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ABSTRACT

We present an approach to the discovery and characterization of

relevant locations and related mobility patterns in symbolic trajec-

tories built on call detail records - CDRs - of mobile phones (telco

trajectories). While the discovery of relevant locations has been

widely investigated for continuous spatial trajectories (e.g., stay

points detection methods), it is not clear how to deal with the prob-

lem when the movement is defined over a discrete space and the

locations are symbolic, noisy and irregularly sampled, such as in

telco trajectories. In this paper, we propose a methodological ap-

proach structured in two steps, called trajectory summarization and

summary trajectories analysis, respectively, the former for removing

noise and irrelevant locations; the latter to synthesize key mobility

features in a few novel indicators. We evaluate the methodology

over a dataset of approx 17,000 trajectories with 55 million points

and spanning a period of 67 days. We find that trajectory sum-

marization does not compromise data utility, while significantly

reducing data size. Moreover, the mobility indicators provide novel

insights into human mobility behavior.
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temporal systems; Clustering.
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1 INTRODUCTION

Trajectories are key resources for the fine-grained analysis of mov-

ing objects behavior. Whenever data are collected at very fine tem-

poral scale over a continuous space, the missing points in between

consecutive samples can be estimated by interpolation, and the

trajectory be qualified as continuous. Opposed to continuous tra-

jectories, symbolic trajectories are defined over a discrete space

consisting of a finite set of points P = {p1, ..pk } in the embedding

space. Given a set of symbols L, and a bijection m : L → P , a
trajectory is a sequence of timestamped symbolic locations

T = (l1, t1), .., (ln, tn ), with li ∈ L,m(li ) ∈ P

Commonly, locations are spatially sparse and irregularly sampled,

therefore the movement cannot, arguably, be represented by a

continuous trajectory or, alternatively, a symbolic time series. An

example is the trajectories based on check-in data from geo-social

networks.

In this paper, we are concerned with the class of symbolic tra-

jectories built on call detail records (CDR) of mobile phones. CDRs

report the communication activities of the subscribers as series of

events, i.e., voice call start/end, text message, data upload/download,

collected by mobile operators for billing purposes. Abstractly, a

CDR can be represented by the tuple (u, e, t, l), reporting, in order:

the user identifier, the kind of event (e.g. start phone call), the time-

stamp and the position of the event in the space determined by the

position of the cellular network components that are pinged when

a phone call is made, e.g. base stations. If we omit the information

on the kind of event - marginal for our study - the series of CDRs

for a user u, over the observation period [t1, tn ], can be rewritten

as a symbolic trajectory. We refer to this kind of trajectory as telco
trajectory.

Telco trajectories are complex, noisy and irregularly sampled

data, yet of fundamental importance for the study of human mobil-

ity [3]. One of the analytical tasks of major interest is to infer the

locations that are relevant for an individual or community. In the

area of telco data analysis, the notion of location relevance is given

a statistical meaning, i.e., the relevant locations are those that are

frequently visited. For example, in the seminal work [11], locations

are ranked by the number of times their position is recorded in

the vicinity of the cell tower covering that location. Therefore, for

example, the most visited location (likely home) would have rank 1,

the second (likely, work place) would have rank 2. A slightly differ-

ent approach equates location relevance to regularity: trajectories
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are split in temporal units, e.g. days, and the relevance of every

location l is computed as fraction of units containing l [16].
We argue that methods grounded on location frequency analysis

can provide partial and limited information on the locations of

interest. Firstly, such approaches tend to ignore the locations that

are only visited for a relatively short period of time, for example in

occasion of an event, whilst, can classify as interesting locations

that, in reality, are transient, e.g., a railway station for a commuter.

Secondly, it may be difficult to respond to queries other than top-k

relevant locations, for example:

Q1 : How many relevant regions do users visit?
Q2 : How popular are those locations in the community?

A more appealing viewpoint equates relevance to attractiveness,

in particular, a location is relevant if the individual intentionally

spends some significant time in it. This view is at the basis of the

techniques for stop and POIs detection in continuous trajectories,

for example reporting the movement of pedestrians and tourists,

e.g., [14, 15]. Stop-detection methods, however, call for frequent

location sampling. Unfortunately, telco trajectories do not describe

the movement at the level of detail requested by those techniques.

Therefore, a different approach is needed.

In this paper, we propose a methodology for the characteriza-

tion and extraction of relevant locations in telco trajectories. The

approach is grounded on the idea that the relevance of a location is

a time-varying property holding over one or multiple time periods,

i.e., the property can be recurrent. Intuitively, a location is relevant

when it is assiduously visited for some time, or, put differently, the

location is dominant in a time period. The methodology consists

of two steps: (i) the first step is to reduce the impact of possible

noise and irrelevant locations by summarizing telco trajectories.

The summarization method is rooted in the conceptual framework

we proposed for the density-based segmentation of low-sampling

rate spatial trajectories [8]. The outcome of this phase is a set of

summary trajectories, each reporting the series of locations that are

relevant with respect to the input parameters. (ii) In the second

step, the extracted locations are further characterized, through the

specification of novel mobility indicators enabling the quantifica-

tion of movement features. In summary, the novel contributions of

the paper are:

• We present a novel methodology for the analysis of relevant

locations in telco trajectories. The methodology integrates

methods from data mining, in particular a variant of a recent

density-based trajectory segmentation method, tailored to

the discrete space, with novel research on mobility indica-

tors.

• We introduce three novel classes of mobility indicators to

measure various aspects regarding both individual and col-

lective mobility. In particular, summarization rate and lo-
cation diversity are related to the variety of user’s relevant

locations; user diversity measures the variety of visitors in

locations. Indicators are defined in terms of two diversity
metrics: Richness, and True Diversity associated with the

Shannon-Weiner diversity index.

• We experiment with the methodology on a dataset of telco

trajectories reporting the movement of ≈ 17,000 individu-

als in Milan and suburbs over approx 2 months. Moreover

we contrast our approach with frequency-based location

ranking. We find that trajectory summarization does not

compromise data utility, while significantly reducing data

size. Moreover, the mobility indicators provide novel insights

into human mobility behavior.

The rest of the paper is organized as follows. Section 2 de-

scribes the characteristics of telco trajectories and overviews the

proposed methodology. Section 3 details the trajectory summariza-

tion method, Section 4 the mobility indicators. The experimental

evaluation is reported in Section 5, while the last two sections report

a brief synthesis of the state-of-the-art and concluding remarks,

respectively.

2 REQUIREMENTS AND METHODOLOGY

A natural starting point is to describe the nature of empirical data

used for this study.

2.1 Telco data

Dataset. The CDR dataset is provided by a major mobile operator

in Italy. The dataset covers the city of Milan plus a few surrounding

districts, over a period of 67 days, from March to May 2012. The

trajectories are given at the spatial granularity of Location Area. A
Location Area is a set of one or more base stations, grouped together

by the mobile operator, and univocally identified by a label. Figure

1 illustrates a few records about phone calls, text messages and

Internet data communication. The last sample reports the trajectory

combining the records associated to a random user.

Figure 1: A fragment of CDR data
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Cells and Location Areas coordinates are not available. However,

in previous work, it has been estimated that 75% of the Location Ar-

eas in Milan are smaller than 1 square kilometer and concentrated

downtown, whilst the largest regions, over 4 square kilometers,

are in the suburbs. Figure 2 shows a fragment of the Voronoi poly-

gons used to approximate Location Areas. The set of representative

points for the Location Areas forms the telco space. We refer the

reader to [16] for further details on the dataset.

Figure 2: A fragment of the Voronoi diagram obtained from

the estimated centroids of Location Areas in Milan

Data characteristics. Abstracting from the specific dataset, telco

trajectories have peculiar characteristics:

• Sequences of identical locations. Locations are regions of

space. Therefore, as the user’s position is matched against

the closest base station, it may readily happen that consecu-

tive locations are identical. For example, a phone call started

and ended at home or in its proximity will generate two

records reporting the same location. Notably, that does not

happen in other kinds of trajectories, such as GPS and tra-

jectories of check-in data, where consecutive locations are

very unlikely identical, either for technological reasons (sig-

nal characteristics) or for the nature of movement (e.g. a

check-in is typically performed once).

• CDRs are only generated when phones are actively involved

in a voice call, text message or Internet access. Therefore

large temporal gaps exist between consecutive locations.

Moreover, trajectories can contain bursts of events, often

related to user’s activity on Internet (data upload and down-

load), possibly interleaved by long periods of inactivity. The

result is a highly inconsistent temporal frequency, which

may confound the mobility analysis [3].

• The locations reported in CDRs can be noisy because of

signal fluctuation in the network coverage [5].

2.2 Methodology

The goal is to extract from every trajectory of the reference dataset,

the locations relevant for the specific user, and then analyze the

characteristics of those locations at population scale. The prob-

lem is challenging because telco data are complex. The proposed

methodology comprises two steps: trajectory summarization and

summary trajectories analysis, the former for removing irrelevant

locations; the latter for analyzing supplementary features of rele-

vant locations, and synthesize the individual movement in a number

of indicators. The idea behind trajectory summarization is discussed

next.

Trajectory summarization. The summarization method is built

on the density-based trajectory segmentation technique [7, 8], devel-

oped for the detection of stops in noisy spatial trajectories. Density-

based trajectory segmentation partitions a trajectory of coordinated

points in a series of temporally ordered clusters of arbitrary shape

interleaved by sequences of unstructured points called transitions.
The points that do not belong to any cluster or transition are classi-

fied as local noise. These concepts can be better understood through

the example of trajectory segmentation in Figure 3.

Figure 3: Density-based segmentation of a spatial trajec-

tory [8]. The spatio-temporal points are classified as: cluster

point, noise, transition point

(a) (b)

Figure 4: (a) Telco trajectory with 6 different locations (on

space) and 12 occurrences (in space-time); (b) The rectan-

gles contains two groups of occurrences for the same sym-

bol, representing clusters along the temporal line. There are

also 3 noisy points and one transition point

As this method is shown to be robust against noise and low sam-

pling rates, at first we attempted to apply the technique over the

set of coordinated points in the telco space. The resulting clusters,

however, did not reveal any pattern of interest. We thus devised a

slightly different strategy, to replace the spatial dimension of the

locations with the symbolic dimension and therefore treat trajecto-

ries as timed strings. To convey the intuition of what that means,
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Table 1: Notation

T , T Trajectory, set of trajectories

T̂ , T̂ Summary trajectory, set of

L, l Symbolic space, location

U, u Users, user

wt (l , j),WT (l ) Weight of a symbol

δ Weight threshold

N Occurrences threshold

H Shannon-Weiner entropy

hness (R) R, Rl , Ru Richness based indexes

TD ,TDl ,TDu True diversity based indexes

J Jaccard index

Srate Summarization rate

ρ Weighted Spearman Index

consider the example in Figure 4. This example shows a telco space

of 6 locations (as points in the plane) and the trajectory of a user.

It can be seen that the trajectory contains sequences of identical

locations, meaning that the user is located in the same region at

different times while making a phone call or accessing the Internet.

As the user moves elsewhere, two cases can happen: the user re-

turns back to the previous location; or the user start frequenting

some other location. This suggests a cluster-based segmentation

performed over the temporal line with clusters only grouping oc-

currences of a unique location. Figure 4 shows two clusters, few

points of local noise and one point classified as transition. A clus-

ter is characterized by one symbol and by a temporal extent. Our

hypothesis is that a cluster identifies the occurrence of a relevant
location.

3 SUMMARIZATION PHASE

We turn to detail the summarization model and the algorithm.

3.1 Cluster model

To begin, we introduce some basic notation and convention. A tra-

jectory is a sequence of timed symbols from dictionary L. Note
that the terms “location” and “symbol” are used interchangeably.

Symbol occurrences have a timestamp.

Cluster model. A cluster designates the dominating symbol in a

time period.

The number of occurrences is a natural indicator of the signif-

icance of a symbol. For example, if we have the sequence: (a, t1)
(a, t2) (a, t3) (b, t4), the symbol a appears 3 times in the period

I = [t1, t4], thus a is dominant in I , irrespective of the presence of b.
However, sequences normally contain multiple locations, therefore,

different kinds of symbols may compete for the role of dominant

symbol. We quantify the significance of a symbol in a time period

through two measures, the number of occurrences, and the weight
of the symbol, respectively. The purpose of the weight function is

to award temporally correlated occurrences of the same symbol.

Consider a trajectory T = (l1, t1)..(ln, tn ), defined in the interval

[t1, tn ].

Definition 3.1 (Weight function). Letw(T , l, j) be the func-
tion computing the weight of symbol l ∈ L at position j ∈ [2,n] in T ,

defined as:

w(T , l, j) =

{
|tj − tj−1 |, if lj = lj−1 = l
0, otherwise

The weightW (T , l) over the whole trajectory is given by the sum of
weights at the different positions:

W (T , l) = Σkj=2w(T , l, j)

Example. Consider the following trajectory from t1 to t9 containing
9 occurrences of three different symbols, a,b, c . The trajectory is:

T = (a, t1)(a, t2)(b, t3)(c, t4)(b, t5)(b, t6)(c, t7)(a, t8)(a, t9) (1)

The symbols in T have the following weight:

W (T ,a) = |t2 − t1 | + |t9 − t8 |,W (T ,b) = |t6 − t5 |,W (T , c) = 0

Thus the symbol a has the highest weight.

Definition 3.2 (Dominance). Consider a sequence
S = (li , ti )..(lk , tk ) ⊆ T . Given N > 2 and δ ≥ 0, we say that l is
dominant in the period [ti , tk ] iff the following conditions are satisfied:

i. li = lk = l
ii. W (S, l) ≥ δ
iii. |{lj ∈ S |lj = l}| ≥ N
iv. no other symbol satisfies the above conditions in the period.

Condition (i) states that the sequence S is bounded by l ; (ii) and
(iii) specify threshold values for the number of occurrences and the

weight, respectively; (iv) the dominant symbol is unique in the time

frame of S .

Example. Consider again trajectory (1). Without loosing in gen-

erality, assume that all symbols are equally spaced in time with

|(ti−1 − ti )| = ∆, and let N = 3, δ = 2∆. It can be seen that a is

dominant in the period [t1, t9].

Definition 3.3 (Summary trajectory). A summary trajec-
tory is denoted (I1, l1)..(Ik , lk ), with (Ij , lj ) meaning:

- the symbol lj is dominant in the period Ij . We say that lj forms
a cluster in the period.

- The temporal extent Ij is maximal

Example.Consider the following sequence of symbols evenly spaced

in time, as above, with |(ti−1 − ti )| = ∆, from t1 to t17 (we omit time

for brevity) :

T = a,b,a,a,a,a,b,a,b, c,d,d, c,d,d,a,d

Let N = 4 and δ = 2∆. The trajectory is summarized in 2 units as

follows:

T̂ = ([1, 8],a)([11, 17],d) (2)

Note that summary trajectories can be straightforwardly repre-

sented using the symbolic trajectories data model in [12].

Definition 3.4. The set of symbols appearing in a summary
trajectory T̂ are the relevant locations of the trajectory

Note that summarization causes a loss of information because

not all the symbols at all times are reported. However, the same sym-

bol can appear multiple times in the summary trajectory (though

not consecutively [8]), meaning that the user can return multiple

times to the same location.
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3.2 Summarization algorithm

The algorithm extracts a series of temporally separated clusters,

from the input trajectory, based on the parameters N and δ . The
symbols of the sequence are processed one at a time. As a dominant

symbol is found, a cluster is created and becomes the active cluster.

The algorithm proceeds trying to expand the active cluster, while

monitoring at the same time the emergence of other clusters. If the

active cluster is no longer expanded, and a new symbol becomes

dominant, the active cluster is closed and appended to the output

clusters, while a new cluster is created. The process terminates

when the scan is complete.

Details. The algorithm is detailed in Figure 1. The information

relevant for the processing of symbols is kept in a hash table for

the symbols of the telco space. For every distinct symbol of the

trajectory, the tuple (n,w, l)s reports the number of occurrences,

the weight and the index of the first occurrence in the portion of

trajectory being processed. As a symbol s becomes dominant, the

hash table, except for the dominant symbol entry, is reset and the

phase of cluster expansion starts. Upon the reading of a symbol s ′,
two cases may occur: if s ′ is an occurrence of the dominant symbol,

the entry is updated while the hash table is reset again, as above.

Note that the reset operation is necessary to ensure that clusters

are temporally disjoint. If s ′ is not an occurrence of the dominant

symbol, the corresponding entry in the hash table is updated and the

input constraints are checked. Hence, if the symbol gets dominant,

the pair (I , s), with I denoting the time interval between the first and

the last occurrence of s is stored as unit of the summary trajectory.

The output of the algorithm is a list of units defined over temporally

separated time intervals. The run-time complexity is linear with

respect to the number of symbol occurrences in the trajectory.

4 SUMMARY TRAJECTORIES ANALYSIS

After summarizing trajectories, we turn to consider the second

phase of the methodology, how to characterize the locations of the

summarized space, through the specification of mobility indicators.

We recall the basic questions we want to solve:

Q1 : How many relevant regions do users visit?
Q2 : How many locations are irrelevant?
Q3 : What is the popularity of those locations?

We approach the problem by introducing a few variables or

mobility indicators, on top of the notion of population diversity
metric.

4.1 Diversity metrics

Diversity is a key concept in innumerable fields, including biology,

economy, demography, information theory. For example, diversity

quantifies the biodiversity of a geographical area, i.e. diversity of

species, the economic diversity of a region, i.e. diversity of compa-

nies with respect to their products. In general, diversity is used to

characterize populations consisting of objects of different type.

Populations of concern. We are concerned with two kinds of

populations: the set of locations (symbols) appearing in every tra-

jectory; the set of users visiting the locations of interest. We refer

Algorithm

Input: T = [(l1, t1), (l2, t2), ...] //trajectory ;

N , δ //input parameters;

Result: T̂ //summary trajectory

C=∅ //Active cluster ;

H //Hash table of |L | entries ;

for (l, t) in T do

H .UpdateEntry( l , t );

if C=∅ then
if getsDominant(l) then

C ← Cluster(l);

H .ResetNonDominantSymbols(l);

end

else

if l==dominant(C) then
H .ResetNonDominantSymbols(l);

else

if getsDominant(l) then
T̂ .Add(close(C));

C ← Cluster(l);

H .ResetNonDominantSymbols(l);

end

end

end

end

Algorithm 1: Summarization algorithm

to those populations as location and user population, respectively.

An orthogonal distinction is between populations drawn from the

original trajectories and those drawn from summary trajectories.

Location and user diversity. We refer to the diversity of loca-

tions population as location diversity. Different from the notion

of trajectory similarity, which confronts two sequences, location

diversity characterizes a single trajectory. In this sense, location

diversity can be seen as an individual mobility index. Similarly, we

call user diversity the diversity of user population.

Diversity metrics.Many different metrics are utilized to measure

the diversity of a generic population. A simple measure is given

by the count of types. This measure is called Richness (R) [13]. In
particular, the Richness of a trajectory, either summarized or not, is

given by the number of symbol types. For example, the Richness of

summary trajectory (2) is R=2. The Richness metric is simple and

intuitive, yet it does not take into account the numerosity of occur-

rences. Therefore this index can result too coarse. To illustrate the

informative value of occurrences, consider the following trajectory

T :

(I1,a)(I2,b)(I3,a)(I4, c)(I5,a)(I6,d)(I7,a)(I8, e)(I9,a) (3)

T has richness R = 5. It can be seen, however, that symbol a has

5 occurrences, while b, c, f , e , appear just once. Thus, if we rank
those locations by frequency, a results the most frequented by user
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u. Alternative rankings can be envisaged, for example based on the

cumulative temporal extent of locations (i.e., dominance time) or
even combining frequency and dominance time. The experiments,

however, show that interesting results can also be obtained by

simply ranking relevant locations by frequency. This information

can provide useful insights into the dynamics of the individual

movement.

4.2 Entropy and True Diversity

Probably, the most common diversity metric, sensitive to the nu-

merosity of occurrences, is the Shannon-Wiener index.

The Shannon-Weiner diversity index is based on Shannon en-

tropy. Given a population consisting of n types of elements, the

Shannon-Weiner index is defined as:

H = −
n∑
i=1

pi lnpi

where pi the probability that a population sample belongs to type i .

Example: consider the trajectory (3). The population consists of

9 elements of type a,b, c,d, e . The probabilities are respectively 5/9

(for symbol a) and 1/9 (for b,c,d,e). Thus, the entropy is H = 1.303.

True diversity. During the past decade, a remarkable effort has

been conducted, in particular in ecology (see Josh [13]), to clarify

the concept of diversity as opposed to that of the “diversity index”.

This concern is motivated by the lack of a unifying ground for

the concept of diversity. In particular, different diversity indexes

(e.g., Gini-Simpson, Renyi entropy) result in different measures of

diversity. In addition, the values of those indexes do not increase

linearly with the number of types, therefore comparing the diver-

sity of different populations is hard. Further, the diversity measures

are of difficult interpretation. By contrast, diversity is conceptually

straightforward and simply indicates the number of types.

This discussion has brought to the forefront the concept of True
Diversity [13, 19]. True Diversity is not another index, but rather a

theoretical framework practically enabling the conversion of the

most common diversity indexes into a unique measure of diversity,

expressed in terms of number of types. In particular, the True Di-

versity associated with a diversity index X, indicates the number of

equally common types determining the value of X. The diversity

value can be drawn by calculating the diversity index for equally-

common species (each species therefore with a frequency of 1/X)

and solving that equation for X [13]. Richness is the coarsest form
of True Diversity, insensitive to type frequences (True Diversity of

level 0). The True Diversity associated with the Shannon-Weiner

index (True Diversity of level 1) is defined as follows:

DSW = eH = e−
∑n
i=1 pi lnpi

Example: consider trajectory (3). The True Diversity associated with
Shannon-Weiner index is 3.7 (types). We can notice the difference

from the Richness measure, R=5 (types).

4.3 Mobility indicators

Finally, armed with these concepts, we turn to analyze a dataset

of telco trajectories. Let us consider the following components of

the dataset: the set of users U = {u1, ..,um }, the telco space L,
the set of non summarized trajectories T = {T1, ..,Tm }, the set of

summary trajectories T̂ = {T̂1, .., T̂m }. We introduce three classes

of mobility indicators:

Table 2: Mobility indicators

Class

Location Diversity Rl ,TDl
Summarization rate Srate
User Diversity Ru ,TDu

Location diversity. Defined at individual level, location diversity

specifies the number of different locations in a summary trajec-

tory. Depending on the metric used, the indicator is called location

Richness (Rl (T̂i )) or location True Diversity (TDl (T̂i ) = eH with H

entropy of T̂i ).

Summarization rate. Defined at individual level, it specifies the

percentage of transient locations in the original trajectory. Given

the trajectoriesTi ∈ T and T̂i ∈ T̂ , the summarization rate Srate (Ti )
is

Srate (Ti ) = 1 −
Rl (T̂i )

Rl (Ti )
(4)

Srate ≈ 0 means limited or even no summarization; Srate ≈ 1

means high summarization level.

User diversity. Defined at community level, it specifies the num-

ber of users for which a given location of a summarized space is

relevant. We consider user Richness and user True Diversity based

on Shannon-Weiner, denoted: Ru (S),TDu (S), respectively.

5 EXPERIMENTAL EVALUATION

5.1 Experimental setting

We have developed a proof-of-concept sw system to test and evalu-

ate themethodology on a real dataset. The summarization algorithm

is written in Python while the dataset is stored in a Postgres data-

base.

Dataset. The dataset consists of 17,168 telco trajectories in the

area of Milan, of various length and duration, over a period of

67 days. The total number of samples in the dataset amounts to

about 55 million points. The telco space consists of 685 locations
at the granularity of Location Area, and identified by a label. Ta-

ble 3 reports the summary statistics on the number of trajectories

(i.e. users), number of records, average and standard deviation of

trajectory length.

Table 3: Summary statistics of the dataset

# Traj # Records # Loc Avg(trj_len) Std(trj_len)

17168 54,193,257 685 3151 1650

Methodology. The analytical process consists of three steps:



Location relevance and diversity in symbolic trajectories with application to telco data SSTD ’19, August 19–21, 2019, Vienna, Austria

(i) Calibration of the summarization parameters. This oper-

ation is performed iteratively over a random subset of 100

trajectories extracted from the input dataset.

(ii) Dataset summarization. The summarization algorithm is

run over the input dataset/s using the parameters specified

at the previous stage. The result is 3 summarized datasets.

(iii) Computation of the mobility indicators over one of the

summarized datasets: summarization rate, location diversity

and user diversity.

Hw/sw platform Data summarization is performed on a Linux-

Ubuntu Server DELL T620, 362 GB Ram, data analysis on a standard

PC Windows.

5.2 Trajectory summarization rate

The goal of this first experiment is to analyze the impact of the

clustering parameters N , δ over the summarization rate. We choose

different sets of input parameters (Table 4) focusing in particular on

the temporal parameter δ , which is a peculiarity of this technique.

Table 4: Input parameters for data summarization

Summarized Dataset N δ (day)

D1 4 0.0014 ≈ 2
′

D2 4 0.01 ≈ 15
′

D3 4 0.04 ≈ 60
′

It can be seen that the value of N is fixed. To convey the intuition

of the practical meaning of the parameter setting N = 4, consider

that an individual engaged in two phone calls from the same region

satisfies the constraint N ≥ 4. Thus the requirement is not exces-

sively strict. As regards the temporal parameter, we recall that δ
indicates the minimum weight for a location to be relevant. For this

parameter, we have chosen three possible values. These values are

expressed as fractions of a day.

Summarization rate. For every summarized dataset and for every

user, we compute the summarization rate of the associated com-

pressed trajectory. We obtain three statistical distributions for the

Srate indicator. Summary statistics are reported in Table 5, while

the Complementary Cumulative Distribution Function (CCDF) for

every dataset is reported in Figure 5.

Table 5: Summary statistics for Srate , and data size

Sum. Data Mean Srate % Std Srate % Size(MB)

D1 65 7 65

D2 74 6 51

D3 84 5 44

These statistics highlight a strong correlation between summa-

rization rate and the δ parameter. There is no surprise in this, as the

stricter the temporal constraint, the less the number of relevant lo-

cations satisfying the constraint. As we can see, the summarization

rate is very high. It means that the number of different locations
appearing in a trajectory is drastically reduced (irrespective of the

number of occurrences).

Figure 5: Summarization rate for D1, D2, D3

5.3 Location diversity

In this experiment, we evaluate location diversity for the summa-

rized set D2 using both metrics Rl andTDl . Further, for comparison,

we report the location Richness for the original dataset. Summary

statistics are reported in Table 6.

Figure 6: Location diversity for D2

Table 6: Summary statistics for location diversity in D2 (vs.

Original DB)

Dataset Metric Mean Std

DB orig Rl 81 27

D2 Rl 20 7

D2 TDL 8 3

The distributions for the three location diversity measures are

shown in Figure 6. It can be seen that location Richness in the

original dataset (black plot) is significantly higher than both Rich-

ness and True Diversity in the summarized dataset. For example,

the probability of randomly selecting a trajectory with, e.g., more

50 locations (types) is very high in the original dataset, while it is

extremely low in the summarized dataset. That is, the locations that

are relevant’ are few and significantly less in number than irrele-

vant locations. We can also see, that, compared with Rl , the True
Diversity measure is lower. This means that summary trajectories

consist of locations of significantly different frequency.

Further details are provided by the histogram in Figure 7, where

users are classified in three classes, based on the value of Rl . The
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partitioning is obtained by applying the Jenks natural break classi-

fication, a method for the clustering of 1-D data. The Jenks method

is widely used in GIS platforms for the clustering of features based

on the value of a quantitative attribute
1
. Our histogram shows that

58% of users frequents a number of relevant locations ranging in

the interval [3, 8), while for 33%, the number of locations varies

[8, 12); the third class ranges in [12, 39]. Finally, Figure 8 shows an

example trajectory from the original dataset. The representative

points of the Location areas are plotted in a spatio-temporal coordi-

nate system, while consecutive points are connected by segments.

This trajectory of 39 different locations (Rl = 39), once summarized,

contains only 5 locations (Rl = 5). The mobility is thus concentrated

in few locations, as shown in the figure.

Figure 7: Natural-break classification of location diversity

based on true diversity associated to Shannon-Weiner

Figure 8: Spatio-temporal representation of a trajectory

5.4 User diversity

We turn to analyze the popularity of the relevant locations obtained

from summary trajectories.

User diversity. In general, user diversity is computed with respect

to a set of locations L′: given L′, for every location l ∈ L′, we
compute the number of different users passing by l . Since users can
pass multiple times by the same locations, it makes sense to utilize

both metrics, Ru (user Richness) andTDu (user True Diversity), the

former because it is more intuitive, the latter more detailed.

1
https://support.esri.com/en/technical-article/000006743

Figure 9: User Richness Ru in the original dataset

Figure 9 shows the user diversity (based on metric Ru ) in the

telco space L, where |L| = 685 locations. It can seen that a large

number of locations are visited by very few people. We have found

that these locations are in reality districts surroundingMilan, where,

plausibly, users are only occasionally located. We can also see that

very few locations are highly frequented, by more than 10K users.

Coherently, the variance of the variable is extremely high (Table 7).

Figure 10: User diversity in the summarized dataset D2

Table 7: Summary statistics for user diversity in D2 (vs. Orig-

inal DB)

Dataset Metric Mean Std

DB orig Ru 2033 3220

D2 Ru 1542 1023

D2 TDu 557 375

In comparison, the distribution of users over the set of relevant

locations, obtained from the union set of the summary trajecto-

ries, looks quite different. Let L′ ⊆ L the set of relevant locations

in the summarized dataset D2. Figure 10 illustrates the statistical
distribution of user diversity over L′ where |L′ | = 226 locations.

First, there is no longer evidence of locations frequented by few

people (Figure 9). That is coherent with the interpretation that

those locations are occasional, and thus irrelevant for our model.

We can also see a significant gap in themaximum number of visitors.

Plausibly, many locations, although frequently visited, are not really

relevant for a large number of people, i.e., are transient.
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Further details are provided by the histogram in Figure 11 report-

ing the Jenks-based classification of locations based on the number

of visitors. More than 50% of location are visited by less than 1327

users, while the most popular locations are visited by a number

of individuals ranging between 2740 and 5500. The percentage of

locations classified as top frequented amounts to 13%.

Figure 11: Natural-break classification of user diversity

based on richness

5.5 Relevance vs. regularity: comparison

Figure 12: Location ranking comparison; Jaccard and ρ met-

rics

In this experiment we compare the most relevant locations with

the most frequent locations.

In particular, for every user, we compare the top-k frequent

locations in the summarized dataset D2 with the top-k frequent

locations in the original, uncompressed trajectories. We denote the

two rankings as τ1 and τ2, respectively. In the former case, locations

are ranked based on the number of times they appear in the tra-

jectory. For example, in the summary trajectory (I1,a)(I2,b)(I3,a),
location a appears twice and b once. In the latter case, the ranking

is based on the fraction of days every location is visited.

Metrics. Given τ1, τ2, we want to measure how similar the two

rankings are for every trajectory. We use two different metrics. The

first is the Jaccard index: J = τ1∩τ2
τ1∪τ2 . This index is simple, yet the

comparison is only performed on the sets of values, irrespective of

the ranking.

Popular measures sensitive to ranking are the Spearman cor-

relation coefficient and Kendall τ distance that measure the total

number of pairwise inversions in the rankings. Both measures, how-

ever, apply to permutations of a unique domain, while in our case,

the top-k rankings contain different elements. More recent metrics

try to capture element weights, position weights, and pairwise dis-

tances between permutations, e.g.,[9]. For the problem at hand, we

rely on a recent metric called Weighted Spearman Rank Distance
[6].

Let q = |τ1 ∪ τ2 |. The penalty weightwi for an element i in the

lists τ1 or τ2 is computed as follows:

wi =

{
1 − 1

|xi−yi |+1
, i ∈ τ1 and i ∈ τ2

1, otherwise

where xi ,yi indicate the position of the element in τ1 and τ2,
respectively. The Weighted Spearman rank coefficient value is then

computed as:

ρw =

∑q
i=1wi

q

In the experiment we consider the complement: ρ = 1 − ρw
High correlation is found when ρw ≈ 1 (i.e., very few penalties

are assigned); low correlation when ρw ≈ 0 (i.e., many penalties

are assigned). If the two lists have no common element, ρ = 0.

Experiment. For every trajectory, we compute the indices J and
ρ for K=1,2,3,4. The average values over the dataset are reported

in Figure 12. It can be seen that the Jaccard index is high for the

first two locations (approx 0.7). It means that the top-2 locations

are both “relevant” and “regularly visited”. That makes sense. For

example, home and work are both relevant and frequent locations.

The value of ρ gives supplementary information, that the distance

between the rankings increases rapidly for K>2. This suggests that

location relevance does not equate to location frequency. This is

what we wanted to demonstrate.

5.6 Discussion

Main findings. Back to the research questions presented in the

introductory section:

• The majority of people exhibit limited mobility across re-

gions. More than 90% of the population frequent at most 12

(relevant) locations. These results are qualitatively in line

with human mobility studies (see next section).

• More than 60% of the locations reported in CDRs are irrele-

vant, with respect to the location relevance model.

• Approx 13% of the locations in the summarized dataset are

highly frequented, meaning that those locations are also

relevant for the community, not only for the single individual.

We have not found comparable results in literature.

Remarks.

• The summarization technique finds concentrations of sym-

bols in timed strings. In this sense the technique can be

generalized beyond the telco domain.

• The summary trajectories obtained from the experiments

are highly compressed, more than 70% of the location types

are removed. The summarization rate, however, is arguably

related to the spatial granularity of locations. It remains to
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analyze the summarization rate with locations at varying

resolution, e.g., at cell level.

• We find that the combined use of two diversity metrics, Rich-

ness and True Diversity associated with the Shannon-Weiner

diversity index, allows a better understanding of the data

characteristics. The former is simple and intuitive, the latter

provides further details on data distribution. The indicators

based on these diversity metrics have been shown to be

expressive and effective.

• We have found that the summarized trajectories preserve, at

least to some extent, important properties of uncompressed

trajectories. In particular, the top-2 frequented locations (the

so-called home and work) can be identified with good accu-

racy. This indirect approach to validation presents interest-

ing challenges.

• Performance. The core of the approach is trajectory sum-

marization. Summarization is, however, not scalable unless

relying on parallel and big data architectures. We leave the

architectural issue for future work.

6 RELATEDWORK

Research on human mobility patterns span many different fields,

from statistical physics, to geography, complex networks and perva-

sive computing [3]. A large body of research targets the discovery

of general rules underlying human movement and use principled

methodologies grounded on statistical methods. In that respect,

CDR datasets are key sources [3, 4]. Foundational work by Gonza-

lez et al. [11] found that human trajectories show a high degree of

temporal and spatial regularity. The regularity is mainly due to the

fact that users spend most of their time in a small number of loca-

tions. These findings are also supported by Song et al. [18], which

show a model mixing the propensity of users to return to previously

visited locations and a drift for exploration [4]. Notably, Csaji e al.

[5] show how small the number of frequently visited locations is.

They define a frequently visited location of a user as a place where

more than 5% of phone calls were initiated. The authors found that

the average number of frequently visited locations is only 2.14,

and that 95% of the users visit frequently less than 4 locations. A

related approach by Bagrow et al. [2] is to group frequently visited

locations representing recurrent mobility into a habitat. Compared

to these approaches, our methodology is different: the locations

of interest are those around which the individual gravitates for

relatively short periods, not necessarily those that are frequent

over long periods. Further we refer to a CDR dataset, also reporting

Internet communications which are frequent and bursty, and thus

more complex to handle. Qualitatively, the results we obtain are in

line with the literature in that a large percentage of people frequent

few locations, though locations have a different meaning. From the

data management viewpoint, various lines of research are related

to the discovery of locations from user’s traces, especially revolving

around the concepts of semantic trajectories, e.g. [15], trajectory

segmentation algorithms, e.g. [1, 14, 17], trajectory data mining, e.g.

[10, 20]. The work presented in this paper combines methods from

data mining with methods inspired by research on human mobility

pattern analysis.

7 CONCLUSIONS

This paper presents a two-step methodology to the discovery of

the regions of interest. A major contribution is the summarization

technique for the discovery of concentrations of symbols in timed

strings based on temporal criteria, which extends the notion of

density-based segmentation to the symbolic space. We have also

proposed three novel mobility indicators, relying on the concepts

of location and user diversity, and discussed possible extensions of

the work, especially in the direction of a scalable architecture. For

the generality of the concepts presented, the methodology can be

of interest beyond the telco domain.
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