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Abstract 

Background: HIV infection causes impairment of the gastrointestinal barrier, with 

substantial depletion of CD4+ T-cells in the gut. Antiretroviral therapy (ART) restores 

CD4+ counts and may have beneficial effects on gut microbiota in adults. Little is 

known about effect of long-term ART on gut microbiome in HIV infected children. We 

investigated composition of gut microbiota in HIV infected and uninfected children and 

assessed associations between gut microbiota and patient characteristics. 

Methods: In a cross-sectional study, rectal swabs were collected from 177 HIV infected 

and 103 HIV uninfected controls. Gut microbial composition was explored using 16S 

rRNA sequencing (Illumina Miseq).  

Results: HIV infected children had significantly lower alpha-diversity and higher beta-

diversity compared to HIV uninfected. No association was observed between 

microbiome diversity and CD4+ T-cell count, HIV viral load or HIV-associated chronic 

lung disease. We found enriched levels of Corynebacterium (p<0.01), Finegoldia 

(p<0.01) and Anaerococcus (p<0.01) in HIV infected, and enrichment of 

Enterobacteriaceae (p=0.02) in participants with low CD4+ counts (<400 cells/mm3). 

Prolonged ART-treatment (10 years) was significantly associated with a richer gut 

microbiota by alpha diversity. 

Conclusion: HIV infected children have altered gut microbiota. Prolonged ART may 

restore the richness of the microbiota closer to that of HIV-uninfected children.  

 

Keywords: HIV infection; antiretroviral therapy; gut microbiota; children; adolescents; 

Africa 
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Introduction 

The gastrointestinal (GI) tract plays an important role in the pathogenesis of human 

immunodeficiency virus (HIV) infection, with the majority of CD4+ T-cells residing in 

the GI-tract and associated lymphatic tissue [1]. HIV-induced depletion of CD4+ T-cells 

causes structural impairment of the GI epithelial barrier, systemic microbial 

translocation and ultimately alteration of the gut microbial community composition [2]. 

 

Recent evidence indicates that HIV-associated gut dysbiosis is characterized by 

decreased abundance of commensal (protective) bacteria and enrichment of potentially 

pathogenic taxa [3]. For example, the genera Pseudomonas, Enterobacteriaceae, 

Acinetobacter and Campylobacter are thought to have infectious and inflammatory 

properties and are enriched in adults with HIV [3, 4].  

 

Studies show altered gut microbiota is associated with elevated circulating inflammatory 

markers such as C-reactive protein and interleukin-6 [5-8], as well as markers of 

microbial translocation such as lipopolysaccharide and lipopolysaccharide binding 

protein [9, 10]. Further, studies suggest ART may only partially restore the gut microbiota 

towards levels observed in HIV uninfected populations, and patients continue to suffer 

from dysbiosis even when HIV infection is controlled [1, 11, 12].  

 

Moreover, gut dysbiosis, and associated microbial translocation may drive systemic 

chronic inflammation which increases the risk of chronic non-infectious HIV 

complications, such as cardiovascular disease and lung complications [13, 14] 15, 16]. 
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Few studies have investigated the gut microbiome in sub-Saharan African children and 

its relation to the development of HIV-associated chronic complications. Most studies to 

date have been performed in adult populations and potentially confounded by sexual 

preference, and are therefore not directly comparable to our study. The overall aim of our 

study was to investigate the gut microbiota in HIV infected and HIV uninfected children 

in Harare (Zimbabwe), and to evaluate the association between gut microbial composition 

and clinical and laboratory parameters (chronic lung disease, CD4+ T-cell count, viral 

load (VL)).  
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Materials and methods 

Study population 

This study investigated bacterial profiles of rectal swabs collected from participants of 

the Bronchopulmonary Function in Response to Azithromycin Treatment for Chronic 

Lung Disease in HIV-infected Children (BREATHE) trial [17] (clinicaltrials.gov 

identifier NCT02426112). Chronic lung disease was defined as forced expiratory volume 

in one second (FEV1) z-score less than -1.0 with no reversibility (<12% improvement in 

FEV1 after 200 ug of salbutamol inhaled using a spacer). The detailed study protocol has 

been described previously [17]. For the present sub study only participants enrolled in 

Harare (Zimbabwe) were included. HIV infected children aged 6-16 years without 

chronic lung disease, meaning no prior history of heart/lung diseases, tuberculosis (TB), 

no chronic cough, reported chest pain or shortness of breath during exercise, and HIV 

uninfected participants were recruited at the same outpatient clinic. These were recruited 

as comparison groups and not randomized into the trial. The route of HIV transmission 

was likely perinatal for most of the HIV infected participants. HIV-infected participants 

had to be stable on ART for at least 6 months, in order to meet eligibility criteria.  All 

study participants completed a detailed questionnaire regarding demographic, socio-

economic characteristics and clinical history. 

 

The study was approved by the London School of Hygiene and Tropical Medicine Ethics 

Committee; Harare Central Hospital Ethics Committee; Medical Research Council of 

Zimbabwe; The Regional Committee for Medical and Health Research Ethics REC North 

2015/1650; and University of Cape Town Human Research Ethics Committee. All 
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participants and/or legal guardians gave written informed consent to participate in the 

study. 

 

Sample collection 

Rectal swabs were collected from all participants at enrolment into the trial by study 

nurses. Swabs were immediately preserved in 1,5 ml of transport medium PrimeStore ® 

MTM (Longhorn diagnostics, Maryland, USA), directly stored on ice for maximum one 

hour, and then frozen at -80 °C before shipment on dry ice to the laboratory at the 

University of Cape Town (UCT). 

 

DNA extraction 

The Zymo Research Quick-DNATM Fecal/Soil Microbe Microprep kit (Zymo Research, 

California, USA) was used for DNA extractions. DNA was extracted according to the 

manufacturer’s description, with modifications. Briefly, a 400 l aliquot of each sample 

was mixed with 400 l BashingBeadTM Buffer in a ZR BashingBeadTM Lysis Tube. 

Mechanical lysis (bead beating) was performed using the TissueLyser LTTM (QIAGEN, 

Hilden, Germany) set to 50 Hz for 5 minutes. 500 l of supernatant was transferred to a 

Zymo-SpinTM III-F Filter (Zymo Research, California, USA) and centrifuged at 8000 x g 

for 1 minute. Chemical lysis was done by adding Genomic Lysis Buffer. All other 

procedures were done according to manufacturers protocol.  

 

16S library preparation and gene sequencing 

In order to assess DNA quality and total bacterial load, a real-time quantitative 

polymerase chain reaction (qPCR) was performed as previously described [18]. 
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Subsequently, two PCR sets targeting the V4 hypervariable region of the 16S ribosomal 

ribonucleic acid (rRNA) gene were performed according to previously described 

protocols [19, 20] (Supplementary file). 

 

Samples were sequenced on an Illumina Miseq® instrument using the Miseq® Reagent 

v3 kit, (600 cycles) (Illumina, California, USA). The final library was diluted to a 6 pM 

concentration, and a 25% PhiX library spike-in was added as internal control [21]. The 

pre-processing of sequence reads was done using the H3ABioNet 16S rDNA diversity 

analysis package (https://github.com/h3abionet/h3abionet16S) [20], with the exception 

that taxonomy of representative reads was assigned using the SILVA version 132. Raw 

sequence files have been submitted to the European Nucleotide Archive (ENA), 

accession number PRJEB32077.  

 

Data analysis 

Statistical analyses were performed in STATA 14 (StataCorp LLC, Texas USA) and R 

Statistical software (http://www.r-project.org/). Characteristics between study groups 

were compared using Fisher’s exact test (for categorical parameters) and Kruskal-Wallis 

or Wilcoxon rank sum test (for continuous parameters). 

 

Richness of bacterial taxa within a single sample was represented by the number of 

operational taxonomic units (OTUs) and Chao1 index [22]. Chao1 index uses mark-

release-recapture-like ratio to estimate richness by adding a correction factor to the 

observed number of species. Richness and evenness (relative abundances of the different 
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species) were characterized by Shannon's index [23]. Alpha diversity measures were 

calculated at sample depth 4000 reads to include 95% of samples. 

 

Interindividual differences, beta diversity, were determined using Bray-Curtis 

dissimilarity index [24] with sample depth set at 2000 reads to include 99% of samples. 

Beta diversity comparisons were explored using Principal Coordinate plots generated by 

the stats package in R. Comparisons were made using Wilcoxon rank sum test where not 

specified otherwise. We also used Kruskal-Wallis test in cases with more than two 

groups. The same groups were compared using permutational multivariate analysis of 

variance (PERMANOVA) in QIIME2 (version 2018.4) [25], with number of 

permutations set to 999. P-values were adjusted for multiple testing using the Benjamini-

Hochberg method [26]. 

 

Relative abundance 

To assess relative abundance, a linear discriminant analysis was performed using linear 

discriminant analysis effect size [27] with default settings (alpha values for the statistical 

test 0.05). To reduce the number of markers, the effect size threshold was set to 1.0 for 

the plots. Relative abundance comparison plots were generated using the 

MicrobiomeAnalyst web-based software tool with standard feature filtering [28]. 

Heatmaps were generated using only the taxa significantly different using linear 

discriminant analysis effect size comparison (Supplementary figure 1-3). The average 

fraction of each taxa was calculated from all samples within each group. The data was 

transformed to fractional abundance (Phyloseq) before performing the linear discriminant 
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analysis effect size analysis. All p-values reported are corrected for multiple testing using 

false discovery rate (FDR).  

 

Alpha diversity indices between study groups were compared using Wilcoxon rank-sum 

test. P-values were corrected for multiple testing using FDR. Spearman´s rank correlation 

with Bonferroni correction was used to assess the association between alpha diversity 

indices and continuous parameters. We fitted a linear regression model in order to 

estimate the association between HIV status and alpha diversity indices. BMI, age, and 

sex were adjusted for a priori. An interaction term between HIV status and antibiotics the 

three previous months (co-trimoxazole prophylaxis for HIV-infected) was included into 

the regression model to determine whether antibiotics modify the effect of HIV status on 

alpha diversity estimates. The association between other participant characteristics and 

alpha diversity indices was further evaluated in regression analysis stratified by HIV 

status and adjusted for BMI, age and sex. A two-tailed significance level of 0.05 was 

used.  
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Results 

Study population 

In total 149 HIV infected participants with chronic lung disease, 28 HIV infected 

participants without chronic lung disease, and 103 HIV uninfected participants were 

enrolled. All HIV infected participants were on ART, for a median of 6.6 years for those 

with chronic lung disease and 8.0 for those without. 89% of HIV infected participants 

were taking co-trimoxazole prophylaxis as per WHO guidelines [29]. No HIV uninfected 

participants were taking co-trimoxazole. The study group characteristics are presented in 

Table 1.  

 

HIV infected participants were older compared to the HIV uninfected participants ((15.6 

years (IQR 12.8-17.7) vs 9.9 (IQR 7.4-12.7), p<0.001)) and were more likely to be stunted 

and underweight compared to HIV uninfected participants (stunted: 41% vs 5%, p<0.001; 

underweight: 45% vs 5%, p<0.001). The proportion of participants who experienced 

diarrhoeal episodes during the last three months prior to enrolment was also higher in 

HIV infected than in HIV uninfected group (11% vs 3%, p=0.03).  

 

Alpha diversity  

Species richness (OTUs, Chao1) was significantly higher in HIV uninfected compared to 

HIV infected participants. There was no difference in Shannon index between these two 

study groups (Figure 1, Supplementary table 1). After adjustment for BMI, age and sex 

using linear regression analysis the negative association between richness indices and 

HIV status remained significant (p=0.02 for OTUs, p=0.001 for Chao1 index). The use 

of antibiotics during the three previous months did not change the significant effect of 
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positive HIV status for the Chao1 index (Supplementary table 2). HIV infected 

participants with suppressed VL had borderline higher OTUs (Median (IQR): 192.5 

(145.5-228.5) vs 176 (138-220), p=0.18) and higher Chao1 index (259.3 (201.2-302.1) 

vs 233.2 (175-276), p=0.05) compared to non-suppressed participants in regression 

analysis adjusted for BMI, age and sex (Supplementary table 3, 4).  

 

We stratified HIV infected participants based on their time spent on ART (ART<5 years; 

n=53, ART 5-10 years; n=100, ART10 years; n=23). When comparing HIV infected 

participants based on these subgroups, we found that participants who had been on 

ART10 years had an alpha diversity similar to the HIV uninfected study group (Table 

2).  

 

There was no difference in alpha diversity indices between HIV infected participants with 

and without chronic lung disease (Supplementary table 5). The same was observed after 

adjusting for BMI, age and sex using regression analysis. The associations between 

participant characteristics and alpha diversity indices in HIV infected participants is 

presented in Supplementary table 4. 

 

Prolonged ART treatment was the only parameter significantly associated with richer gut 

microbiota after adjustment for age and sex, suggesting a positive effect of prolonged 

ART. No parameters were found to be significantly associated with alpha diversity 

estimates in HIV uninfected group (Supplementary table 6). 
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Beta diversity 

We found significantly higher beta diversity amongst HIV infected, compared to HIV 

uninfected participants (p<0.01) (Figure 2a). ART duration had no impact on beta 

diversity when stratified by years spent on ART. There was no association between beta 

diversity and VL suppression, type of ART regimen, time on ART or prior TB in HIV 

infected participants (Supplementary table 7). 

 

HIV infected participants with chronic lung disease had higher beta diversity compared 

to both HIV uninfected (p<0.01) and HIV infected participants without chronic lung 

disease (p=0.03). There was no significant difference between HIV infected participants 

without chronic lung disease and HIV uninfected (p=0.74) (Figure 2b). Unweighted 

UniFrac analysis showed similar results. 

 

Relative abundance  

We identified 26 different phyla in the rectal swabs from all participants. Only five phyla 

contributed more than 1% of the total sequences of the entire dataset. Firmicutes (43.9%), 

Bacteroidetes (33.9%) and Epsilonbacteraeota (9%) (previously within the phylum 

Proteobacteria), Actinobacteria (5.3%) and Proteobacteria (7.7%), accounted for 99.8 % 

of the bacteria present. 
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HIV infected versus HIV uninfected participants  

At phylum level HIV infected participants had significantly lower abundance of 

Epsilonbacteraeota (7%) (p<0.01) and Bacteroidetes (32%) (p<0.01) compared to HIV 

uninfected participants (with 13% and 38% respectively) (Supplementary figure 4).  

 

At genus level HIV infected participants had enriched Corynebacterium (p<0.01), 

Lawsonella (p<0.01) and Collinsella (p=0.04), belonging to the Actinobacteria phylum; 

while in the Firmicutes phylum, Finegoldia (p<0.01), Anaerococcus (p<0,01), 

Erysipelotrichaceae (p=0.02) and Lachnoclostridium (p=0.04) were enriched when 

compared to HIV uninfected. 

 

HIV uninfected, compared to HIV infected participants, were enriched in Campylobacter 

(p<0.01), phylum Epsilonbacteraeota; Porphyromonas (p<0.01) and Prevotella (p=0.03), 

phylum Bacteroidetes; Eubacterium coprostanoligenes_group (p<0.01), 

Ruminococcaceae (p<0.01), Fastidiosipila (p<0.01), Fournierella (p<0.01), W5053 

(p<0.01), Coprococcus (p=0.02) and Murdochiella (p<0.01), phylum Firmicutes (Figure 

3).  

 

HIV infected with chronic lung disease had higher abundance of the genus 

Faecalibacterium (p=0.05), phylum Firmicutes, compared to participants without chronic 

lung disease. Participants without chronic lung disease had higher abundance of genus 

W5053 (p<0.01), phylum Firmicutes and Prevotella (p=0.05), phylum Bacteroidetes, 

compared to participants with chronic lung disease.  
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Characteristics of HIV infected participants and gut microbiota 

When we stratified HIV infected participants based on CD4 count (CD4400 cells/mm3 

vs >400 cells/mm3), we found no statistically significant differences at genus level. 

However, we found higher proportions at family level of Enterobacteriaceae (p=0.02) and 

Burkholderiaceae (p=0.04) in those with CD4 counts  400 cells/mm3, whereas 

Succinivibrionaceae (p=0.04) was higher in those with CD4 counts > 400 cells/mm3. No 

differences in relative abundance were found at any taxonomic level between virally 

suppressed and non-suppressed participants (<1000 copies/ml vs 1000 copies/ml).  

 

We compared HIV infected participants based on ART duration sub groups to HIV 

uninfected using linear discriminant analysis effect size analysis. Genera such as 

Bacteroides, Prevotella, Porphyromonas, Blautia and Roseburia were similarly abundant 

in HIV uninfected and HIV infected participants who have been on ART10 years 

(Supplementary figure 1-3, 5-8). This finding may suggest prolonged ART helps shift 

microbial composition towards that of HIV uninfected, but needs further 

investigation.We found no differences in relative abundance when comparing HIV 

infected participants on ART<5 years to those on ART for 5-10 years or for 10 years.  
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Discussion 

Our study showed that gut microbiota in HIV infected, ART-treated children was less 

diverse than in HIV uninfected children. Children who had been taking ART for 10 years 

or more, had a more diverse microbiota resembling that of HIV uninfected children. Our 

results suggest that prolonged ART may minimize differences in gut microbiota between 

HIV infected and uninfected children.  

 

Impact of HIV on gut microbiota 

A number of studies in adults demonstrated that untreated HIV infection is associated 

with intestinal dysbiosis, reduced alpha diversity and increased beta diversity [9, 30, 31]. 

These changes may persist despite ART (5, 6, 10, 38, 39). Our results of overall lower 

alpha diversity and higher beta diversity in HIV infected, ART-treated children support 

these findings.   

 

Published data are less consistent with regards to relative abundance of specific taxa in 

HIV infected individuals. Types of specimens used, study populations, geographical area, 

sequencing method and false discovery may explain these conflicting results. For 

example, rectal swab analysis from HIV infected, ART treated adults in Nigeria found 

higher abundance of Finegoldia and Anaerococcus in HIV infected individuals [32], 

which is consistent with our findings. However, in the same study Campylobacter was 

significantly enriched in HIV infected participants, whereas we found enriched 

Campylobacter in the HIV uninfected group.   
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Several studies showed enriched levels of Proteobacteria in HIV infected, ART naive 

individuals [6, 7, 9], only one study showed similar findings in ART treated individuals 

[33]. We found enrichment of Proteobacteria in HIV infected individuals, but this was 

not statistically significant.  

 

Impact of ART on gut microbiota 

At least two studies have found a negative impact of ART on gut microbiota diversity [9, 

32]. In a longitudinal study, Nowak P. et al. found significant decrease in number of 

observed species and Shannon index after ART introduction. However, Nowak and 

colleagues investigated the effect of ART initiation, with a relatively short follow up of 

10 months [9]. In our population, we had no ART-naive participants, and minimum 

duration of ART was 1 year. We observed lower alpha diversity in those on ART<10 

years compared to HIV uninfected participants. 

 

Previous studies that investigated the gut microbiome in individuals on long-term ART 

reported similar alpha diversity profiles in HIV infected, ART-treated and HIV 

uninfected individuals [30, 33]. For example, Dinh et al. found no significant difference 

in alpha diversity measures between HIV infected participants on ART for a median of 

13.3 years and HIV uninfected controls [33]. This is similar to our findings for 

participants who received ART for 10 or more years. The impact of ART duration on gut 

microbiota was also noted by Lozupone et al. who found that individuals with longer 

ART duration showed closer resemblance to HIV uninfected individuals than to subjects 

with untreated HIV infection [34]. These studies together with our findings support the 

ability that long-term ART may restore HIV-associated dysbiotic gut microbiota. 
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We did not observe an association between immunological or virological markers (VL 

and CD4 count) and gut microbiome diversity measures. In contrast, other studies showed 

significantly lower microbiome diversity in those with more severe HIV status [9, 35, 

36]. Findings of previous studies may have been affected by sample size and ART 

duration. A longitudinal study with repeated measurements of VL, CD4 and microbiome 

profiles is needed to uncover the relationship between these parameters.  

 

We found enriched levels of Enterobacteriaceae in HIV infected participants with low 

CD4+ T-cell counts (400 cells/mm3). Enterobacteriaceae may cause gastrointestinal and 

urinary tract infections in HIV infected children [36], however the clinical significance is 

unclear, as Enterobacteriaceae are found as part of the normal intestinal flora. 

Burkholderiaceae, also enriched in those with low CD4+ T-cell counts (400 cells/mm3), 

includes species known to cause severe lung infections in patients with cystic fibrosis 

[37].  

 

Gut-lung axis 

Recent evidence suggests that gut microbiome is involved in maintaining lung health, and 

an altered gut microbiome composition is often observed in patients with lung diseases 

[15, 16]. For example, low gut microbiome diversity during infancy has been linked to 

asthma at school age [38]. In our study we did not observe any difference in alpha 

diversity estimates between participants with and without HIV-associated chronic lung 

disease, but there were some significant differences in relative abundance of specific taxa. 

For example, the genus Faecalibacterium was enriched in HIV infected individuals with 
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chronic lung disease, while Prevotella was enriched in HIV infected individuals without 

chronic lung disease.  

 

Faecalibacterium have previously been regarded as a protective commensal, and is 

associated with a healthy gut. Depletion of this genus have been linked to the 

development of inflammatory bowel disease and asthma, and low levels have been shown 

in patients with cystic fibrosis [16, 40]. Some studies have challenged this, showing 

increased levels of the species Faecalibacterium prausnitzii in gut microbiome of 

paediatric patients with untreated Crohn’s disease at the time of diagnosis [41]. 

Interestingly, a recent study also showed increased levels of Faecalibacterium in the gut 

microbiome of patients with active TB [42]. 

 

Co-trimoxazole prophylaxis  

Since the majority (89%) of HIV infected participants in our study received co-

trimoxazole prophylaxis, it is not possible to completely tease apart the effect of HIV 

from that of cotrimoxazole. Though it is known antibiotics cause substantial changes in 

the gut microbiota, data regarding the impact of co-trimoxazole prophylaxis on gut 

microbiota in HIV infected, ART-treated individuals are limited. However, recent 

evidence suggests co-trimoxazole does not affect global gut microbial composition, but 

rather specific inflammatory pathways in HIV infected [43]. In our study, the negative 

impact of positive HIV status on richness estimates remained significant after accounting 

for co-trimoxazole prophylaxis. Also, no effect of co-trimoxazole administration on alpha 

diversity in HIV infected participants was observed. Our results are in line with several 

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article-abstract/doi/10.1093/infdis/jiz473/5572969 by London School of H

ygiene & Tropical M
edicine user on 25 Septem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

 

21 

 

other studies where no significant difference in alpha diversity was observed in HIV 

infected individuals who took co-trimoxazole and those who did not [44-46]. 

 

Study strengths and limitations 

Our study is one of few to assess the gut microbiome composition in children and 

adolescents with perinatally acquired HIV infection. Relatively large sample size and 

detailed characteristics of study participants allowed us to perform extensive statistical 

analysis. All participants in our study were from the same region - thus increasing the 

internal validity of our data.  

 

Our study was cross-sectional and is therefore unable to directly assess relationships over 

time. The group of HIV infected participants without chronic lung disease was small and 

therefore gave limited power to detect differences. Further, we did not assess diet, social 

factors such as housing or level of education, which may have impact on gut microbiota. 

Age imbalance between HIV infected and uninfected participants is also a limitation of 

this study.  

 

Conclusion 

Our study is among the first to assess gut microbial composition of HIV infected children 

and adolescents in a very high HIV burden setting. Our results indicate that gut microbiota 

is altered in HIV infected children, though diversity improves with increasing duration of 

ART. Further studies, where the gut microbiota, markers of microbial translocation and 

immunological markers are measured are warranted to provide better insight to the 

pathogenesis of HIV and its related complications.  
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Figure 1. Alpha diversity indices in HIV infected and HIV uninfected participants.  

 

Mid line showing median and error bars showing the IQR.  

 
Figure 2. Beta-diversity comparison between study groups  

 

Principal cooridnate analysis-plot showing beta-diversity by Bray-Curtis dissimilarity 

comparing (a) HIV infected (red) and HIV uninfected (blue) participants (p<0.01) and 

(b) HIV infected with chronic lung disease (red), HIV infected without chronic lung 

disease (green) and HIV uninfected (blue) participants. P-value obtained using wilcoxon 

rank sum test.  

 

 
Figure 3. Linear discriminant analysis effect size (LEfSe)-plot  

 

This plot shows enriched taxa that are significantly different between HIV infected (blue) 

and HIV uninfected (red) participants. Only taxa meeting a significant level of 0.05 and 

effect size threshold of 1.0 are included. P-values shown are only those significant after 

adjustment for FDR. 
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Tables and figures 

Table 1. Characteristics of study participants. 

Parameter HIV-  

(N=103) 

HIV+ chronic lung 

disease +  (N = 149) 

HIV+ chronic lung 

disease -  (N = 28) 

Age, Median (IQR) 9.9 (7.4-12.7) 15.5 (12.8-17.7) 16.7 (11.7-18.1) 

Male, N (%) 53 (52) 84 (56) 8 (29) 

BMI-for-age z score, Median (IQR) 1 -0.24 (-0.69 to 0.35) -1.19 (-1.80 to -0.62) -0.11 (-0.73 to 0.61) 

Stunted (height-for-age z-score <-2), N (%) 1 5 (5) 66 (44) 7 (25) 

Underweight (weight-for-age z-score <-2), N (%) 1 5 (5) 78 (52) 2 (7) 

Took antibiotics the three previous months for HIV uninfected group or Co-

trimoxazole prophylaxis for HIV infected group, N (%) 

2 (2) 133 (89) 25 (89) 

Episodes of diarrhea during the last three months, N (%) 2 3 (3) 11(13) 1 (4) 

Residential area, N (%) 3    

High density 107 (95) 83 (98) 24 (86) 

Medium density 4 (4) 1 (1) 3 (11) 
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Low density 2 (2) 1 (1) 1 (4) 

HIV-related parameters    

ART regimen, N (%)    

NNRTI-based regimen - 93 (62) 24 (86) 

PI-based regimen - 56 (38) 4 (14) 

CD4 count 400 cells/mm, N (%) 4 - 40 (27) 9 (32) 

VL suppression (VL<1000 copies/ml), N (%)  - 87 (58) 17 (61) 

Age at ART initiation, Median (IQR) 4 - 8.2 (5.2-11.4) 8.6 (5.0-9.9) 

Years spent on ART,  Median (IQR) 4 - 6.6 (4.4-8.4) 8.0 (5.0-9.1) 

ART duration categories, N (%) 4    

<5 years - 46 (31) 7 (25) 

5-10 years - 83 (56) 17 (61) 

10 years - 19 (13) 4 (14) 

Previously treated for TB, N (%)  - 54 (36) 2 (7) 

1 Parameters were calculated using British 1990 Growth Reference Curves 

2 Data on episodes of diarrhea during the last three months was missing for 64 participants  
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3 Data on residential area was missing for 64 participants   

4 Data was missing for one participant 
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Table 2. Alpha diversity in HIV infected participants stratified by years on ART and in HIV uninfected participants.  

 

 HIV+, <5 years on 

ART (N=53) 

HIV+, 5-10 years 

on ART (N=100) 

HIV+, 10 years 

on ART (N=23) 

HIV- group, (N=103) HIV+, <5 

years on 

ART 

 vs HIV- 

HIV+, 5-10 

years on 

ART 

vs HIV- 

HIV+, 10 

years on 

ART vs 

HIV- 

 Median, IQR p values * 

Observed OTUs  176 (138-214)  186.5 (143-223.5) 204 (162-242) 201 (168-240) 0.001 0.10 0.28 

Chao1  229.4 (175.0-277.9) 249.6 (200.2-299.6) 268.9 (224.4-306) 281.3 (237.2-328.4) <0.001 0.02 0.08 

Shannon index  4.03 (3.48-4.39) 4.12 (3.52-4.58) 4.23 (3.82-4.84) 4.0 (3.6-4.5) 0.20 0.75 0.86 

 

* presented p values were obtained from regression model adjusted for BMI, age and sex where HIV status with years of ART was introduced as an independent variable 

and alpha diversity estimates as a dependent (outcome) variable.  
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