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Abstract. This paper develop a deep mathematical-statistical approach to analyze a class

of Flajolet-Martin algorithms (FMa), and provide a exact analytical confidence interval for

the number F0 of distinct elements in a stream, based on Chernoff bounds. The class of
FMa has reached a significant popularity in bigdata stream learning, and the attention of

the literature has mainly been based on algorithmic aspects, basically complexity optimality,

while the statistical analysis of these class of algorithms has been often faced heuristically. The
analysis provided here shows a deep connections with special mathematical functions and with

extreme value theory. The latter connection may help in explaining heuristic considerations,
while the first opens many numerical issues, faced at the end of the present paper. Finally,

MonteCarlo simulations are provided to support our analytical choice in this context.
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1. Introduction

Data streams [7] are sequence of objects that cannot be available for random access, but must
be analyzed sequentially when they arrive and immediately discharged. Streaming algorithms
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process data streams, and have reached a very rich audience since the last decades. Typically,
these kinds of algorithms have a limited time to complete their processes and have access to
limited amount of memory, usually logarithmic in the quantity of interest.

One of the main application in streaming algorithms concerns the problem of counting distinct
elements F0 in a stream. In [13], the authors develop the first algorithm for approximating
F0based on hash functions. This algorithm was then formalized and made popular in [6], where
it was presented the forefather of the class of algorithms that takes the name of Flajolet-Marin
algorithms (here, FMa). Three extensions in FMa were presented in [8], together with a complete
description of the drawback and of the strength of the previous attempts. The first optimal (in
complexity) algorithm has been proposed and proved in [18] and, nowadays, the FMa covers a lot
of applications. As only an example, in [16], an application with multiset framework is developed
from one of the most recent versions of FMa, and it estimates the number of “elephants” in a
stream of IP packets.

This class of algorithms is essentially based on the following concept. When an object arrives
form the stream, one (ore more, independent) hash functions are applied to it, and then the
object is immediately discharged. The results of these functions are melted with what saved in
memory (that has a comparable size). The memory is updated, if necessary, with the result of
this procedure, and then the process is ready for the next object. The estimate of F0 may be
queried when necessary, and it is a function of the memory content.

The key point is the fact that the central operation is made with a function which must be
associative, commutative and idempotent, so that multiple evaluations on the same object do not
affect the final outcome, which results in the combination of the hash values of the F0 distinct
objects. A good candidate for such a function is the max function applied to a “signature” of
each object, that is the core of such streaming algorithms. The same idea has recently used
for other distributed algorithms (see [5] for simulation of discrete random variables), where new
entries or single changes should not make all the algorithm starts afresh.

As stated before, the main contribution in the study of FMa concerned complexity problems,
and a deep mathematical-statistical approach has not yet developed, even if this class of algorithm
is probabilistic. This paper is a first attempt in this direction. The main contribution here is the
analytical and numerical control of FMa based on a pure mathematical statistic approach, while
we leave the measure of the goodness of the FMa to other studies (see [12] for a continuously
updated work). In particular, we give here an analytical exact confidence interval for the quantity
F0. More precisely, we analyze an extension of the algorithms given above, and given p > 0, we
will find a, b > 0, function of the memory content, such that

(1) P (a ≤ f(F0) ≤ b) ≥ 1− p,

where f is a given, strictly increasing, special function. It is important to note that the ap-
proximations for F0 as in (1) given in literature are not satisfactory. In some situations, the
asymptotic behavior of the interval is calculated through a Central Limit Theorem (see [14]),
but the huge skewness implicit in the algorithm variables (even in logarithmic scale) makes the
Central Limit Theorem questionable. To overcome this observation, Chebichev and Markov
bounds are sometimes used to compute confidence intervals, see the papers cited in [18], where
the results are analyzed in terms of optimal complexity (in space and time) without exploiting
possible benefits in reducing the magnitude of the interval length.

These facts suggest us to not base the confidence interval on statistical asymptotic properties,
but to build an exact confidence interval, based on concentration inequalities. In particular, we
use Chernoff bounds, and we give an analytical approximation of the resulting inequalities. We
show with MonteCarlo simulations that the analytical approximation does not affect the result
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significantly. Moreover, we show that the same result derive from the use of the Chernoff bounds
on the limiting distribution that would be obtained with extreme value theory.

It is not surprising that some new analytical special functions appear in the analysis of the
algorithm. In particular, a p-modification of the analytical extension h(x) = h1(x) of the
harmonic number function arises here as the mean value of a particular statistics of interest,
and hp(F0) is a quantity that appears in the paper. Notably, the heuristic approximation in the
classical case studied in literature (with p = 1) gives a value that is of the order of magnitude
we give in our subsequent estimations.

In addition, we discuss here a possible numerical implementation of the confidence interval in
real time. To answer to this question, we develop a algorithm to solve all the relevant nonlinear
problem with a cubic rate of convergence and we provide the necessary numeric bounds to apply
it. As a byproduct, we could give the algorithm that calculates the log-shortest confidence
interval.

The paper is structured in the following way. In the next Section 2 we first describe how FMa
works. We show how data are stored in memory and queried from it, and then we analyze these
processes from a mathematical and a statical point of view.

The main result, Theorem 3.1, is given at the beginning of the Section 3, and the connection
with the asymptotic results of the extreme value theory is immediately discussed in Section 3.1.
The proof of the main result is based both on a analytical computations of Chernoff bounds
given in Section 4, and on the expected value of a quantity of interest, given in Section 5. The
Section 6 shows the goodness of the choice of the analytical approximations given in Section 4.

In Section 7 we face numerically some nonlinear equations that are necessary to for query the
interval (1) in the equivalent form: P (f−1(a) ≤ F0 ≤ f−1(b)) ≥ 1 − p. In particular, we give
some sharp upper and lower bounds to develop cubic rate algorithms together with more robust
bisecting algorithms. As a byproduct, the algorithm that calculates the log-shortest confidence
interval is given at the end of the section.

Finally, Appendix A defines the main properties of some special mathematical functions that
are used in this paper. Appendix B concludes the paper with the technicalities needed to find
lower and upper bounds contained in Section 7.

2. Description of the algorithm

The main task of FMa is to provide an estimation of F0, the unknown number of distinct
elements in a real-time stream of possible repeating objects, based on c0 independent hash
functions. Our memory data structure is a generalization of a HyperLogLog data structure (see
[10, 18, 12]), and consists of two matrices X and Z with 2r0 rows and c0 columns. The use of
Z is an addition of this paper to the classical algorithms given above, and it is used to increase
the accuracy of the estimation of F0 (see Section 3), by using z0 bits of each hashing function.
The streaming algorithm that updates X and Z in memory is given in Algorithm 1. The flow of
information is as follows. From each hash function Hc, we extract the following information on
a stream object o:

(2) Hc(o) =
r0 bits

01 · · · 101︸ ︷︷ ︸
R∈{1,...,2r0}

z0 bits
10 · · · 01︸ ︷︷ ︸

Z

X bits
00 · · · 0001︸ ︷︷ ︸
X∈{1,2,...}

01101000 · · ·︸ ︷︷ ︸
not used

The data are then updated according to the following procedure:

if X < XRc: do nothing;
if X > XRc: set XRc = X̄ and ZRc = Z;
if X = XRc: set ZRc = min(ZRc, Z).

3



Data: Data Stream of Objects {o1, o2, . . . , }
Input: c0 hash functions, r0 ≥ 0 and z0 ≥ 0 small integers
Output: Two matrices X and Z with r0 = 2r0 rows and c0 columns

Set X ≡ 0, Z ≡ 2z0 − 1 (binary);

foreach o in Stream do
for c← 1 to c0 do

/* compute the c-hash function on o, obtaining a finite sequence (s1, s2, . . .) of 0 and

1 */

(s1, s2, . . .)← Hc(o);

R← 1 +
∑r0

r=1 2sr−1 ; . R ∈ {1, . . . , 2r0}
Z ← (sr0+1sr0+2 . . . sr0+z0 );

X ← {inf n ≥ 1: sr0+z0+n = 1} ; . P (X + r0 + z0 > length of hash)� 1

if X > XRc then
XRc ← X;

ZRc ← Z;

else if X = XRc then
ZRc ← min2(Z,ZRc) ; . min2 is the minimum in base 2

end

discharge o;
end

Algorithm 1: Streaming algorithm to store the data in memory. X is an integer-valued
matrix, whose values are of the order of log2(F0), while Z takes values in 1, . . . , 2z0

Input: X and Z, output of Algorithm 1

Output: Y = {Yr c, r = 1, . . . , 2r0 , c = 1, . . . , c0}
Set Ỹ = 0;

for c← 1 to c0 do

for r ← 1 to 2r0 do

(b1b2 . . . bz0 )← Zr c; . made by z0 bits

y ←
∑z0

j=1 bj2−j ; . y ∈ [0, 1− 2−z0 ] ⇒ (1 + y) ∈ [1, 2)

Yr c ← Xr c − log2(1 + y) ; . Xr c − log2(1 + y) ∈ (Xr c − 1,Xr c]

end

end

return Y = (Yr c)r=1,...,2r0 ,c=1,...,c0 ;

Algorithm 2: Querying algorithm to extract Y, starting from the memory content X and Z
given in Algorithm 1

The querying algorithm produces the value Ỹ , which is the arithmetic mean of a0 = c02r0 values
built with the contents of X and Z as in Algorithm 2. As an example, in Algorithm 3, we
show how to compute a 1 − p−-confidence interval for F0 of the form (0,upper), based on the
Theorem 3.1. The nonlinear problems involved in this computation will be faced in Section 7.

Finally, note that the data structure becomes that of [12] when c0 = 1 and z0 = 0 (the content
of Z is not significant and the update reduces to XRc ← max(X,XRc), without the if-else loop).
When, in addition, r0 = 0 the data structure reduces to the original one [15].

2.1. Mathematical and Statistical analysis of the algorithm. The Algorithm 1 has the
following properties. First, the multiple application of this algorithm to the same object will
result in the same outcome as if we had applied it only once. Mathematically speaking, this
is a idempotent algorithm and, in addition, it can be seen to be associative and commutative.
A typical mathematical function with these properties is the max function that, evaluated on
different, even repeated numbers, gives the same result, independently of the order and of the
repetitions.
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Input: 1) Y = {Yr c, r = 1, . . . , 2r0 , c = 1, . . . , c0}, output of Algorithm 2.
2) the confidence α ∈ (0, 1) -usually α ∈ [0.9, 0.995]-

Output: A α confidence interval for F0 of the form (0, upper)

Set p− = 1− α;

Set y = − log(p−)/(2r0c0);

Set x← InvAlphaMinus(y) ; /* Solve (in x) the problem y − ((x− γ)t− − ln(Γ(1 + t−))) = 0, with

ψ(1 + t−) = x− γ */

Set ŷ ← 0;

for c← 1 to c0 do

for r ← 1 to 2r0 do
ŷ ← ŷ + Yr c.

end

end

ȳ ← ŷ/(2r0c0);

Set z ← log(2)ȳ + x+ 2−z0 ;

Set p0 ← 2−r0 ;

return upper = invHpM(z, p0) ; . Solve (in x) the problem z − hp0 (x) = 0

Algorithm 3: Querying algorithm that builds a 1−p−-confidence interval for F0 of the form
(0,upper), based on the Theorem 3.1

This is the reason why this algorithm works and why, for what concerns the final result of the
matrices, the Algorithm 1 may be thought as applied only once to each of the F0 different objects.

We will assume that each hash function generates a sequence of bits that are equally distributed
on the all possible outcomes. Moreover, the evaluation on different objects are assumed to be
statistically independent as for the evaluation of different functions. As only an example, the
SHA functions have been certified to have such a properties [20, 21, 22], and can be used for
this purpose: by cutting the result of a SHA512 function into 4 parts, it is possible to obtain 4
independent hash functions of sufficient length for any reasonable application.

From a probabilistic point of view, the bit sequences of (2) are independent for different choice
of the object o and hash function c, and are uniformly distributed on all the possible sequences.

In other words, every si in each sequence of the form

Hc(o) =
r0 bits

s1s2 · · · sr0︸ ︷︷ ︸
R=1+

∑r0
r=1 2sr−1

z0 bits
sr0+1sr0+2 · · · sr0+z0︸ ︷︷ ︸
Z=(sr0+1...sr0+z0

)

X bits
sr0+z0+n · · · sr0+z0+X︸ ︷︷ ︸
X={inf n≥1: sr0+z0+n=1}

sr0+z0+X+1 · · ·︸ ︷︷ ︸
not used

is distributed as a Bernoulli of parameter 1/2, and it is independent from the others.
If we analyze the Algorithm 2 we note that, for each index (r, c) of the matrices, the unique

information that is kept after querying may be in the following manner. For each fixed hash
function c and object o, just compute R, X, and Z as in (2), and Y (o, c) is defined as

Y (o, c) = X − log2

(
1 +

z0∑
z=1

bz2
−z
)

= X − log2

(
1 +

z0∑
z=1

sr0+z2
−z
)
.

The successive quantity Yr c in Algorithm 2 is the result of the following procedure

(3) Yr c = max
{o : R=r}

(Y (o, c)).

Note that, if we complete the bit sequence (b1 . . . bz0) in Z with an i.i.d. sequence of equally
distributed bits (bz0+1bz0+2 . . .), the random variables

(4) Ȳ (o, c) = X − log2

(
1 +

∞∑
z=1

bz2
−z
)
, o ∈ {F0 different objects}, c ∈ {1, . . . , c0},
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form a family of random variables, independent and identically distributed. The fact here is
that, instead of measuring Ȳ (o, c), we can only collect Y (o, c), due to computational limitations,
and this introduces a further bias. We get the following result.

Lemma 2.1. There exists a family{
Ȳ (o, c), o ∈ {F0 different objects}, c ∈ {1, . . . , c0}

}
of independent and identically distributed random variables with exponential distribution of pa-
rameter λ0 = log 2, such that, if we define,

Ȳr c = max
{o : R(o,c)=r}

(Ȳ (o, c)),

then, uniformly in r and c,

0 ≤ Yr c − Ȳr c ≤ 2−z0 ,

where each Yr c is defined in (3). Moreover, for any fixed c ∈ {1, . . . , c0}, define

mr c = #
{
o ∈ {F0 different objects} : R(o, c) = r

}
.

Then the random vectors {mc = (m1 c, . . . ,m2r0 c), c = 1, . . . , c0} are i.i.d, distributed as multi-
nomial vectors of parameters F0 and 2−r0 . Conditioned on mc, the random variables (Ȳr c)r,c
are independent.

Proof. Take (Ȳ (o, c))o,c as in (4). Define

Ū(o, c) = 2−Ȳ (o,c) = 2−X
(
1 +

∞∑
z=1

bz2
−z) = 2−X + 2−X

∞∑
z=1

bz2
−z

=

X∑
x=1

sr0+x2−x +

∞∑
z=1

bz2
−z+X , o ∈ {F0 different objects}, c ∈ {1, . . . , c0};

we note that it forms a family of random variables, independent and uniformly distributed on

(0, 1) (see, e.g., [26, § 4.6]). Since Ȳ (o, c) = − log2(Ū(o, c)) = − log(Ū(o,c))
λ0

, the first part of the
lemma holds. In addition,

Y (o, c)− Ȳ (o, c) = log2

(
1 +

2−z0
∑∞
z=1 bz0+z2

−z

1 +
∑z0
z=1 bz2

−z

)
.

Since
∑∞
z=1 bz0+z2

−z ∈ [0, 1] and 1 +
∑z0
z=1 bz2

−z ≥ 1, then 0 ≤ Y (o, c)− Ȳ (o, c) ≤ 2−z0 . Hence
we get the second part of the thesis, since

max
{o : R(o,c)=r}

(Y (o, c)− Ȳ (o, c)) = Yr c − Ȳr c, for any r, c.

To conclude, just note that the first r0 bits of each hash function generate R, uniformly dis-
tributed on 1, . . . , 2r0 , independently of the remaining processes. Them, for each one of the
F0 different objects and each hash function, a uniformly assignment R is made, that gives the
multinomial sample. The conditional independence of the family (Ȳr c)r,c is a consequence of the
independence of the family (Ȳ (o, c))o,c. �

3. Confidence interval for F0

The main result of this paper is the construction of a confidence interval for F0.

Theorem 3.1. Let Y be collected as in Section 2, and define

Y =

∑2r0

r=1

∑c0
c=1 Yr c

2r0c0
.
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Then

h
−1
p0 (λ0Y − hd) <F0

F0 < h
−1
p0 (λ0Y + hu + 2−z0)

h
−1
p0 (λ0Y − hd) <F0 < h

−1
p0 (λ0Y + hu + 2−z0)

are confidence intervals for the unknown parameter F0, where

• the function hp is defined in Definition A.1 and (19);
• p0 = 2−r0 , λ0 = log(2);
• the levels of confidence are 1− p+, 1− p−, and 1− (p+ + p−) respectively, where

p+ = exp
(
− 2r0c0

[
(hd + γ)t+ − ln Γ(1− t+)

])
, t+ = 1− ψ−1(−hd − γ);

p− = exp
(
− 2r0c0

[
(hu − γ)t− − ln Γ(1 + t−)

])
, t− = ψ−1(hu − γ)− 1;

γ is the Euler constant and ψ is the digamma function (see Appendix A).

Proof of Theorem 3.1. We first note that, by Lemma 2.1, if we define

(5) Ȳ =

∑2r0

r=1

∑c0
c=1 Ȳr c

2r0c0
,

then it is sufficient to prove that

h
−1
p0 (λ0Ȳ − hd) <F0

F0 < h
−1
p0 (λ0Ȳ + hu)

h
−1
p0 (λ0Ȳ − hd) <F0 < h

−1
p0 (λ0Ȳ + hu)

are confidence intervals for the unknown parameter F0 at the same levels given in the theorem.
To prove this last assertion, we prove the following conditions that result sufficient:

P
(
h
−1
p0 (λ0Ȳ − hd) ≥ F0

)
≤ p+ ;

P
(
h
−1
p0 (λ0Ȳ + hu) ≤ F0

)
≤ p− .

Observe that, since the function hp0 is invertible with continuous inverse (see Section A), we get

P
(
h
−1
p0 (λ0Ȳ − hd) ≥ F0

)
= P

(
Ȳ ≥ hp0(F0) + hd

λ0

)
;

P
(
h
−1
p0 (λ0Ȳ + hu) ≤ F0

)
= P

(
Ȳ ≤ hp0(F0)− hu

λ0

)
;

and hence the proof will be based on the following step:

• in Lemma 5.1 in Section 5 we prove that E(Ȳr c) =
hp0 (F0)

λ0
, for any Ȳr c. As an imediate

consequence the following equality holds

E(Ȳ) =
hp0(F0)

λ0
;

• the inequalities

P
(
Ȳ ≥ E(Ȳ) +

hd
λ0

)
≤ p+;

P
(
Ȳ ≤ E(Ȳ)− hu

λ0

)
≤ p−

are Chernoff bound inequalities and will be proved in Corollary 5.2. �
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3.1. Connection with extreme value theory. As stated in Lemma 2.1, the main result of
this paper is based on the mean of the random variables (Ȳr c)r,c, which are independent, condi-
tioned on mc. As discussed in the introduction, this variables are given through a commutative,
associative and idempotent function, that is the max function in this context:

Ȳr c = max
{o : R(o,c)=r}

(Ȳ (o, c)).

A natural question is the relation of such a consideration with the extreme value theory. The
well-known Fisher–Tippett–Gnedenko theorem [17] provides an asymptotic result, and shows
that, when F0 → ∞, if there are sequences aF0

and bF0
such that (Ȳr c − aF0

)/bF0
converges in

law to a random variables Z, then Z must be Gumbel, Fréchet or Weibull (Type 1,2 or 3). As
in the proof of Lemma 4.1, we have that

E(es(Ȳr c−E(Ȳr c))) −→
F0→∞

(
Γ(1− s

λ0
)e
−γ s

λ0

)
= E(eZ),

from which we can recognize that Z has a Gumbell law. Since the Chernoff bounds on the mean
of such variables gives the same concentration inequalities as in Theorem 3.1, our result gives
also the confidence interval based on the Chernoff bounds of the asymptotic distribution based
on the extreme value theory.

Our result underlines the fact that the analytical approximation gives an exact upper bound for
the concentration inequality, based on the monotonicity of the limit E(es(Ȳr c−E(Ȳr c)))↗ E(eZ),
that is the key point in the proof of Lemma 4.1.

Finally, the accuracy of such a bound is discussed in Section 6.

4. Chernoff bounds: auxiliary results for the maximum of exponential random
variables

We recall the Chernoff bound of a sum X = X1+· · ·+Xa0 of independendent random variables
X1, . . . , Xa0 : for any s ∈ R,

(6) P (X ≥ s) ≤ min
t>0

e−ts
a0∏
i=1

E(etXi),

which is one of the most powerful concentration inequality in probability theory, since it involves
the entire moment generating functions E(etXi) instead of only some moments of each Xi.

Lemma 4.1. Let A be a finite set of cardinality a0, and let (ma)a∈A be a collection of nonnegative
integer numbers. Let {Xa j , a ∈ A, j ≤ mj} be an array of i.i.d. exponential random variables

with parameter λ. Define, for any a ∈ A, Ya = maxj Xa j and Y =
∑
a∈A Ya
a0

. Then

(7) sup
(ma)a∈A

P
(
Y ≥ E(Y ) + hd

λ

)
≤ p+; sup

(ma)a∈A

P
(
Y ≤ E(Y )− hu

λ

)
≤ p−;

where p± are defined in Theorem 3.1.

Proof. To apply (6) with X = Y and Xa = Ya
a0

, it is possible in principle to compute E(etYa)
by noticing that the density of Ya may be expressed as the density of the maximum of ma

independent exponential random variables:

fYa(y) =
d

dy
(1− (1− e−λy)ma) =

ma∑
j=1

(
ma

j

)
(−1)j−1λje−λjy.

A more interesting interpretation leads to simpler computations. Denote by Xa(j) is the jth-
order statistic of (Xa 1, . . . , Xama), set Xa(0) = 0 for consistency. As noted for example recently
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in [11, Eq. (2)], for any i = 1, . . . ,K, the random variables

Xa(1) −Xa(0), Xa(2) −Xa(1), . . . , Xa(ma) −Xa(ma−1),

are independent exponential random variables with parameter {λ, 2λ, . . . ,maλ}. Since

Ya = max(Xa 1, . . . , Xama) = Xa(ma)

= (Xa(1) −Xa(0)) + (Xa(2) −Xa(1)) + · · ·+ (Xa(ma) −Xa(ma−1)),

then each Ya may be seen as a sum of ma independent exponential random variables with
parameter λj, j = 1, . . . ,ma. As a direct consequence,

(8) E(Ya) =

ma∑
j=1

1

λj
=
h(ma)

λ
,

where h(ma) is the ma-th harmonic number defined in (18). More remarkable, it is possible to
calculate the moment-generating function of Y . In fact, since

E(es(Xa(j)−Xa(j−1))) = (1− s
λj )−1 =⇒ E(esYa) =

ma∏
j=1

(1− s
λj )−1, 0 < s < λ,

we get, for 0 < s < a0λ,

E(esY ) = E
(
e
s
∑
a∈A

Ya
a0

)
=
∏
a∈A

ma∏
j=1

(1− s
λa0j

)−1.

Thus, since E(Y ) =
∑
a∈A

∑ma
j=1

1
λj

a0
=
∑
a∈A

∑ma
j=1

1
λa0j

, the Chernoff bound (6) becomes

P (Y ≥ E(Y ) + hd
λ ) ≤ min

s>0
e−s(E(Y )+

hd
λ )
∏
a∈A

ma∏
j=1

(1− s
λa0j

)−1

= min
s>0

e−
hd
λ s
∏
a∈A

ma∏
j=1

e
− s
λa0j

1− s
λa0j

.

Since exp−x

1−x ≥ 1 for any x < 1, then for t = s
λa0
∈ (0, 1), by (21)

∏
a∈A

ma∏
j=1

e
− s
λa0j

1− s
λa0j

=
∏
a∈A

ma∏
j=1

e−
t
j

1− t
j

≤
∏
a∈A

( ∞∏
j=1

e−
t
j

1− t
j

)
=
(

Γ(1− t)e−γt
)a0

.

Combining the two expressions above, we get

P (Y ≥ E(Y ) + hd
λ ) ≤ min

t∈(0,1)
e−hdta0

(
Γ(1− t)e−γt

)a0
= min
t∈(0,1)

(
Γ(1− t)e−(γ+hd)t

)a0
= exp

(
− a0 max

t∈(0,1)

[
(hd + γ)t− ln Γ(1− t)

])
.

The part of the proof that concerns p+ is hence proved by Lemma A.2.
9



The second inequality in (7) may be proved with the same spirit. To find the Chernoff bound
with the second equality of (21), note that we get, for any t = s

λa0
> 0

P (Y ≤ E(Y )− hu
λ ) = P (−Y ≥ −E(Y ) + hu

λ )

≤ min
s>0

es(E(Y )−huλ )
∏
a∈A

ma∏
j=1

(1 + s
λa0j

)−1

= min
s>0

e−
hu
λ s
∏
a∈A

ma∏
j=1

e
s

λa0j

1 + s
λa0j

≤ min
t>0

(
Γ(1 + t)e(γ−hu)t

)a0
,

and then we apply again Lemma A.2 to g−(t) = (x− γ)t− ln Γ(1 + t). �

5. Computation of E(Y )

To complete the computation of the confidence interval, we give the following result, which
connects the expectation of the core variables with the special functions we have introduced in
this paper.

Lemma 5.1. For any r = 1, . . . , 2r0 and c = 1, . . . , c0, we have that

E(Ȳr c) =
hp0(F0)

λ0

Proof of Lemma 5.1. Let {mc = (m1 c, . . . ,m2r0 c), c = 1, . . . , c0} as in Lemma 2.1. Combining
Lemma 2.1 and (8), we know that

λ0E(Yr c|{mc, c = 1, . . . , c0}) = h(mr c).

Again, as stated in Lemma 2.1, the random variable mr c is distributed as a binomial distribution,
with F0 trials and probability p0 = 2−r0 . Then, by (18),

λ0E(Yr c) = λ0E(E(Yr c|{mc, c = 1, . . . , c0})) = E(h(mr c))

=

F0∑
m=0

h(m)

(
F0

m

)
p0
m(1− p0)F0−m

=

F0∑
m=0

(∫ 1

0

1− xm

1− x
dx
)(F0

m

)
p0
m(1− p0)F0−m

=

∫ 1

0

1

1− x

( F0∑
m=0

(1− xm)

(
F0

m

)
p0
m(1− p0)F0−m

)
dx

=

∫ 1

0

1

1− x

( F0∑
m=0

(
F0

m

)
p0
m(1− p0)F0−m

−
F0∑
m=0

(
F0

m

)
(p0x)m(1− p0)F0−m

)
dx

=

∫ 1

0

1− (1− p0 + p0x)F0

1− x
dx = hp0(F0),

the last equality being the Definition A.1. �
10



Corollary 5.2. Let Ȳ as in (5). The following inequalities hold

P
(
Ȳ ≥ E(Ȳ) +

hd
λ0

)
≤ p+;

P
(
Ȳ ≤ E(Ȳ)− hu

λ0

)
≤ p−.

Proof. To prove the assertion, we apply Lemma 4.1 at the objects given in Lemma 2.1. We
begin by setting A = {(r, c), r = 1, . . . , 2r0 , c = 1, . . . , c0}, which implies a0 = 2r0c0. Moreover,
for a = (r, c), we have ma = mr c and

{Xa j , j ≤ ma} = {Y (o, c) : R(o, c) = r}.

With this setting, λ in Lemma 4.1 is λ0 = log(2) and Y is exactly Ȳ. The thesis follows. �

6. Analytical asymptotic discussion

In this section we discuss the accuracy of the analytical approximation given in the main
result to show the appropriateness in this context.

We could find a (ma)-uniform bound in Lemma 4.1 with the following inequalities:

(9)

for p+ :

ma∏
j=1

e−
t
j

1− t
j

≤
( ∞∏
j=1

e−
t
j

1− t
j

)
= Γ(1− t)e−γt, t ∈ (0, 1);

for p− :

ma∏
j=1

e
t
j

1 + t
j

≤
( ∞∏
j=1

e
t
j

1 + t
j

)
= Γ(1 + t)eγt, t > 0.

We recall that, in our context,

ma = mr c = #{Y (o, c) : R(o, c) = r},

is the (random) number of object assigned to register r by the hash function c. In Figure 1 we
underline that this approximation is good for small values of t and big ma. To show that the

Figure 1. Ratio between the finite products and the series quantities given in
(9), for different values of ma and t, expressed as percentage of Γ(1 ∓ t)e∓γt

given by
∏ma

1
e
∓ t
j

1∓ tj
. The different lines refer to different values of ma, given in

the legend. Left: percentage of approximation for Γ(1−t)e−γt, t ∈ (0, 1). Right:
percentage of approximation for Γ(1 + t)e+γt, t ∈ (0, 5).
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uniform bound in this paper does not affect the Chernoff bounds of the p-values, we compare for
different values of xu and xd:

(10)

for p+ : min
t∈(0,1)

( c0∏
c=1

2r0∏
r=1

e−txd
mrc∏
j=1

e−
t
j

1− t
j

)
vs.

(
Γ(1− t+)e−(γ+xd)t+

)c02r0

;

for p− : min
t>0

( c0∏
c=1

2r0∏
r=1

e−txu
mrc∏
j=1

e
t
j

1 + t
j

)
vs.

(
Γ(1 + t−)e(γ−xu)t−

)c02r0

.

For r0 ∈ {0, . . . , 4}, c0 ∈ {1, . . . , 4}, and α ∈ {.9, .95, .975, .99}, we choose the values of xu and
xd for which(

Γ(1− t+)e−(γ+xd)t+
)c02r0

= p+ = 1− α = p− =
(

Γ(1 + t−)e(γ−xu)t−
)c02r0

.

Then, for any F0 ∈ {50, 100, 500, 1000, 5000, 10000, 50000, 100000}, with a MonteCarlo procedure,
we estimate the mean value and the standard deviation of the quantities

P− = min
t∈(0,1)

( c0∏
c=1

2r0∏
r=1

e−txd
mrc∏
j=1

e−
t
j

1− t
j

)
and P+ = min

t>0

( c0∏
c=1

2r0∏
r=1

e−txu
mrc∏
j=1

e
t
j

1 + t
j

)
by simulating different values of the multinomial vectors {mc, c = 1, . . . , c0}, and, as expected,
all the simulated quantities above results smaller than p = 1− α. Then, for each r0, c0, α, F0 we
have built a 3σ confidence interval [pl−, p

u
−] and [pl+, p

u
+] for P− and P+, respectively. All the

data are presented in Figure 2. On the left-hand side , it is drawn the scatter-plot of

x = range of confidence interval = pu+ − pl+ (pu− − pl−, respectively);

y = maximum imprecision = p+ − pl+ (p− − pl−, respectively);

which shows a good linear dependence in a log-log scale. As the linear coefficient is close to 2,
on the right -hand side, the scatterplot of y/x2 vs. x confirms this scale of dependence, and it
suggests that the variability of the constant depends mainly on p±, firstly on the choice of the
sign, and then on the p value.

A finer analysis shows that, when F0 ≥ 500, the maximum imprecision is less than 0.00683
(with r0 = 4, c = 1, p− = 0.1, N0 = 500), becoming less than 6.7 · 10−5 for F0 ≥ 50000 (again,
r0 = 4, c = 1, p− = 0.1 but N0 = 50000). In other words, the uniform bounds given in (10)
appear adequate in this context.

7. Computational aspects

As a consequence of Theorem 3.1, we may build confidence intervals for F0 based on the output
of of Algorithm 2. As an example, Algorithm 3 shows how to compute the confidence interval of
the form (0,upper). Analogous procedures can be used to compute confidence intervals of other
forms.

As underlined in the Algorithm 3, it is necessary to solve numerically some nonlinear equations
of the form f(x) = 0 to find the final solution. In the following sections, we state the relevant
inequalities that can be used to find the root of f(x) = 0 in our context, with the Halley’s method
[25]. This iterative method is given by

xn+1 = xn −
2f(xn)f ′(xn)

2
(
f ′(xn)

)2 − f(xn)f ′′(xn)
,

it is essentially the Newton method applied to the function g(x) = f(x)√
|f ′(x)|

, and it achieves a

cubic rate of convergence in the neighborhood of the solution, see [4].
12
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Figure 2. MonteCarlo simulation of the accuracy of the use of the analyt-
ical approximation in calculating the Chernoff bounds from P, with gamma
function, as discussed in (10). Each point relates to a different choice of
p+ (light blue) or p− (light red), r0 ∈ {0, . . . , 4}, c0 ∈ {1, . . . , 4} and F0 ∈
{50, 100, 500, 1000, 5000, 10000, 50000, 100000}. Left: linear dependence in log-
log scale (y = 1.91 + 1.88x) between the precision in using the exact formula (x
is the length of the 3σ confidence interval of P) and the accuracy of the estima-
tion of p with gamma function instead of the exact formula (y is the distance
between p calculated with the gamma function and the farthest endpoint of the
3σ exact confidence interval). Rigth: dependence in log-log scale of y/x2 with
respect to x as function of different p±

In addition, we give accurate lower and upper bounds for the solution, that can be shown to
be contained in the basin of attraction of the solution. Note that these bounds can be used also
with a much simpler and robust bisection method, which has on the counterpart only a linear
rate of convergence.

7.1. The problem ψ(x)− y = 0. We recall here that the digamma function ψ : (0,∞)→ R is
defined as the logarithmic derivative of the Γ function, see [1, §6.3], and it satisfies the relation

(11) ψ(x+ 1) = ψ(x) + 1
x .

In addition ψ is a strictly monotone, concave function, with limt→0+ ψ(t) = −∞, ψ(1) = −γ and
ψ(t) = log(t) + o(1) when t → ∞ (see, for example, [9]). Finally, it is implemented in all the
recent math packages together with its first and second derivative functions ψ1 and ψ2.

As shown in Section B.1, we have

(12) ln(x− 1
2 ) < y < ln(x), ey < x < ey + 1

2 , ∀x > 1
2 ,∀y.

7.2. The problem hp(x) − y = 0. First note that hp(x),h′p(x) and h
′′
p(x) may be computed

with with arbitrary precision, because of (19) and (20) and the fact that a quad-double precision
algorithm to calculate Lerch’s transcendent of real arguments have been already developed, see
[3].

For p ∈ (0, 1), as shown in Section B.2, we have

(13)
ey−γ

p
− 1

2
≥ x ≥

{
ey−γ

p − e+ 1
ln(1−p) if y > log

(
γ + p( 1

2 −
1

(e−1) ln(1−p) )
)
;

ey−γ − 1 otherwise.
13



7.3. The problem y = (x− γ)t(x)− ln Γ(1 + t(x)), where t(x) = ψ−1(x− γ)− 1. Note that,
if g(x) = (x− γ)t(x)− ln Γ(1 + t(x)), then

(14) g′(x) = t(x) + t′(x)(x− γ − ψ(1 + t(x))) = t(x),

since, by definition of t(x), ψ(1 + t(x)) = x−γ. Then the formula of the derivative of the inverse
function gives

g′′(x) = t′(x) =
1

ψ1(ψ−1(x− γ))
=

1

ψ1(1 + t(x))
.

As shown in Section B.3, we have

(15)

√
1

50
y < x < π

√
2

3
y, if y < 3;

2

3

(
log
(
y +

1

2

)
+ γ
)
< x < 2

(
log
(4

3
y + 1

)
+ γ
)
, if y ≥ 3.

7.4. The problem y = (x+ γ)t(x)− ln Γ(1− t(x)), where t(x) = 1−ψ−1(−x− γ). Note that,
if g(x) = (x+ γ)t(x)− ln Γ(1− t(x)), then

(16) g′(x) = t(x) + t′(x)(x+ γ − ψ(1− t(x))) = t(x),

since, by definition of t(x), ψ(1 − t(x)) = −x − γ. Then the formula of the derivative of the
inverse function gives

g′′(x) = t′(x) =
1

ψ1(ψ−1(−x− γ))
=

1

ψ1(1− t(x))
.

As shown in Section B.4, we have

(17) max
(
− ln(1− C)− γ, π

2

6
C
)
< x < 2

√
(y + 1)2 − 1,

where

C =

√√√√√1−
−(y2 −

6+π2

12 ) +
√

(y2 −
6+π2

12 )2 + 4 18−π2

12

2 18−π2

12

∈ (0, 1).

7.5. Minimum log-length interval. In this section, we show how to numerically compute the
minimum length interval, in log-scale, for a given confidence α, based on the inequalities given
in the main result Theorem 3.1. The probem is set as follows: given α ∈ (0, 1), r0 ≥ 0, c0 ≥ 1,
we want to solve the nonlinear minimization problem:

min(hd + hu)

subject to
p+ = exp

(
− 2r0c0

[
(hd + γ)t+ − ln Γ(1− t+)

])
, t+ = 1− ψ−1(−hd − γ);

p− = exp
(
− 2r0c0

[
(hu − γ)t− − ln Γ(1 + t−)

])
, t− = ψ−1(hu − γ)− 1;

p+ + p− ≤ (1− α);

hd, hu ≥ 0.

The two values p+ and p− are monotone functions of hd and hu, respectively, as a consequence
of (16) and (14). As a consequence, the minimum is attained when p+ + p− = (1 − α). Then,
denoting with p = (1−α), if we set x = p+, we have p− = p− x, and the problem above may be
rewritten in terms of x: given p ∈ (0, 1), a0 = 2r0c0 ∈ {1, 2, . . .}, find

min(g(x)) = min
(
y−1

+ (− log x
a0

) + y−1
− (− log(p−x)

a0
)
)

14



subject to 
y+(h) = (h+ γ)t+ − ln Γ(1− t+), t+ = 1− ψ−1(−h− γ);

y−(h) = (h− γ)t− − ln Γ(1 + t−), t− = ψ−1(h− γ)− 1;

0 ≤ x ≤ p.

Differentiating g with respect to x, since y′±(h) = t±(h) by (16) and (14), we obtain,

g′(x) = − 1

a0x

1

t+

(
y−1

+

(
− log x

a0

)) +
1

a0(p− x)

1

t−

(
y−1
−

(
− log(p−x)

a0

))
which is null when the following equation is zero

f(x) = xt+

(
y−1

+

(
− log x

a0

))
− (p− x)t−

(
y−1
−

(
− log(p− x)

a0

))
Call

t̂+ = t̂+(x) = t+

(
y−1

+

(
− log x

a0

))
, t̂− = t̂−(x) = t−

(
y−1
−

(
− log(p− x)

a0

))
,

ψ1(x) = dψ(x)
dx and ψ2(x) = dψ1(x)

dx , then

d
t̂+(x)

dx
= − 1

a0x

1

t̂+ψ1(1− t̂+)
, d

t̂−(x)

dx
= +

1

a0(p− x)

1

t̂−ψ1(1 + t̂−)
.

The problem is then to find the solution for the nonlinear problem f(x) = 0 that may be solved
with the Halley’s method that involves the problems seen above, noticing that

f(x) = xt̂+ − (p− x)t̂−,

f ′(x) = t̂+ −
1

a0t̂+ψ1(1− t̂+)
+ t̂− −

1

a0t̂−ψ1(1 + t̂−)

f ′′(x) = t′+

(
1 +

ψ1(1− t̂+)− t̂+ψ2(1− t̂+)

a0(t̂+ψ1(1− t̂+))2

)
+ t′−

(
1 +

ψ1(1 + t̂−) + t̂+ψ2(1 + t̂−)

a0(t̂−ψ1(1 + t̂−))2

)
.

and that a good starting point is given by x0 = p
2 .

Appendix A. Special functions used in this paper

Modification of the harmonic numbers and Lerch transcendent function. For any
integer number m, we denote by h(m) the m-th harmonic number. We recall here that

(18) h(m) = ψ(m+ 1) + γ =

m∑
j=1

1

j
=

m−1∑
j=0

∫ 1

0

tj dt =

∫ 1

0

1− tm

1− t
dt,

where ψ is the derivative of the logarithm of gamma function (also called digamma function).
The constant γ is the Euler–Mascheroni constant throughout the whole paper. The function h

can be extended therefore to the real non-negative numbers, by setting h(x) =
∫ 1

0
1−tx
1−t dt, which

is known as the integral representation given by Euler.

Definition A.1. For 0 ≤ p ≤ 1, y ≥ 0, we define the p-modification of the harmonic numbers
hp(x), where

hp(x) =

∫ 1

0

1− (1− p+ pt)x

1− t
dt, x > 0.

15



The function hp(x) has the following properties

• hp(0) = 0, h0(x) = 0, hp(1) = p and h1(x) = h(x) by definition;
• with two changes of integration variable z = (1 − p(1 − t)) and z = (1 − p)e−w, we we

may rewrite hp(y) as

(19)

hp(x) =

∫ 1

1−p

1− zx

1− z
dz = ψ(x+ 1) + γ −

∫ 1−p

0

1− zx

1− z
dz

= ψ(x+ 1) + γ + log p+

∫ 1−p

0

zx

1− z
dz

= ψ(x+ 1) + γ + log p+ (1− p)x+1

∫ ∞
0

e−w(x+1)

1− (1− p)e−w
dw

= ψ(x+ 1) + γ + log p+ (1− p)x+1 Φ(1− p, 1, x+ 1),

where Φ is the Lerch transcendent function, see [23], and the last equality is a consequence
of the following equation, valid for m ∈ N and z = (1− p):

Φ (z, s, a) = zmΦ (z, s, a+m) +

m−1∑
n=0

zn

(a+ n)s
.

• By (19), hp(x) is strictly increasing and continuous, both as a function of x and p. In
addition, for any p > 0, limx→∞ hp(x) = +∞, and hence hp : [0,+∞) → [0,+∞) is
an isomorphism (continuous invertible function, with continuous inverse function). Its
inverse function (hp)

−1 : [0,+∞) → [0,+∞) is hence well-defined and it is used in the
paper.

The Lerch transcendent function appears also in the derivatives of hp. Denote by

Φ1 = Φ(1− p, 1, x+ 1), Φ2 = Φ(1− p, 2, x+ 1), Φ3 = Φ(1− p, 3, x+ 1),

and note that Φn+1 = −n∂ Φn
∂x ; by (19) we get

(20)

h
′
p(x) = ∂

ψ(x+ 1) + γ + log p+ (1− p)x+1 · Φ(1− p, 1, x+ 1)

∂x

= ψ1(x+ 1) + (1− p)x+1(log(1− p) · Φ1 − Φ2)

h
′′
p(x) = ψ2(x+ 1) + (1− p)x+1((log(1− p))2 · Φ1 − 2 log(1− p) · Φ2 + 2Φ3).

Product representation and incomplete Gamma function. For what concerns the infinite
product representation of the Gamma function

Γ(z) = lim
K→∞

e−γz

z

K∏
k=1

(
1 +

z

k

)−1

e
z
k , z 6= −1,−2, . . . ,

given by Schlömilch in 1844 and Newman in 1848, if we evaluate it in z = ±t, we obtain

(21) Γ(1− t)e−γt =

∞∏
j=1

e−
t
j

1− t
j

, t ∈ (0, 1), Γ(1 + t)eγt =

∞∏
j=1

e
t
j

1 + t
j

, t > 0.

Finally, for x > 0, we denote by E1(x) the exponential integral (or incomplete gamma func-
tion). As shown in [1, p. 229, 5.1.20], we have that

(22) E1(x) =

∫ ∞
x

e−t

t
dt < e−x ln

(
1 +

1

x

)
.
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Note that, if p ∈ (0, 1) and t = − ln(1− p)w,

E1(x) =

∫ ∞
x

e−t

t
dt =

∫ ∞
− x

ln(1−p)

(1− p)w

w
dw.

We will make use of the very well known formula − ln(p) =
∑∞
j=1

(1−p)j
j . To bound the tail of

the series, we immediately obtain by (22) that, for any x > 0,

(23)

∞∑
j=0

(1− p)x+j+1

x+ j + 1
≤
∫ ∞
x

(1− p)w

w
dw = E1(−x ln(1− p))

< ex ln(1−p) ln
(

1− 1

x ln(1− p)

)
.

The next representation lemma is used both in the analytical and in the numerical part of the
paper.

Lemma A.2. Let x > 0 be fixed. Then the functions

g+(t) = (x+ γ)t− ln Γ(1− t), t ∈ (0, 1)

g−(t) = (x− γ)t− ln Γ(1 + t), t > 0

attain their (strictly positive) maxima at the points t+ = 1−ψ−1(−x−γ) and t− = ψ−1(x−γ)−1,
respectively.

Proof. We give the proof for g+, since the same arguments apply to g−. We have

• g+(t) is concave, since ln Γ(1− t) is a convex analytic function on (0, 1);
• g+(0) = ln Γ(1) = 0, g′+(0) = (x+ γ) + ψ(1) = x > 0;
• limt→1 g+(t) = −∞;

and hence the maximum of g+ on (0, 1) is strictly positive. The maximum point t+ is attained
when g′+(t+) = 0, that is when (x+ γ) + ψ(1 + t+) = 0. �

Appendix B. Lower and upper bounds of some numerical problems

B.1. Bounds of y = ψ(x). As shown in [9, Example 2.1], we may bound ψ from below in the
following way. The Jensen inequality for U ∼ U(x− 1

2 , x+ 1
2 ) shows that, for x > 1

2 ,

1

x
=

1

E[U ]
< E

[ 1

U

]
=

∫ x+
1
2

x− 1
2

1

t
dt = ln(x+ 1

2 )− ln(x− 1
2 ).

By (11), we than have that, for x > 1
2 ,

ψ(x)− ln(x− 1
2 ) > ψ(x+ 1)− ln(x+ 1

2 ) > · · · > lim inf
t→∞

(ψ(t)− ln(t− 1
2 )),

and since ψ(t) = log(t) + o(1) = log(t− 1
2 ) + o(1), the last expression is zero, and hence

y = ψ(x) > ln(x− 1
2 ), for any x > 1

2 .

With the same spirit of this example, since

ln(x+ 1)− ln(x) =

∫ x+1

x

1

t
dt <

1

x
, ∀x > 0,

we obtain that

ψ(x)− ln(x) < ψ(x+ 1)− ln(x+ 1) < · · · < lim sup
t→∞

(ψ(t)− ln(t)) = 0,
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and hence, we may state that

ln(x− 1
2 ) < y < ln(x), ey < x < ey + 1

2 , ∀x > 1
2 ,∀y.

B.2. Bounds of y = hp(x). For what concerns the bounds for hp, by (19), we immediately get

ψ(x+ 1) + γ + ln p ≤ hp(x) ≤ ψ(x+ 1) + γ,

and hence, by (12),

(24)
exp(hp(x)− γ)

p
− 1

2
≥ x ≥ exp(hp(x)− γ)− 1.

A better estimation for the lower bound can be found for x > − 1
(e−1) ln(1−p) . To simplify the

notations, set d0 = −ln(1− p), so that the assumption x > − 1
(e−1) ln(1−p) becomes the more

readable xd0 >
1
e−1 . We are going to show that, under this hypothesis, we have

(25)
A

p
− 1

2
≥ x ≥

{
A
p − e+ 1

ln(1−p) if A > p( 1
2 −

1
(e−1) ln(1−p) );

A− 1 otherwise;

where A = exp(hp(x)− γ). To prove (25), we use the relation 1
1−z =

∑∞
j=0 z

j , valid for |z| < 1,

in (19). We obtain

hp(x) = ψ(x+ 1) + γ + log p+

∫ 1−p

0

zx

1− z
dz

= ψ(x+ 1) + γ + log p+

∫ 1−p

0

∞∑
j=0

zx+j dz

= ψ(x+ 1) + γ + log p+

∞∑
j=0

(1− p)x+j+1

x+ j + 1
dz,

which can be combined with (23), yielding

(26) hp(x)− (ψ(x+ 1) + γ + log p) < ex ln(1−p) ln
(

1− 1

x ln(1− p)

)
< ex ln(1−p) ≤ 1

1− x ln(1− p)
,

where the last inequality is a consequence of the fact that exp(x) ≤ 1
1−x for x < 1.

Now, we define the positive quantity d1 = e − 1 + 1
d0

> 0 and we note that the function

g : [ 1
d0(e−1) ,∞)→ R so defined

g(x) =
d1

d1 + 1 + x
− 1

1 + xd0
=

x(d0d1 − 1)− 1

(d1 + 1 + x)(1 + xd0)

is strictly positive whenever x(d0d1 − 1) − 1 > 0, or, in other terms, when d1 >
1+x
d0x

. We now

prove that this fact implies that g(x) > 0 under our assumption x > 1
d0(e−1) .

In fact, since 1+y
d0y

is decreasing in y > 0, then, as x > 1
d0(e−1) we have

x > 1
d0(e−1) =⇒ d1 = d0(e−1)+1

d0
=

1 + 1
d0(e−1)

d0
1

d0(e−1)

> 1+x
d0x

=⇒ g(x) > 0,

or, in other terms,

x > 1
d0(e−1) =⇒ d1

d1 + 1 + x
>

1

1 + xd0
=

1

1− x log(1− p)
.

18



Since x
1+x < ln(1 + x) for x > 0, we then have that, when x > 1

d0(e−1) ,

(27)
1

1− x ln(1− p)
<

d1

d1 + 1 + x
=

d1
x+1

1 + d1
x+1

< log
(

1 +
d1

x+ 1

)
= ln

(x+ 1 + d1

x+ 1

)
= ln(x+ e− 1

ln(1−p) )− ln(x+ 1).

By combining together (26) and (27) we obtain

hp(x)− (ψ(x+ 1) + γ + log p) < ln(x+ e− 1
ln(1−p) )− ln(x+ 1),

that together with (12) yields

hp(x)− γ − log p < ψ(x+ 1)− ln(x+ 1) + ln(x+ e− 1
ln(1−p) )

< ln(x+ e− 1
ln(1−p) ).

Set A = exp(hp(x)− γ). The above inequality, exponentiated, gives

A

p
− e+ 1

ln(1−p) < x,

that, again by (24), is valid at least when

x > − 1
(e−1) ln(1−p) =⇒ A > p(x+ 1

2 ) > p( 1
2 −

1
(e−1) ln(1−p) ).

B.3. Bounds of y = (x − γ)t(x) − ln Γ(1 + t(x)), where t(x) = ψ−1(x − γ) − 1. For what
concerns the bounds in this problem, we start by recalling that, as shown in [19] (see also [24,
Equation (3.112)]), for any t > 0,

(28) − γt < ln Γ(1 + t) < tψ(t+ 1).

When this chain of inequalities is evaluated in t = t(x), we obtain

−γt(x)− ln Γ(1 + t(x)) < 0 =⇒ y < xt(x)(29)

ln Γ(1 + t(x)) < tψ(ψ−1(x− γ)− 1 + 1) =⇒ y > 0.

The upper bounds for x may be found in the following way. We recall that Lemma A.2 states
that

y = max
t>0

[
(x− γ)t− ln Γ(1 + t)

]
.

Then, by (28),

(30) y > max
t>0

[
(x− γ − ψ(t+ 1))t

]
.

The second expression may be evaluated in t0 = ψ−1(−γ + x
2 )− 1, so that we get

y > (x− γ − ψ(t0 + 1))t0

=
x

2

(
ψ−1(−γ + x

2 )− 1
)

(31)

=
x

2

(
ψ−1(−γ + x

2 )− ψ−1(−γ)
)
.

The Mean Value Theorem ensures the existence of x0 ∈ (0, x2 ) such that

ψ−1(−γ + x
2 )− ψ−1(−γ) =

x

2
d
ψ−1(−γ + t)

dt

∣∣∣
t=x0

,
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and by the the formula of the derivative of the inverse function, since the Trigamma function

ψ1(t) = dψ(t)
dt is a decreasing function with ψ1(1) = π2

6 ,

d
ψ−1(−γ + t)

dt

∣∣∣
t=x0

=
1

ψ1(ψ−1(−γ + x0))
>

1

ψ1(ψ−1(−γ))
=

1

ψ1(1)
=

1
π2

6

.

Summing up,

(32) y >
x

2

(x
2

1
π2

6

)
=

3

2

x2

π2
=⇒ x < π

√
2

3
y.

For x ≥ 3
2 , which is always true if y ≥ 3

2 · t(
3
2 ) = 3 by (29), a better estimates may be found if

we bound the second part of (31). In fact, since x
2 ≥

3
4 , by (12) we obtain

y >
3

4

(
ψ−1(−γ + x

2 )− 1
)
>

3

4

(
e−γ+

x
2 − 1

)
which completes the upper bound for x given in (32), obtaining

(33) x <

{
π
√

2
3y, if y < 3;

2(log( 4
3y + 1) + γ), if y ≥ 3.

The upper bounds for x may be found with similar ideas in both the cases y ≥ 3 and y < 3. By
(29), the Mean Value Theorem ensures the existence of x0 ∈ (0, x) such that, when y < 3

0 < y < xt(x) = x(ψ−1(x− γ)− 1) = x2 1

ψ1(ψ−1(x0 − γ))
< x2 1

ψ1(ψ−1(π
√

2− γ))
,

the last inequality being a consequence of (33), since, for y < 3, we have x ≤ π
√

2. For y ≥ 3,
starting from (29), by (12), we obtain

0 < y < xt(x) = x(ψ−1(x− γ)− 1) < x
(

exp(x− γ)− 1

2

)
<
(

exp( 3
2x− γ)− 1

2

)
,

which gives the lower bound for x in (15) for y ≥ 3.

B.4. Bounds of y = (x+γ)t(x)− ln Γ(1− t(x)), where t(x) = 1−ψ−1(−x−γ). The inversion
formula for the Gamma function, valid for t ∈ (0, 1), gives

Γ(1− t)Γ(t)t =
π

sin (πt)
t ⇐⇒ ln Γ(1− t) = ln

( πt

sin (πt)

)
− ln Γ(1 + t),

that, together with (28), yealds

(34) − tψ(t+ 1) + ln
( πt

sin (πt)

)
< ln Γ(1− t) < ln

( πt

sin (πt)

)
+ γt.

We recall that Lemma A.2 states that

y = max
t∈(0,1)

[
(x+ γ)t− ln Γ(1 + t)

]
,

that, combined with the right-hand inequality of (34) gives

y > max
t∈(0,1)

[
xt+ ln

( sin(πt)

πt

)]
.

Since ln(y) > y−1
y and (see [2]),

π

sin(πt)
=

1

t
+

∞∑
n=1

(−1)n 2t

t2 − n2
,
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then

y > max
t∈(0,1)

(
xt− 2t2

1− t2
)
.

Let t0 = t0(x) ∈ (0, 1) be defined in the following way:

x

2
=

2t0
1− t20

⇐⇒ t0 = 2

√(
x
2

)2
+ 1− 1

x
,

then

y > xt0 − t0
2t0

1− t20
= x

t0
2

=

√(x
2

)2

+ 1− 1,

and hence

(35) x < 2
√

(y + 1)2 − 1.

For what concerns the lower bound for x, if we take into account the reflection formula for the
digamma function

ψ(1− t)− ψ(t) = π cotπt =⇒ ψ(1 + t) = ψ(t) +
1

t
= ψ(1− t)− π cot(πt) +

1

t

together with the left inequality in (34), we obtain

ln Γ(1− t) > −tψ(t+ 1) + ln
( πt

sin (πt)

)
= −t

(
ψ(1− t)− π cot(πt) +

1

t

)
+ ln

( πt

sin (πt)

)
.

We will make use of this inequality, motivated by the fact that our problem is

y = (x+ γ)t(x)− ln Γ(1− t(x)), −ψ(1− t(x)) = (x+ γ),

which implies

y = (x+ γ)t(x)− ln Γ(1− t(x))

= −ψ(1− t(x))t(x)− ln Γ(1− t(x))

< 1− πt(x) cot(πt(x)) + ln
( sin (πt(x))

πt(x)

)
.(36)

Now, for t ∈ (0, 1), the following identities hold

sin (πt)

πt
=

∞∏
1

(
1− t2

n2

)
, π · cot(πt) =

1

t
+

∞∑
n=1

2t

t2 − n2
,

(see [2]). The first identy may be used to bound the last term in (36):

ln
( sin (πt)

πt

)
= ln(1− t2) +

∞∑
n=2

ln
(

1− t2

n2

)
< ln(1− t2) + t2 −

∞∑
n=1

t2

n2

= ln(1− t2) + t2
(

1− π2

6

)
.

For what concerns the term 1− πt cot(πt) in (36), we obtain

1− πt cot(πt) = 2t2
∞∑
n=1

1

n2 − t2
= 2t2

( 1

1− t2
+

∞∑
n=2

1

n2 − t2
)
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< 2t2
( 1

1− t2
+

∞∑
m=1

1

(m+ 1)2 − 1

)
= 2t2

( 1

1− t2
+

1

2

∞∑
m=1

2

m(m+ 2)

)
= 2t2

( 1

1− t2
+

1

2

∞∑
m=1

( 1

m
− 1

m+ 2

))
=

2t2

1− t2
+ 3t2.

Combining these two last inequalities in (36), since log y ≤ y − 1, we obtain

y <
2t(x)2

1− t(x)2
+ 3t(x)2 + ln(1− t(x)2) + t(x)2

(
1− π2

6

)
<

2

1− t(x)2
− 2 + t(x)2

(
3− π2

6

)
,

and hence, if we define

z = 1− t(x)2 ∈ (0, 1), A =
3− π2

6

2
∈ (0, 1), B =

y

2
> 0

we obtain

Az2 + (B + (1−A))z − 1 < 0, z ∈ (0, 1)

which is solved for

0 < z <
−(B + (1−A)) +

√
(B + (1−A))2 + 4A

2A
.

Note that, for B ∈ (0,∞), the right-hand side of the inequality above belongs to (0, 1). Then, if
we define

C =

√
1−
−(B + (1−A)) +

√
(B + (1−A))2 + 4A

2A
∈ (0, 1),

we have t(x) =
√

1− z > C, or explicitely

(37) 1− ψ−1(−x− γ) > C.

Two inequalities on x are consequence of (37) as follows. By (12) we imediately obtain a lower
bound

1− exp(−(x+ γ)) > 1− ψ−1(−x− γ) > C =⇒ x > − ln(1− C)− γ,

which is meaningful only for C ≥ 1− exp(−γ). For smaller C, we make use of the Mean Value
Theorem, that ensures the existence of x0 ∈ (0, x) such that

t(x) = ψ−1(−γ)− ψ−1(−γ − x) = −x dψ
−1(−γ − t)

dt

∣∣∣
t=x0

.

The formula of the derivative of the inverse function gives

−dψ
−1(−γ − t)

dt

∣∣∣
t=x0

=
1

dψ(t)
dt

∣∣
t=ψ−1(−γ−x0)

<
1

dψ(t)
dt

∣∣
t=ψ−1(−γ)

=
1
π2

6

,

so that

x >
π2

6
C.

Summing up

(38) x > max
(
− ln(1− C)− γ, π

2

6
C
)
,

that completes (17) with the upper bounds for x given in (35).
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