ated bioinformatic analysis to the surveillance of parasite 
resistance to anti-malarials. The goal is to outline what 
may be required for this approach to become operational 
and guide drug policy in malaria endemic countries in 
the future.

A brief historical perspective of the evolution 
of anti‑malarial drug resistance
Resistance has been described for most currently avail-
able drugs, although the intensity and geographic extent 
of resistance is not always known. The mechanisms of 
resistance and P. falciparum genes involved have been 

https://www.who.int/malaria/publications/atoz/9789241564991/en/
https://www.who.int/malaria/publications/atoz/9789241564991/en/
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the subject of intensive research. For chloroquine (CQ), 
resistance developed almost immediately in P. falcipa-
rum populations following its first introduction in the 
late 1940s. Resistance to CQ initially emerged in Cam-
bodia, Thailand and Colombia most likely because CQ 
was used there both for direct treatment and indirectly 
(in cooking salt), and in mass drug administration [18, 
19]. From SEA, CQ resistant parasites spread towards 
the west and reached East Africa through India in the late 
1970s [20, 21]. As CQ resistance spread in Africa, mortal-
ity increased at an alarming rate, with as high as sixfold 
higher death rates in children under 5 in some countries 
such as Senegal [22].

Plasmodium falciparum resistance to the antifolate 
combination, sulfadoxine/pyrimethamine (SP) has also 
been widely reported. The pattern of emergence and 
spread of resistance to SP was similar to that of CQ; 
emerging in SEA and then spreading to East Africa [23]. 
Although resistance to SP is widespread in Africa, the 
intensity of resistance is higher in the east compared to 
West Africa, reflecting its emergence and dispersal pat-
tern [24, 25].

Artemisinins were originally developed from natural 
compounds in China in the 1970s and are highly effective 
at killing P. falciparum. ACT containing an artemisinin 
compound and a partner drug (mainly lumefantrine, 
amodiaquine and recently, piperaquine) was promoted 
by the WHO in the 2000s for the treatment of uncom-
plicated falciparum malaria [26]. Artemisinin-based 

combinations, namely artemether–lumefantrine, artesu-
nate–amodiaquine and dihydroartemisinin–piperaquine 
are currently used in all SSA countries against uncom-
plicated falciparum malaria [2]. In these combinations, 
the rapidly-eliminated artemisinin component rapidly 
clears most of the parasites, and the remaining parasites 
are killed by the longer acting partner drug. However, 
reports from SEA showed that parasites have evolved 
partial resistance to artemisinins observed as a much 
slower rate of parasite clearance after artemisinin expo-
sure [7–9, 27, 28]. Moreover, resistance to key partner 
drugs such as mefloquine and piperaquine is now wide-
spread [10, 11].

Molecular markers and anti‑malarial drug 
resistance
Molecular markers associated with reduced response to 
particular drugs have been identified for different anti-
malarials including CQ, SP, artemisinins and partner 
drugs used in ACT (Table  1). These markers can serve 
as simple and useful tools in screening for emergence of 
resistance and assessing its spread.

In brief, single nucleotide polymorphisms (SNPs) in the 
P. falciparum chloroquine resistance transporter-gene 
(pfcrt) cause resistance to CQ [29, 30]. Mutations and 
gene amplifications in P. falciparum multidrug resist-
ance 1 (pfmdr1) gene affect susceptibility to CQ and 
other 4- amino quinolones (quinine and mefloquine) as 
well as structurally unrelated anti-malarial drugs, such 

Table 1 Main molecular markers associated with reduced response to different anti‑malarial drugs

pfk13 ,  Plasmodium falciparum kelch 13 gene; pfcrt ,  P. falciparum chloroquine resistance transporter; pfmdr1 ,  P. falciparum multidrug resistance 1; pfdhfr,  P. falciparum 
dihydrofolate reductase; pfdhps, P. falciparum dihydropteroate synthase; CNV, copy number variants
a SNPs at codons F446I, N458Y, M476I, Y493H, R539T, I543T, P553L, R561H and C580Y have been validated as markers associated with partial resistance to 
artemisinins whiles others have been reported as confirmed markers [6, 45–47]

Anti-malarial drugs Genes involved Specific mutations References

Artemisinins

 Artemisinin and its derivatives pfk13 Confirmed/validated SNPs in the propeller  domaina [43, 44, 46, 47]

4-Amino quinolones

 Amodiaquine pfcrt/pfmdr1 pfmdr1: 86Y/Y184/1246Y [52, 53]

pfcrt codons 72-76 (CVIET/SVMNT) [52, 54]

 Chloroquine pfcrt/pfmdr1 pfcrt codons 72-76 (CVIET/SVMNT) [15, 55, 56]

pfmdr1: 86Y/Y184/1246Y [15, 52, 53]

 Mefloquine pfmdr1 Increased pfmdr1 CNV [57, 58]

Piperaquine Plasmepsin 2/pfcrt Increased pm2 CNV [59, 60]

pfcrt codons H95Y, F145I, M343L, G353L [61–63]

Antifolate drugs

 Pyrimethamine pfdhfr pfdhfr: 51I/59R/108N [33, 35, 42]

 Sulfadoxine pfdhps pfdhps:436A/437G/540E/581G [35, 42]

Others

 Lumefantrine pfmdr1/pfcrt pfmdr1:N86/184F/D1246 or increased CNV [32, 53, 57, 64]

pfcrt codons 72-76 (CVMNK) [32, 65]
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as artesunate and lumefantrine [31, 32]. Antifolates, such 
as SP act through sequential and synergistic inhibition 
of two key enzymes involved with folate biosynthesis. 
Pyrimethamine and related compounds inhibit the step 
mediated by dihydrofolate reductase (DHFR) [33, 34], 
while sulfones and sulfonamides inhibit the step medi-
ated by dihydropteroate synthase (DHPS) [35, 36]. Muta-
tions in P. falciparum pfdhfr and pfdhps genes  directly 
reduce enzyme susceptibility causing resistance to 
pyrimethamine and sulfadoxine, respectively [37–41]. 
Different combinations of mutations in these genes have 
been associated with varying degrees of resistance to 
antifolate combinations [42]. A number of single nucleo-
tide polymorphisms (SNPs) in the P. falciparum kelch 13 
gene (pfk13) have been shown to confer partial resistance 
to artemisinins [43, 44]; and some mutations (see Table 1) 
have been associated with slow clearance that character-
izes the partial parasite resistance to artemisinins in SEA 
[6, 45–47].

These very specific genetic changes are defined by their 
association of a specific parasite genotype with response 
to a particular drug in the laboratory. These associations 
suggest that the prevalence of a certain genotype among 
the parasites in a location may be a useful surrogate to 
predict the efficacy of the drug to cure malaria patients 
who carry those parasites. This expectation was robustly 
supported in early studies of parasites that carried a par-
ticular combination of mutations in pfdhfr and pfdhps 
[42]. However, other studies have not always observed 
such associations, most likely because of confounding 
factors, such as acquired immunity [48–50].

The predictive relevance of the molecular markers to 
the clinical outcome of anti-malarial treatment has been 
difficult to establish for the artemisinins and their part-
ner drugs. That is partly because the parasite resistance 
to the drug may result only indirectly from the associ-
ated genetic change in the parasite. Even more impor-
tant, the response of a malaria patient to drug treatment 
is strongly dependent on other confounding factors such 
as acquired immunity mentioned above but as well, para-
site biomass, pharmacokinetics, and patient compliance 
to the treatment protocol. These factors also have a major 
effect to the treatment outcome apart from the intrinsic 
parasite resistance [10, 51].

Impact of molecular markers on drug policy
Although molecular markers of resistance to CQ, and 
sulfadoxine–pyrimethamine were discovered and used 
in mapping of resistance to these drugs (see for instance 
https ://www.drugr esist ancem aps.org and https ://www.
wwarn .org/track ing-resis tance ), they have been of lim-
ited operational value because these markers were 
described only after resistance was already widespread. 

There are just two examples of molecular surveillance 
being incorporated into WHO recommendations for 
national policy guidelines. Both are related to the WHO 
recommendations for SP to be used as prophylactic inter-
mittent preventive treatment, firstly in infants (IPTi) 
[66] and secondly in pregnant women (IPTp) [67]. The 
data are most clear for IPTp. In 2012, administration of 
SP was recommended for all women in the second and 
third trimesters of pregnancy because it was demon-
strated that babies born to women who receive this pre-
ventative treatment had significantly higher birth weight 
and better survival during the neonatal period [68, 69]. 
However, these early studies were carried out at a time 
when SP treatment of malaria disease was still effica-
cious and the prevalence of the markers of SP resistance 
in parasite populations was correspondingly low in most 
regions [69]. As the prevalence of the resistance markers 
rose, this signaled that SP efficacy was falling and soon 
fell below the standard for adequate clinical treatment; 
SP was no longer recommended for treatment of uncom-
plicated malaria.

However, further studies on SP-IPTp showed that it 
was still beneficial as prophylactic during pregnancy 
despite high levels of SP resistance, as measured by 
prevalence of parasites carrying both triple mutant pfd-
hfr and double mutant pfdhps alleles analysed in a wide 
range of locations [70]. The policy question then became 
“at what prevalence of SP resistance is even the preven-
tative effect of SP gone?” There was a clear regional dif-
ference between West Africa where triple mutant pfdhfr 
and single mutant pfdhps parasites were most common 
and IPTp remained protective. But protection was less 
clear in East Africa where parasites carrying both triple 
mutant pfdhfr and double mutant pfdhps (often called the 
triple-double) were in certain limited areas accompanied 
by an additional pfdhps mutation 581G [70]. Studies con-
ducted in North-eastern Tanzania, in an area with high 
prevalence of pfdhps 581G mutation, reported that IPTp 
was associated with an increased proportion of infec-
tions carrying pfdhps 581G mutations, increased level of 
parasitaemia, and more intense placental inflammation 
[71]. Another study later showed that women infected 
with highly resistant parasites (with triple mutations at 
pfdhps) had babies with low birthweight as compared to 
women infected with less resistant parasites. However, 
the impact of such infections with triple pfdhps mutants 
remained inconclusive as observations have been based 
on limited sample sizes and IPTp with SP has continued 
to be used in the same and other areas with highly resist-
ant parasites.

After considerable discussion, a WHO committee rec-
ommended that the prevalence of the triple double para-
sites in a site should be used to define a threshold above 

https://www.drugresistancemaps.org
https://www.wwarn.org/tracking-resistance
https://www.wwarn.org/tracking-resistance
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which SP IPTp should no longer be recommended for 
IPTp, as it would have minimal protective value when 
marker prevalence indicated resistance was too high [67]. 
This history demonstrated the potential value of molecu-
lar markers of SP resistance and how it might be used to 
guide clinical recommendation.

After identification of the pfk13-propeller locus as 
a marker of partial resistance to artemisinins, many 
molecular studies have been done in Africa. Reports of 
low prevalence of many different mutations in pfk13 have 
been published from many endemic countries but in gen-
eral, little evidence of slow parasite clearance has been 
gathered [6, 45–47]. In this important case, molecular 
surveillance has the potential to provide policy makers 
with a forecast of impending problems, rather than con-
firmation of an already existing one [71]. The molecular 
approach is especially valuable, since ACT is very widely 
used, so drugs are used in combination. For example, 
molecular surveillance can suggest that a partner drug 
is losing efficacy even when it is still apparently clinically 
effective when used in combination with an artemisinin. 
Conversely, recent reports show increasing prevalence of 
plasmepsin copy numbers (which is a marker of resist-
ance to piperaquine in SEA) despite recent introduction 
of piperaquine in Africa [72].

Overall, surveillance of molecular markers of resistance 
to drugs currently in use have the operational potential 
to inform drug policy makers on the status of drug resist-
ance at local, national and regional level. If done proac-
tively, surveillance of molecular markers can provide 
advanced warning of increased prevalence of parasite 
resistant to drugs in use in a region. With this informa-
tion, necessary changes in policy can be put in place 
to limit malaria attributed morbidity caused by failing 
drugs.

Opportunities, challenges and priorities 
for application of next generation sequencing 
(NGS) in drug resistance surveillance
In order to provide policy-makers with annotated and 
timely molecular data of relevance, several prerequi-
sites and processes have to be established and molecular 
analyses of drug resistance will play a central role. Dif-
ferent methods for detection of drug resistance markers 
have been developed in the last three decades and most 
of them have been established in various laboratories in 
SSA. These methods are all based on PCR, followed by 
various methodologies to identify the relevant SNPs or 
copy numbers (including PCR-RFLP, PCR-SSOP-ELISA, 
real-time PCR, LAMP and custom DNA micro-arrays) 
and a comparative assessment of these techniques was 
recently presented [17]. The major limitation of most of 
the current methods is low throughput, despite the short 

turn-round time. However, in recent years application of 
genetics and genomics methods in public health have sig-
nificantly grown because of various innovations and the 
declining costs of individual assays.

New methods, such as targeted NGS (TNGS) and asso-
ciated bioinformatics tools have recently provided pos-
sibilities for application to surveillance of anti-malarial 
resistance [73–76]. These methods are evolving rap-
idly, and the methods based on TNGS have the poten-
tial, to lower costs by allowing simultaneous assessment 
of large sample sets, using the capacity for automated 
high-throughput, high sensitivity and scalability for use 
in national/regional reference and research laborato-
ries [17]. One particular advantage is that TNGS-based 
methods allow for pooled sequencing of many individual 
patient isolates, retaining the capacity to still identify the 
prevalence of molecular components in each original 
sample. Pooling of samples can be done at different stages 
either before or after DNA extraction and this possibility 
can significantly reduce the costs and make it logistically 
possible to analyse rapidly a large number of samples 
[77]. This expansion could support far wider and deeper 
surveillance of the temporal and spatial distribution of 
molecular markers, closing the wide gaps in the overall 
maps currently available.

Despite the potential, the initial investments in infra-
structure for NGS are high, and TNGS-based methods 
require highly skilled personnel to perform sample pro-
cessing and the necessary bioinformatics data analysis 
(Bailey et  al. pers.commun.). Currently, these pose sig-
nificant barriers in most of SSA. Thus, opportunities for 
establishing and applying TNGS for surveillance of drug 
resistance in SSA is lagging behind due to these (and 
additional challenges, see below), that must be urgently 
tackled.

Appropriate choice of sample collection sites 
for surveillance of drug resistance markers
One major obstacle to efficient, timely surveillance of 
drug resistance markers is the methodological approach 
for appropriate sample collection. Previous studies have 
largely relied on opportunistic samples from sites of 
interest and/or convenience. As a result, the maps of 
malaria-relevant parameters show geographically and 
temporally sporadic distribution with some regions/
sites contributing to significant molecular knowledge 
but others are not represented at all [25]. This disparity is 
increasingly common as malaria transmission decreases 
overall. At this point a majority of malaria-infected indi-
viduals live in rural areas and hard-to reach malaria 
transmission hotspots, away from centres of populations 
with laboratory infrastructure, reliable electricity and 
transport infrastructure.
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Currently, there are no guidelines for selection of sur-
veillance sites to potentially cover areas with high risk 
of small populations particularly at risk for selection of 
resistant parasites. Perhaps worse, sites vulnerable to 
importation of highly multi drug resistant parasites from 
SEA where artemisinin resistance is currently confined 
may not be monitored at all. Even in countries with ongo-
ing TES and molecular surveillance such as Tanzania [78, 
79], the current surveillance sites might not be suitable 
for maximizing a chance of detecting emerging arte-
misinin or partner drug resistance. Guidelines for selec-
tion of the sites with sufficient geographical coverage 
and international connectivity are required to provide a 
standardized framework for inclusion of high-risk areas 
in order to facilitate detection of both local and imported 
resistant parasites.

New initiatives should be made to leverage on regular 
programmes and platforms which are currently imple-
mented to obtain samples which will greatly enhance the 
capacity to generate nationally representative molecular 
data. Such programmes include national-wide demo-
graphic and health surveys (DHS), malaria indicator sur-
veys (MIS), school-based malaria parasitological surveys 
and testing of pregnant women at the first antenatal vis-
its. Materials collected during these surveys can be cost 
free (RDTs) or relatively cheap to add on such as dried 
blood spots on filter papers (DBS). This will potentially 
overcome the limited sampling of convenience sampling 
of a few TES sites to provide population representative 
sampling.

Types of sample collection of Plasmodium falciparum 
positives for drug resistance surveillance
Parasite samples for molecular surveillance of drug resist-
ance are usually obtained by collecting small amount of 
blood samples, dried on filter paper (DBS). This has the 
advantage of being relatively non-invasive, but it is still 
dependent on a well-designed sampling protocol for 
collection, preservation and record keeping as part of 
malaria epidemiological or clinical trial studies. However, 
malaria RDTs have also been shown to be a good source 
of parasite DNA [80, 81], so retention of positive RDTs 
from patients represents a particularly attractive alter-
native. In particular, these require no extra steps for the 
patient and staff and the discarded RDTs can be stored 
easily at health centres/sentinel sites on a routine basis. 
Thus, these assessments of discarded RDTs would be a 
cost-effective strategy to facilitate creation of a sample 
repository for molecular surveillance of different mark-
ers of drug resistance; and this approach has been pilot 
tested in Senegal [82]. Such setup would support an envi-
ronmentally safe disposal of used RDTs that would other-
wise be thrown away.

Advocacy for investments in molecular analytical expertise 
in SSA
Currently, there is as mentioned, a lack of local capac-
ity for genomic studies in most of SSA countries due to 
poor laboratory infrastructure, the shortage of skilled 
researchers and technicians, and lack of computing facili-
ties. Despite a recent increase in funding from interna-
tional funders, there is a lack of/inadequate support by 
African governments and international donors. African 
scientists and their collaborators need to advocate for 
increased domestic funding to complement the current 
support by international agents to build and sustain local 
capacity including human resources and laboratory facili-
ties. This will increase the capacity of African institutions 
to attract, train and retain skilled personnel with exper-
tise in genomics and bioinformatics; and effectively adopt 
and utilize genomic methods such as TNGS to support 
malaria elimination in Africa.

However, in most of SSA countries, there has also 
been limited engagement of policy makers and no calls 
for application of genetic/genomic studies for address-
ing different epidemiological questions with opera-
tional relevance, such as monitoring of drug resistance. 
As result, governments in these countries are unable to 
fund genomic studies partly due to neglect and insuffi-
cient funds within the domestic budget. Most of African 
government are unable to meet the financial demands 
required for implementing malaria control. Because of 
this, funding molecular surveillance of anti-malarial 
resistance may be seen as a low priority compared to sup-
porting malaria interventions such as bed nets, RDTs and 
anti-malarial drugs. There is an urgent need to increase 
awareness among policy makers of the potential applica-
tion of molecular surveillance for tracking anti-malarial 
drug resistance, particularly in the light of developments 
in NGS tools that potentially could facilitate timely pro-
duction of informative molecular data.

To increase acceptability and utilization of molecular 
surveillance of drug resistance, it is critical to involve 
NMCPs, local partners such as academic and research 
institutions, and the respective local governments/com-
munities. National programmes must attain leadership 
and ownership of the initiatives to ensure their sus-
tainability. Training of key staff and some members the 
programme management is essential to give them a bet-
ter understanding of molecular surveillance and use of 
genomics data to address the challenges and limitations 
to effectiveness of the current interventions. NMCP, local 
government authorities and communities also need to 
be sensitized and equipped to appreciate how genetic 
data can potentially support and influence the process of 
changing malaria treatment policies. These national and 
local stakeholders should be involved in the planning, 
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and implementation of molecular surveillance activi-
ties. The studies should be designed and implemented 
by NMCPs in collaboration with their partners, to spe-
cifically address questions of relevance and priority to 
national and local contexts. There should be a strong 
partnership between researchers and NMCP and local 
authorities with the required skills to share and appro-
priately disseminate research findings to key stakeholders 
and policy makers. Innovative approaches, such as maps 
and interactive visualization tools, need to be developed 
and the findings need to be reported in a language that is 
clearly understood by the target audience. A strong and 
well-designed partnership between NMCP and other 
local and international partners is critical to ensure that 
molecular surveillance data and findings of anti-malarial 
drug resistance studies are appropriately utilized to guide 
policy formulation at national and global levels.

Procurement of reagents and consumables for NGS in SSA
In most of the countries in SSA, there is poor/lack of a 
reliable supply chain for reagents and consumables to 
facilitate timely procurement and delivery of the mate-
rials. Although research materials are ordered through 
the collaborating laboratories in Europe and USA, they 
often get stuck at the customs for several months before 
they can be delivered to the laboratories. There is a grow-
ing market of local suppliers of reagents and consuma-
bles, which is highly welcomed. However, their supplies 
are over-priced and not always of similar high quality as 
compared to supplies obtained by laboratories outside 
SSA. Improvement in these areas is possible but that will 
depend on the level of collaboration between researchers 
and different stakeholders at national, regional/province 
and district levels.

Conclusion
NGS-based methods offer enormous potential to gen-
erate extensive, high quality molecular data to support 
tracking the emergence and spread of drug resistant 
parasites. If these systems could be developed, they could 
provide useful information to guide policy-makers on 
malaria treatment policies in close to real-time. However, 
several challenges need to be resolved to enable malaria 
endemic countries in SSA to fully utilize genomics and 
bioinformatics tools in the ongoing malaria control/
elimination strategies and guiding anti-malarial treat-
ment policies. Training a critical mass of SSA research-
ers with expertise to generate and interpret NGS data 
and increasing the number of NGS platforms in SSA is 
essential. Then, to decide on a sampling strategy that will 
provide routine and temporal molecular data from across 
SSA is necessary to secure timely data on molecular 

markers and enable early warning of any signs of resist-
ance to ACT on the continent.

Appropriate initiatives will be required to engage 
NMCPs and help them to appreciate the value that 
molecular surveillance can bring, in addressing opera-
tional issues relevant to their local responsibilities. 
Researchers from malaria endemic countries especially in 
SSA should take a leading role in creating the awareness 
of key stakeholders and increased funding particularly 
from their governments and international agencies. They 
should also advocate for national/regional reference labo-
ratories, which will build the capacity to locally generate 
genomics data to support malaria elimination in their 
respective countries.
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