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Abstract. We extend a procedure based on support vector clustering
and devoted to inferring the membership function of a fuzzy set to the
case of a universe of discourse over which several fuzzy sets are defined.
The extended approach learns simultaneously these sets without requir-
ing as previous knowledge either their number or labels approximating
membership values. This data-driven approach is completed via expert
knowledge incorporation in the form of predefined shapes for the mem-
bership functions. The procedure is successfully tested on a benchmark.
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1 Introduction

Fuzzy sets constitute a sort of backbone for all fuzzy constructs, such as fuzzy
models, fuzzy classifiers and fuzzy reasoning schemes. Therefore the quality of the
former directly impacts on the performance and readability of such constructs.
The design of fuzzy sets is a crucial problem both in the theory and practice
of fuzzy methodologies, and indeed there is a broad spectrum of approaches
aiming at building fuzzy sets. On one side, fuzzy sets are designed exploiting
human knowledge through a mix of different interpretations [9], expert-driven
approches [14], predefined shapes for membership functions [15], and specific de-
granulation processes [17, 5]. However, the availability of experts in the modeled
domain might be a critical aspect, and in any case this kind of estimation has
been shown to suffer from incompleteness, inconsistencies or bias linked to the
perception of specific concepts captured by humans [18, 16]. For these reasons,
on the other extreme of the spectrum of methodologies there are data-driven
approaches, relying only on experimental evidence (see for instance [19, 10, 1]).
Several strategies actually position themselves between the two extremes, com-
bining them in a hybrid fashion [11, 8, 4, 2].

In this work we propose a technique mixing data-driven and expert-driven
approach. The former is used to infer the number of fuzzy sets in a given domain
and their approximate localization, while the latter is used to define a priori the
family shape of such sets. The starting point is a procedure exploiting a mod-
ified support vector clustering approach [12] in order to learn the membership
function of a single fuzzy set, starting from examples of objects labeled with
their membership value (see also [6] for a similar approach based on modified
regression). In this paper, such approach is extended in two significant ways: on
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the one hand, the need of labels representing membership values of the observed
objects is dropped, and on the other one the inference process now concerns
several fuzzy sets simultaneously. The number and location of such sets is found
through application of the original version of the support vector clustering al-
gorithm [7], in order to label objects via approximate membership values; the
lables are subsequently used in order to separately learn each fuzzy set.

The paper is structured as follows: Sect. 2 briefly describes the technique
used for inferring the membership function of a single fuzzy set on the basis
of a sample of objects in the universe of discourse, each one labeled with its
membership degree to such set. Sect. 3 exploits the above mentioned technique in
order to simultaneously learn several fuzzy sets, starting from a set of unlabeled
objects. Sect. 4 describes a preliminary experimental campaign. Some concluding
remarks end the paper.

2 Inferring the membership function to a fuzzy set

In this section we briefly recall the procedure used in order to learn the mem-
bership function to a fuzzy set starting from a labeled sample {(x1, µ1) . . . ,
(xm, µm)}, where for each i the value xi denotes an object in a space X and
the label µi is the membership grade of xi to a fixed, yet unknown, fuzzy set A.
Readers interested in further details may refer to the original paper [12].

The main component of the learning procedure is a modified version of the
support vector clustering algorithm proposed in [7], enhanced in order to deal
with labels µ1, . . . , µm. Namely, objects are transformed through a nonlinear
mapping Φ onto a space within which a sphere S is found such that:

– the higher µi, the closer xi is to the border of S (and when µi = 1 the object
belongs to S);

– vice versa, as µi gets smaller the corresponding object lies farther from S;
and

– the radius of S is constrained to be as small as possible.

More precisely, denoting by a and R the center and the radius of S, respectively,
this amounts to considering the problem

minR2 + C
∑

(ξi + τi) (1)

µi||Φ(xi)− a||2 ≤ µiR
2 + ξi , (2)

(1− µi)||Φ(xi)− a||2 ≥ (1− µi)R
2 − τi , (3)

ξi ≥ 0, τi ≥ 0 , (4)

where ξi and τi denote slack variables allowing the management of possible out-
liers and C > 0 is a hyperparameter defining a trade-off between the two com-
ponents of the objective function in (1). As usual with support vector methods,



Simultaneous learnng of fuzzy sets 3

the solution can be found considering the dual version of (1–4), which reads

max

m∑
i=1

εik(xi, xi)−
m∑

i,j=1

εiεjk(xi, xj) (5)

m∑
i=1

εi = 1, (6)

−C(1− µi) ≤ εi ≤ Cµi, (7)

where εi = αiµi−βi(1−µi) for each i = 1, . . . ,m (being αi and βi the lagrangian
multipliers associated to the constraints (2) and (3), respectively) and k(xi, xj) =
Φ(xi) ·Φ(xj), that is k is the kernel function associated to the mapping Φ. Thus
the considered objects don’t need to be numerical vectors: the only requirement
is the existence of a similarity measure k between them. For instance, [13] applies
this technique to the problem of detecting a set of reliable axioms starting from
a set of OWL formulas.

The experiments shown in Sect. 4 make use of the gaussian kernel

k(xi, xj) = exp

(
−||xi − xj ||

2

2σ2

)
,

although other choices are possible. Here σ > 0 is a second hyperparameter to
be tuned when performing experiments.

Once the optimal values ε∗1, . . . ε
∗
m of (5–7) have been computed, it is easy to

show that

R2(x) = k(x, x)− 2

m∑
i=1

ε∗i k(x, xi) +

m∑
i,j=1

ε∗i ε
∗
jk(xi, xj) (8)

amounts to the squared distance between a and the image through Φ of a generic
object x. Moreover, given any k such that −C(1−µk) < ε∗k < Cµk, the quantity
R2,∗ = R2(xk) equals the squared radius of S. Thus it is easy to take a further
step and induce an approximation µ̂A of the membership function of A as follows:
having fixed a suitable fuzzifier (that is, a nonincreasing function f : R+ 7→ [0, 1]
turning the distance of the image of a generic point from S into a membership
value), and given a generic object xN, let µ̂A(xN) = f(R2(xN)−R2,∗). A simple
choice for f is that of a piecewise linear function equal to 1 when the image of
an object lies within S, equal to 0 when such image is farther from S than the
farthest observerd distance xmax, and decreases linearly between these extremes
in the remaining cases:

f(x) =


1 if x < 0,

1− x
xmax

if 0 ≤ x ≤ xmax,

0 otherwise.

(9)

More complex choices for f , such as a special exponential decaying function
linked with the quantiles of the observed distances of xis from the border of S,
may be considered (see [13] for further details).
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Algorithm 1 Procedure for simultaneous learning of memberships to several
fuzzy sets, using crisp intermediate membership values
Input:

– a set T = {x1, . . . , xm} of objects;
– two hyperparameters C, σ > 0;
– a fuzzifier f : X 7→ [0, 1].

1. Apply support vector clustering to T using C and σ as hyperparameters, obtaining
a partition T1, . . . , Tc of T .

2. For each k = 1, . . . , c:
(a) For each i = 1, . . .m set

µi =

{
1 if xi ∈ Tk,

0 otherwise.

(b) Starting from T and {µ1, . . . µm}, infer µ̂Ak using the procedure of Sect. 2, the
fuzzifier f , and the hyperparameters C and σ.

Output: µ̂A1 , . . . , µ̂Ac .

3 Simultaneously inferring several membership functions

As a general case, the method outlined in the previous section requires as input
a set of objects each labeled with a degree of membership, thus a [0, 1]-valued
number. However, the procedure can be run even when the information abut
membership degrees is not available, yet each object is labeled with a {0, 1}
value denoting its crisp membership to a (classical) set.

In this section we address the more general case in which even this weaker
form of information is missing, that is the only available data is the set T =
{x1, . . . , xm} of objects, in the idea that several fuzzy sets are defined on the
universe of discourse X. As a first stage, the original version of the support
vector clustering can be applied in order to detect a sort of core for each fuzzy
set. This step can be descrbed as a simplified version of the procedure described
in Sect. 2: now S identifies with the smallest sphere containing most of the
images of objects, and an analogous procedure allows to compute:

– a function R2
cluster mapping a generic object to the squared distance of its

image through Φ from the center of S, and
– the squared radius R2,∗

cluster of S.

Now, let xa and xb denote two objects in X belonging to different clusters, and
consider the segment joining them. It can be shown that the trajectory described
by the images through Φ of all points laying on this segment is not fully contained
in S [7]. This fact can be easily checked considering suitable discretizations of
the segments joining all possible pairs of objects. As a result, the set T can be
partitioned in c subsets, namely T = ∪ck=1Tk and Ti∩Tj = ∅ for each i 6= j. These
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Algorithm 2 Procedure for simultaneous learning of memberships to several
fuzzy sets, using fuzzy intermediate membership values
Input:

– a set T = {x1, . . . , xm} of objects,
– two hyperparameters C, σ > 0;
– a fuzzifier f : X 7→ [0, 1].

1. Apply support vector clustering to T using C and σ as hyperparameters, obtaining:
– a partition T1, . . . , Tc of T );
– a mapping R2

cluster : X 7→ R+;
– a value R2,∗

cluster.
2. For each k = 1, . . . , c:

(a) For each i = 1, . . .m set µi = f(R2
cluster(xi)−R2,∗

cluster)
(b) Starting from T and {µ1, . . . µm}, infer µ̂Ak using the procedure of Sect. 2, the

fuzzifier f , and the hyperparameters C and σ.

Output: µ̂A1 , . . . , µ̂Ac .

subsets can be interpreted as an initial approximation of the localization for c
fuzzy sets A1, . . . , Ac. Thus, for each k ∈ {1, . . . , c}, objects in Tk and T\Tk can
be assigned a membership equal to 1 and 0, respectively. The next step consists
in applying the procedure of Sect. 2 in order to obtain an approximation µ̂Ak

of
the membership function µAk

. Algorithm 1 formalizes this procedure. It is worth
noting that the number c of obtained fuzzy sets is not fixed a priori, albeit it is
influenced from the choice of hyperparameters, notably C. This means that any
preexisting clue about the number of sets can in principle be used in order to
restrict the variability of hyperparameters during the model selection phase.

A variant of the proposed technique considers a different way of computing
the intermediate values µ1, . . . , µc in step 2a of Algorithm 1. Indeed, a better
approximation might be found in terms of:

– the squared distance R2
cluster(xi) of the images of each xi from the center of

the sphere learnt during the support vector clustering phase, and
– the squared radius R2,∗

cluster of the same sphere.

More precisely, having fixed the fuzzifier f , f(R2
cluster(xi)−R

2,∗
cluster) can be used

as a guess for the membership value of xi, as illustrated in Algorithm 2.

4 Experiments

We used as benchmark the Iris dataset, consisting of 150 observations of iris
plants in terms of length and width of their petal and sepal. The observations
are organized in the three classes Setosa, Virginica, and Versicolor, with only the
first class being linearly separable from the remaining ones. As a first experiment,
for sake of visualization we extracted the first two principal components from the
observations and we iterated for ten times the holdout scheme described below.
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(a) µ̂setosa (b) µ̂versicolor (c) µ̂virginica

Fig. 1. Contour plots of the functions µ̂setosa, µ̂versicolor, and µ̂virginica learnt during
one of the ten holdout iterations of the first experiment. Blue, green and red bullets
respectively denote observations from the setosa, versicolor, and virginica classes, after
the first two principal components have been extracted from the orginal data.

– After having randomly shuffled all data, we partitioned the benchmark into
three sets devoted to training, model selection, and model validation (retain-
ing in each one the 80%, 10%, and 10% of available data, respectively).

– For each choice of C and σ in a grid, we applied Algorithm 1 and obtained
three membership functions which we called µ̂setosa, µ̂virginica, and µ̂versicolor,
and we used them to compute the accuracy in classification of data in the val-
idation set (namely, each item was assigned to the class whose corresponding
membership function attained the maximum value). It is worth noting that,
being the number c of fuzzy sets learnt by the algorithm, the former could
be different from the expected value corrisponding to the three classes in the
dataset. We dropped all singleton clusters after the initial phase, and sorted
the remaining ones w.r.t. their size. The three biggest resulting clusters were
subsequently associated each to the most represented class1.

– The choice of hyperparameters maximizing the above mentioned accuracy
was selected in order to retrain a model, now merging training and validation
sets, and the result was scored in terms of accuracy on the test set.

The average accuracy on the ten holdout iterations was 0.8, with a standard
deviation of 0.11. Figure 1 shows the contour plots of the inferred membership
functions for the three classes in the benchmark in one of the iterations.

1 Note that even with this careful setting, there is no guarantee that the three clusters
will get associated injectively to the three available classes. We simply re-executed
the iterations in which these cases occurred.
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Table 1. Results of ten holdout procedures of the simultaneous fuzzy set learning
procedure on the Iris dataset. Each row shows average and standard deviation (columns
Avg. and Stdev., respectively) of train and test error, in function of the number of
principal components extracted from the original sample.

SVC FCM

N. of principal Train error Test error Train error Test error
components Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 0.82 0.05 0.8 0.11 0.83 0.01 0.80 0.05
3 0.87 0.03 0.83 0.07 0.83 0.02 0.84 0.07
4 0.85 0.05 0.89 0.09 0.83 0.01 0.84 0.08

We repeated the experiment considering three and four principal components,
obtaining the results shown in Table 1. The accuracy rates are sufficiently high
to state that the method succeeds in rebuilding the information about the three
classes despite such information has been hidden to the learning procedure. The
table also shows the performance of an analogous procedure based on the fuzzy
C-means algorithm as base learner. The results, slightly in favour of the proposed
methodology, could be improved using a more refined model validation scheme
and/or trying different shapes, notably nonlinear ones, for the fuzzifier. We are
currently testing Algorithm 2 on the same benchmark.

5 Conclusions

The design of fuzzy sets is an essential component in the search of successful
fuzzy models. We considered how to extend an existing learning algorithm for
the membership function of a fuzzy set on the basis of objects labeled with
the corresponding membership grades. This algorithm was enhanced in order
to simultaneoulsy learn several fuzzy sets defined in the considered universe of
discourse. The number of sets can in principle be induced directly from data,
and the latter do not need to be labeled with any information concerning the
membership grades w.r.t. the models to be learnt. We preliminarly tested the
proposed approach on the Iris dataset, showing how the three existing clusters
can be discovered without using the class information recorded in the bench-
mark, but only with little post-processing, as mentioned. Besides a more refined
experimental campaign, the technique can be further refined analyzing how pre-
existing information about the number of fuzzy sets is related to a proper choice
of the hyperparameters of the learning algorithm, and by testing the effect of us-
ing different nonlinear fuzzifiers. An analysis of the theoretical properties of this
approach, for instance exploiting game-based results [3], as well as its extension
to the field of type-2 fuzzy sets, can also be envisaged.
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