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Although quantum coherence is a basic trait of quantum mechanics, the presence of coherences
in the quantum description of a certain phenomenon does not rule out the possibility to give an
alternative description of the same phenomenon in purely classical terms. Here, we give definite
criteria to determine when and to what extent quantum coherence is equivalent to non-classicality.
We prove that a Markovian multi-time statistics obtained from repeated measurements of a non-
degenerate observable cannot be traced back to a classical statistics if and only if the dynamics
is able to generate coherences and to subsequently turn them into populations. Furthermore, we
show with simple examples that such connection between quantum coherence and non-classicality is
generally absent if the statistics is non-Markovian.

INTRODUCTION

The distinction between the classical and the quantum
description of physical systems has been a central issue
from the birth of quantum theory itself [1, 2]. The coher-
ent superposition of states, as well as entanglement are
quantum features implying an essentially non-classical
statistics, when proper measurement procedures are de-
vised [3], typically involving the measurement of non-
local or non commuting observables. In addition, the
non-classical features of a quantum system can be singled
out by means of sequential measurements of one and the
same local observable at different times [4–16]. The evo-
lution of the system between the measurements generally
makes the multi-time statistics highly non-trivial, and a
central goal is to relate non-classicality to easily accessible
quantities with a clear physical meaning.

Quantum coherence is a resource, which allows to attain
several tasks not achievable without it. Such a basic trait
of quantum mechanics has been recently formulated in
terms of a resource theory [17–25]. Within the context of
resource theory, classicality is encoded into the notions of
incoherent states and operations: once a reference basis is
fixed, the action of an incoherent operation on an incoher-
ent state is equivalent to the result of a classical operation.
At a more practical level, the presence of coherences in the
evolution of a system is often taken in itself as a witness of
non-classicality. Think, for example, of the intense debate
about the possible role of quantum coherence to enhance
the efficiency of certain biological processes [26–29]. The
evidence of a coherent coupling between the sites of a
molecular complex certainly challenges the simple clas-
sical models based on incoherent transitions among the
sites, but it does not rule out the possibility to explain
the observed data via more elaborate classical descrip-
tions. More in general, the occurrence of coherences in
the quantum description of a certain phenomenon does
not prove by itself its non-classical nature [30–34].

In this paper, we take some relevant steps towards a
rigorous link between quantum coherence and the non-
classicality of multi-time statistics, identifying proper con-

ditions under which such connection can be established
unambiguously. Starting from the quantum description
of a system, we exploit a general property of classical
stochastic processes, namely the fulfillment of the Kol-
mogorov conditions [35, 36], to discriminate the multi-
time statistics due to repeated projective measurements
of one observable from the statistics of a classical process.
This allows us to determine in a precise way when the gen-
eration and detection of quantum coherences “irrevocably
excludes” [30] alternative, classical explanations.

In particular, we identify the key property of quantum
coherences in this context, and we prove that it is in
one-to-one correspondence with the non-classicality of the
multi-time statistics, under the assumption that the latter
is Markovian, i.e., that it satisfies the quantum regression
theorem [36–40]. As a further consequence of our analysis,
we illustrate how and to what extent non-classicality can
be related with easily detectable quantities, which can be
accessed by carefully preparing the system at the initial
time and subsequently measuring it at single instants
of time, such as those defining the Leggett-Garg type
inequalities (LGtIs) [6, 9, 13, 14]. On the other hand,
we also show that when the multi-time statistics is no
longer Markovian there is no definite connection between
its non-classicality and the quantum coherences involved
in the evolution.

MULTI-TIME PROBABILITIES AND
CLASSICALITY

Let us first recall the definition of quantum multi-time
probability distributions and the notion of classicality
used throughout the work.

Consider a quantum system associated with a Hilbert
space H and evolving unitarily in time. If we make pro-
jective measurements of the observable X̂ at the times
tn ≥ . . . t1, with discrete outcomes denoted as x, the joint
probability distribution to get x1 at time t1 and x2 at
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time t2, . . . and xn at time tn is given by [40]

QX̂n {xn, tn; . . . x1, t1} = Tr
{
PxnUtn−tn−1

. . .Px1
Ut1ρ(0)

}
,

(1)

where Utρ = UtρU
†
t and Pxρ = Π̂xρΠ̂x, with Π̂x projec-

tor into the eigenspace of x; every super-operator acts
on everything at its right. Furthermore, we wrote the
operator X̂ explicitly to indicate that the statistics will
depend on the measured observable. The collection of
joint probability distributions defined in Eq.(1) will be
the central object of our analysis; note that, on more
mathematical terms, it can be traced back to a proper
definition of quantum stochastic processes, as introduced
in [41, 42] and most recently investigated by means of the
so-called comb formalism [43] in [44].

The starting point of our analysis is then the following
question: given the quantum multi-time probabilities in
Eq.(1) as input, how can we certify or exclude that there
exists an alternative, classical way to account for them?
The Kolmogorov consistency conditions [35, 36] provide us
with a clearcut answer. In fact, whenever the probabilities
defined in Eq.(1) satisfy∑
xk

QX̂n {xn, tn; . . . x1, t1} = QX̂n−1

{
xn, tn; . . . /xk, /tk . . . x1, t1

}
∀k ≤ n ∈ N, n > 1; ∀tn ≥ . . . ≥ t1 ∈ R+; ∀x1, . . . xn (2)

the Kolmogorov extension theorem guarantees the exis-
tence of a classical stochastic process whose joint proba-

bility distributions are equal to these QX̂n . Such a process
may be rather ad-hoc or exotic, but, as a matter of fact,
every statement about the quantumness of the outcomes’
statistics and the inherently quantum origin of any re-
lated phenomenon cannot be unambiguously motivated
on the basis of probability distributions satisfying Eq.(2).
Indeed, the joint probabilities of every classical stochas-
tic process do satisfy the Kolmogorov conditions, while
this is in general not the case for the hierarchy of proba-
bilities in Eq.(1), since non-selective measurements (i.e.,
ρ 7→

∑
x Pxρ) may modify the state of a quantum system.

We can thus formalize the notion of classicality
provided by the Kolmogorov conditions, also keeping in
mind that the whole hierarchy of probabilities cannot
be reconstructed practically, as one always deals with a
certain finite number of outcomes.

Definition 1 (j-classical (jCL) multi-time statis-
tics).
The collection of joint probability distributions

QX̂n {xn, tn; . . . x1, t1} is jCL whenever the Kolmogorov
conditions in Eq.(2) hold for any n ≤ j; we say that it is
non-classical if it is not even 2CL.

Let us stress that identifying the classical statistics with
those satisfying the Kolmogorov conditions means that we
are not taking into account classical theories with invasive
measurements and, in particular, with singalling in time
[12, 15, 45], since the latter would lead to a violation of

Eq.(2) also at the classical level [44]. On the other hand,
our definition is certainly well-motivated by the ubiquity
and broad scope of classical stochastic processes.

OPEN-QUANTUM-SYSTEM DESCRIPTION
AND MARKOVIANITY

Before focusing on the possible role of quantum co-
herence in relation with the notion of non-classicality
specified above, we want to extend our formalism, by
taking into account the interaction of the measured sys-
tem with its environment, i.e., treating it as an open
quantum system [36]. Indeed, this is to ensure a realistic
description of the system at hand, including decoherence
effects which strongly affect in particular quantum co-
herence. This will also allow us to introduce a notion
of Markovianity playing a central role in our following
analysis.

Hence, let us assume that the total system, associated
with the Hilbert space H, is made up of an open system
and an environment, i.e., we have H = HS ⊗ HE , HS
(HE) being the Hilbert space associated with the system
(environment). The total system is supposed to be closed,
thus evolving via the unitary operators Ut. Crucially, since
the observables we are interested in are related to the open
system only, we focus on measurements of observables of
the form X̂ = X̂S ⊗ 1. Moreover, X̂S is assumed to be
non-degenerate and, from now on, Px denotes a projector
defined on HS only, PxρS = |ψx〉〈ψx| ρS |ψx〉〈ψx|.

Now, if we assume a product initial state, ρ(0) =
ρS(0)⊗ρE(0), with a fixed initial state of the environment,
we can express the one-time statistics of the open system
without referring to the global system and its unitary
evolution Ut. Defining the family of completely positive
trace preserving dynamical maps {ΛS(t)}t∈R+ via

ρS(t) = ΛS(t)ρS(0) = trE {Ut (ρS(0)⊗ ρE(0))} ,

with trE (trS) the partial trace over the environment (sys-

tem), one has in fact QX̂S1 (x, t) = trS {PxΛS(t)ρS(0)} .
Analogously, the conditional probabilities with respect to
the initial time can be written as:

QX̂S1|1 {x, t|x0, 0} = trS {PxΛS(t) [|ψx0〉〈ψx0 |]} . (3)

In general, such a simple characterization is not feasi-
ble for the higher order statistics: the multi-time joint
probabilities have to be evaluated by referring to the full
system, i.e., one has to replace X̂ = X̂S ⊗ 1 in Eq.(1)
and to deal with the whole unitary evolution. Only in
this way, in fact, one can keep track of the correlations
between the open system and the environment created
by their interaction up to a certain time and affecting
the open-system multi-time statistics at subsequent times
[46, 47]. An important exception to this state of affairs
is provided by the quantum regression theorem (QRT)
[36–40, 46–52]. Under proper conditions, which essen-
tially allow to neglect the effects of system-environment
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correlations at a generic time [39, 46, 47], the joint distri-

butionsQX̂Sn can be fully determined by the initial reduced
state ρS(0) and the dynamical maps ΛS(t). In the fol-
lowing, whenever we assume the QRT, we also assume
that the system dynamics is described by the Lindblad

equation [36, 53] dρS(t)/dt = LρS(t) = −i
[
Ĥ, ρS(t)

]
+

∑
k

(
L̂kρS(t)L̂†k −

1
2

{
L̂†kL̂k, ρS(t)

})
, with Ĥ† = Ĥ and

L̂k linear operators on HS ; the corresponding dynamical
maps ΛS(t) = eLt satisfy the semigroup composition law
ΛS(t)ΛS(s) = ΛS(t + s) for any t, s ∈ R+. Explicitly,
the QRT for the joint probability distributions associated
with projective measurements implies

QX̂Sn {xn, tn . . . x1, t1} = trS

{
PxneL(tn−tn−1) . . .Px1

eLt1ρS(0)
}
. (4)

The previous relation is similar to the general definition
in Eq.(1), but, crucially, now the whole hierarchy of prob-
abilities involves exclusively objects referring to the open
system only.

As shown in App.A, the QRT for a non-degenerate ob-
servable implies the following property of the conditional
probabilities:

QX̂S1|n {xn+1, tn+1|xn, tn; . . . x1, t1}

= QX̂S1|1 {xn+1, tn+1|xn, tn} ,

which is nothing else than the Markov condition [35, 36]
stating that the value of the observable at a certain time,
conditioned on its previous history, only depends on
the last assumed value. As well-known, the QRT plays
the counterpart of classical Markov processes for the
quantum multi-time statistics [41, 54, 55]; see App.A,
also in relation with the notions of quantum Markovianity
referring, instead, to the dynamics [56, 57]. We then
proceed by introducing the following definition.

Definition 2 (j-Markovian (jM) multi-time statis-
tics). The collection of joint probability distributions

QX̂Sn {xn, tn; . . . x1, t1} is jM [58] if it can be written as
in Eq.(4) for any n ≤ j, x1, . . . xn, tn ≥ . . . t1 ∈ R+; it is
non-Markovian (NM) if it is not even 2M.

The key property of Markovian processes (irrespec-
tive of whether there is or there is not an equivalent
classical description of them) is that the entire hierar-
chy of probabilities can be reconstructed from the initial

probability QX̂S1 {x0, 0} and the transition probabilities

QX̂S1|1 {x, t|y, s}. As we will see, this plays a basic role in

our analysis.

GENERATING AND DETECTING QUANTUM
COHERENCE

Here we present the property of quantum coherence
directly related to the non-classicality possibly emerging
from repeated measurements of a quantum observable.
Roughly speaking, we need to characterize the evolutions

which not only generate coherences, but can also turn
such coherences into the populations measured at a later
time.

Therefore, consider the following definition, which
refers explicitly to Lindblad dynamics; in App.E we
introduce the definition for a generic (divisible) dynamics.

Definition 3 (Coherence-generating-and-
detecting (CGD) dynamics). The Lindblad
dynamics [59]

{
Λ(t) = eLt

}
t∈R+ is CGD whenever there

exist t, τ ∈ R+ such that (here, for the sake of clarity, we
denote explicitly the map composition as ◦)

∆ ◦ Λ(t) ◦∆ ◦ Λ(τ) ◦∆ 6= ∆ ◦ Λ(t+ τ) ◦∆, (5)

where ∆ =
∑
x Px is the complete dephasing map;

otherwise, the dynamics is denoted as NCGD.

We always assume that the reference basis defining ∆
coincides with the eigenbasis of the measured observable
X̂. See Fig.1 for an illustrative sketch of the NCGD
definition.

t t
NCGD=

Dephasing

} }
Figure 1. Illustrative sketch of the property of NCGD dy-
namics: fixed a reference basis, applying dephasing at an
intermediate instant of the dynamics does not change the
state transformation, if dephasing is also applied at the initial
and final time.

Recently there has been considerable interest in inco-
herent operations [18, 19, 24, 25], which are defined for
maps only. In contrast here we investigate dynamics.
We can compare our notion with the literature by fixing
t = τ in the Definition 3, thus referring it to one map,
Λ ≡ Λ(t), which we call CGD map. There are two inter-
esting subsets of NCGD maps. One is the subset that
does not create coherence from incoherent states, which



4

is described by ∆ ◦ Λ ◦∆ = Λ ◦∆; this is the maximal
set of incoherent operations [19]. The other noteworthy
subset of NCGD maps is the coherence nonactivating set
fixed by ∆ ◦ Λ ◦∆ = ∆ ◦ Λ; here, since the populations
are independent of the initial coherence, the coherence
is not a useable resource [25]. Operations that are nei-
ther incoherent nor coherence nonactivating may still be
NCGD, if the subspaces where coherence is generated
are different from the ones detecting it (see App. D for a
detailed example).

We conclude that NCGD dynamics can be understood
by the propagated population not depending on the
generated coherences. In addition, we can provide a
direct operational meaning to (N)CGD, as ensured by
the following proposition, which is proved in App: B.

Proposition 1. Given a non-degenerate reduced ob-
servable X̂ =

∑
x x |ψx〉〈ψx| and the Lindblad dynam-

ics
{

Λ(t) = eLt
}
t∈R+ , the latter is NCGD if and only

if the conditional probabilities QX̂1|1 {x, t|x0, 0} satisfy

∀t ≥ s ∈ R+

QX̂1|1 {x, t|x0, 0} =
∑
y

QX̂1|1(x, t− s|y, 0)QX̂1|1(y, s|x0, 0).

(6)
The condition in Eq.(6) is simply the (homogeneous)

Chapman-Kolmogorov equation [36, 38, 40], which is al-
ways satisfied by a classical Markov (homogeneous) pro-
cess, but, indeed, not necessarily by a quantum one. As
we will see, the relation between NCGD and classicality
relies on Proposition 1. For the moment, let us stress
that Eq.(6) can be in principle easily checked in practice,

since the conditional probabilities QX̂1|1 {x, t|x0, 0} can be

reconstructed by preparing the system in one eigenstate
of X̂ and measuring X̂ itself at a final time t, without the
need to access intermediate steps of the evolution.

The previous proposition also allows us to connect
CGD with other easily accessible quantities, which are
already well-known in the literature. As a significant
example, let us mention the LGtIs [6, 13], which were
introduced to characterize macroscopic realistic theories,
that is, classical theories where physical systems possess
definite values (whether or not they are measured)
and such values can be accessed without changing
the state of the system. In particular, in LGtIs the
Leggett-Garg non-invasiveness requirement [4] is replaced
by an assumption which turns out to be related to
Markovianity [13]. Given a dichotomic observable
X with values in {0, 1} and the related correlation
function, which in the quantum framework is defined

as CX(t, 0) =
∑
x,x0

QX̂2 {x, t;x0, 0}xx0, the LGtI we

consider here reads |2CX(t, 0)− CX(2t, 0)| ≤ 〈X(0)〉,
with 〈X(0)〉 the expectation value of X at the initial time.
Now, since the validity of Eq.(6) is a sufficient condition
for the LGtI to be satisfied, see App.B, Proposition 1
directly leads us to the following.

Theorem 1. Given a Lindblad dynamics, the LGtI is
violated only if the dynamics is CGD.

The Theorem thus clarifies how the LGtI can be used
to witness that coherences are generated by the dynamics
and subsequently turned into populations.

QUANTUM COHERENCE AND
NON-CLASSICALITY

We are now in the position to state the main result of
our paper. In the previous section we have seen how
the NGDC property of the dynamics is related with
the Chapman-Kolmogorov composition law for the con-
ditional probabilities with respect to the initial time [see
Proposition 1]. However, if we want to establish a definite
connection between coherences and (non-)classicality, we
need to take a step further and to go beyond the one-time
statistics to access the higher orders of the hierarchy of
probabilities, since only the latter encompass the definite
meaning of classicality we are referring to.

The recalled notion of quantum Markovianity for
multi-time statistics does provide us with the wanted
link among coherences and classicality. This is shown by
the following Theorem, whose proof is presented in App.C.

Theorem 2. Given a non-degenerate reduced observable
X̂ =

∑
x x |ψx〉〈ψx| and a jM hierarchy of probabilities

QX̂n {xn, tn; . . . x1, t1}, the latter is jCL for any initial
diagonal state ρ(0) =

∑
x0
px0
|ψx0
〉〈ψx0

| if and only if

the dynamics
{

Λ(t) = eLt
}
t∈R+ is NCGD.

Theorem 2 means that if the multi-time statistics is
Markovian, the capability of a dynamics to generate co-
herences and turn them into populations is in one-to-one
correspondence with non-classicality. In other words,
Markovianity guarantees the wanted connection between
a property of the coherences, which is fixed by the dy-
namics, and the classicality of the multi-time probability
distributions. This is a direct consequence of the peculiar-
ity of Markovian processes, classical as well as quantum,
which allows one to reconstruct the higher order proba-
bility distributions from the lowest order one.

Finally, the previous Theorem also allows us to
clarify to what extent the LGtI is actually related with
non-classicality, since it directly implies the following.

Theorem 3. Given a 2M hierarchy of probabilities, the
LGtI is violated only if the hierarchy is non-classical.

For the sake of clarity, in Fig.2 we report a summary
of the theorems presented in this paper, which establish
definite connections among the notions of classicality,
quantum coherence (in particular NCGD of the dynamics)
and LGtI.
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Th. 3Th. 1

Th. 2
NCGD jClassical

LGtI
Figure 2. Implication structure of the main results of the
paper. The notion of j-classicality is given in Definition 1, j-
Markovianity in Definition 2 and the property of the evolution
of coherence named NCGD, which stands for non-coherence-
generating-and-detecting, in Definition 3; finally LGtI denotes
the Leggett-Garg type inequality [6] considered here. A Lind-
blad dynamics is always assumed.

NON-MARKOVIAN MULTI-TIME STATISTICS

In the last part of the paper, we start to explore the
general case of non-Markovian multi-time statistics. In-
deed, now the connection between quantum coherence
and the non-classicality of the multi-time statistics is no
longer guaranteed, since the higher order probabilities
cannot be inferred from the lowest order ones. Exploiting
a model which traces back to Lindblad himself [42, 60],
we show that this connection is lost even in the presence
of a simple Lindblad dynamics. Remarkably, there can
be a genuinely non-classical statistics associated with the
measurements of an observable without that any quantum
coherence of such observable is ever present in the state
of the measured system.

Consider a two-level system, HS = C2, interacting
with a continuous degree of freedom, HE = L(R), via
the unitary operators defined by U(t) |`, p〉 = ei`pt |`, p〉 ,
where {|`〉}`=−1,1 is the eigenbasis of the system operator

σ̂z and {|p〉}p∈R is an improper basis of HE . Assuming
an initial product state and a pure environmental state,
ρE(0) = |ϕE〉〈ϕE | with |ϕE〉 =

∫∞
−∞ dpf(p) |p〉, the open-

system dynamics is pure dephasing, fixed by ρ−11(t) =
ρ−11(0)k(t) with k(t) =

∫∞
−∞ dp|f(p)|2e2ipt, where ρ−11 =

〈−1| ρ |1〉. We consider projective measurements of σ̂x,
whose eigenbasis is denoted as {|+〉 , |−〉}, and then we
assume initial states as ρ(0) = p+ |+〉〈+| + p− |−〉〈−|.
In App.E we report the exact two-time probability Qσ̂x2 ,

given by Eq.(1), and the probability Qσ̂x2M one would get
for a Markovian statistics, see Eq.(4), along with the
conditions for the dynamics to be CGD and the statistics
2CL.

First, consider an initial Lorentzian distribution,
|f(p)|2 = Γπ−1/(Γ2 + (p − p0)2), so that the deco-
herence function is given exactly by an exponential,
k(t) = e2ip0te−2Γt, and the open-system dynamics is
fixed by the pure dephasing Lindblad equation [47]. Nev-
ertheless, the QRT in Eq.(4) is generally not satisfied,
not even by the two-time probability distributions, so
that the multi-time statistics is NM. The difference, also
qualitative, among the exact joint probability distribu-

tion Qσ̂x2 and the Markovian one Qσ̂x2M is illustrated in
Fig.3 a). Furthermore, one can easily see App.E that
the Kolmogorov condition for n = 2 does not hold,∑
y Q

σ̂x
2 {+, t; y, s} 6= Qσ̂x1 {+, t}. The statistics at hand is

hence non-classical. On the other hand, the corresponding
Lindblad dynamics (for p0 = 0) is NCGD: pure dephasing
on σ̂z cannot even generate coherences of σ̂x (of course,
this also implies that the corresponding LGtI is always sat-
isfied). We conclude that, despite the non-classicality of
the statistics, the coherences of the measured observable
σ̂x are not involved at all in the dynamics: at no point
in time the state of the measured system has non-zero
coherence with respect to σ̂x.

Q2
X

Q2M
X

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.40

0.45

0.50

(a)

s Γ
0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

(b)

s

Figure 3. a) Exact two-time probability Qσ̂x2 {+, t; +, s} [see

Eq.(1)] (solid black line) and 2M probability Qσ̂x2M {+, t; +, s}
[see Eq.(4)] (dashed red line) as functions of s, for a Lorentzian
|f(p)|2. The parameters are t = 1.5Γ−1, p0 = 0. b) Amount of
CGD (according to the general definition given in App.E) quan-
tified via the infinity norm, (solid, red line) and violation of the

Kolmogorov condition [i.e., |
∑
y Q

σ̂x
2 {+, t; y, s}−Q

σ̂x
1 {+, t} |]

(dashed, blue line) as functions of s, for |f(p)|2 given by
the superposition of two Gaussians. The parameters are
A1 = A2 = 1/(2

√
2π), σ1 = σ2 = σ, σ = p1 = t = 1, p2 = 2p1.

In a complementary way, we exemplify how the instants
where the multi-time statistics satisfies the Kolmogorov
conditions may coincide with instants where coherences
are generated and converted into populations. However,
we have to leave open the question of whether there is a
fully classical statistics (for any sequence of times), while
the dynamics of the coherences is non-trivial. Take an
initial distribution given by the sum of two Gaussians,
|f(p)|2 =

∑
i=1,2Ai exp

(
−(p− pi)2/(2σ2

i )
)
. Once again

one can easily see that the statistics is NM [see App.E],
but this time the dynamics is generally CGD. Neverthe-
less, the creation and detection of coherences is not in
correspondence with the non-classicality of the statistics.
In Fig.3 b), we can see that there are instants of time
where the dynamics is CGD, but the statistics is 2CL, see
also App.E; note that at these same instants of time also
the Chapman-Kolmogorov condition in Eq.(6) does not
hold. By investigation (not reported here) of the model
at hand in a wide region of parameters, we also observe
that there does not seem to be a threshold in the amount
of CGD, above which the violation of 2CL is guaranteed.

The previous examples illustrate the essential role of
Markovianity to establish a precise link between quantum
coherence, or any other dynamical property, and non-
classicality. In addition, they imply that the coherences
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themselves cannot be used as a witness of non classical-
ity, without any a-priori information about higher order
probabilities. To know whether coherences are linked to

jCL, one needs to access QX̂j to verify jM, but then jCL
can be directly checked via the Kolmogorov conditions.

CONCLUSIONS

We proved a one-to-one correspondence between the
non-classicality of the multi-time statistics associated with
sequential measurements of one observable at different
times and the quantum coherence with respect to the
eigenbasis of the measured observable itself. We pointed
out the key property of quantum coherence which is di-
rectly linked with non classicality, connecting it to the
recently developed resource theory of coherence. Further-
more, we illustrated the essential role of Markovianity
in linking dynamical properties, such as the evolution of
quantum coherence or the violation of the LGtI, to higher
order probability distributions of the multi-time statistics

and hence to (non-) classicality.
Our approach will naturally apply to several areas

where the possible quantum origin of certain physical
phenomena is under debate, such as quantum biology
or quantum thermodynamics. We plan to exploit the
results presented here to study some relevant examples
taken from these fields of research. In addition, we want
to extend our analysis to classical theories with invasive
measurements starting from the notion of signaling in
time; in particular, we think that our approach will
further motivate the investigation of the scenario in which
memory effects are present, at the level of the quantum
multi-time statistics and/or of the measurement invasive-
ness [61–63]. Finally, it will be of interest to include the
description of non projective measurements, as well as
the measurement of multiple, non-commuting observables.
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Appendix A: Quantum regression theorem and quantum Markovianity

Here we want to discuss more in detail why the QRT can be naturally seen as the quantum counterpart of the
Markov condition for the hierarchy of probabilities defined in the main text.

Now, let

QX̂k|n {xn+k, tn+k; . . . xn+1, tn+1|xn, tn; . . . x1, t1} =
QX̂k+n {xn+k, tn+k; . . . x1, t1}

QX̂n {xn, tn; . . . x1, t1}
(A1)

be the conditional probability distributions associated with the hierarchy of probability distributions defined in Eq.(1)

of the main text, referred to a reduced observable X̂ ⊗ 1 (we keep implying the subfix S for the sake of simplicity);
Eq.(A1) can be easily obtained from the general definition based on the conditional state [40], using the projectors

into the eigenspaces of X̂ ⊗ 1, which are degenerate with respect to the global space H. If we now express the right
hand side of the previous relation via the QRT, i.e., Eq.(4) of the main text, we can exploit the non-degeneracy of X̂
on HS . Because of that, for any couple of reduced super-operators A and B we have

trS {APxρS}
trS {BPxρS}

=
trS {A[|ψx〉〈ψx|]}
trS {B[|ψx〉〈ψx|]}

,

from which one can easily see that the hierarchy defined in Eq.(4) of the main text satisfies the condition

QX̂S1|n {xn+1, tn+1|xn, tn; . . . x1, t1} = QX̂S1|1 {xn+1, tn+1|xn, tn}

= trS

{
Pxn+1

eL(tn+1−tn)[|ψxn〉〈ψxn |]
}
. (A2)

The first equality in the previous equation is the Markov condition, which defines Markov stochastic processes [36, 40].
Actually, the QRT is at the basis of the definition of quantum Markov processes put forward by Lindblad in [41] (see
also the more recent definitions in [54, 55]).

On the other hand, different approaches have been followed to introduce a definition of quantum Markovianity
which can be referred to the dynamics of the open quantum systems tout-court. Indeed, the hierarchy of probabilities
in Eq.(1), or in Eq.(4), of the main text depends on the specific measurement procedure one is taking into account.
Moreover and more importantly, the measurements at intermediate times involved in that definition modify the
correlations between the system and the environment, thus modifying the subsequent dynamics of the open system
[57]. Hence, in order to assign the Markovian or non-Markovian attribute to the open system dynamics solely, different
definitions have been put forward (see the recent reviews [56, 57]), relying directly on properties of the dynamical
maps {Λ(t)}t∈R+ . Of course, the Markovianity referring to the dynamics solely and that referring to the multi-time
probability distributions are quite different concepts, since in general the one-time statistics (and the related dynamical
maps) does not allow to infer the behavior of higher order distributions [64], and then, e.g., whether the QRT holds or
not. The ‘proper’ definition of quantum Markovianity ultimately depends on the framework one is interested in. Here,
as said in Definition 2, we identify quantum Markov processes with those satisfying the QRT.

Finally, let us note that the Markov condition in Eq.(A2) implies that, also in the quantum case, the whole

hierarchy of probabilities is fixed by the initial condition and the QX̂S1|1 conditional probabilities, i.e., we have for any

x1, . . . xn, tn ≥ . . . ≥ t1

QX̂Sn {xn, tn; . . . ;x2, t2;x1, t1}=

(
n−1∏
k=1

QX̂S1|1 {xk+1, tk+1|xk, tk}

)
QX̂S1 {x1, t1} (A3)

=

(
n−1∏
k=1

tr
{
Pxk+1

eL(tk+1−tk) [|ψxk〉〈ψxk |]
})

tr
{
Px1

eLt1ρS(0)
}
,

where in the second line we used that since we are focusing on the Lindblad dynamics we have

QX̂S1|1 {x, t|y, s} = trS

{
PxeL(t−s) [|ψy〉〈ψy|]

}
= QX̂S1|1 {x, t− s|y, 0} . (A4)

Appendix B: Proof of the Proposition 1 and Theorem 1.

Before proving the Proposition 1, we need to prove the following Lemma.



9

Lemma 1. The evolution fixed by the Lindblad dynamics
{

Λ(t) = eLt
}
t∈R+ is NCGD if and only if∑

y 6=z

〈ψx̃|Λ(t)[|ψy〉〈ψz|] |ψx̃〉 〈ψy|Λ(τ) [|ψx〉〈ψx|] |ψz〉 = 0 ∀x, x̃; t, τ ∈ R+. (B1)

Proof. First note that {Λ(t)}t∈R+ satisfies Eq.(B1) if and only if ∀x, x̃; t, s ∈ R+

〈ψx̃| Λ(t) ◦ Λ(τ) [|ψx〉〈ψx|] |ψx̃〉

=
∑
y,z

〈ψx̃| Λ(t)
[
|ψy〉〈ψy| Λ(τ) [|ψx〉〈ψx|] |ψz〉〈ψz|

]
|ψx̃〉

=
∑
y

〈ψx̃| Λ(t)
[
|ψy〉〈ψy| Λ(τ) [|ψx〉〈ψx|] |ψy〉〈ψy|

]
|ψx̃〉

= 〈ψx̃| Λ(t) ◦∆ ◦ Λ(τ) [|ψx〉〈ψx|] |ψx̃〉 , (B2)

since the first and the last equalities are always valid, while the second is Eq.(B1), adding the diagonal terms on both
sides. We first prove that if {Λ(t)}t∈R+ is NCGD then the above equality holds. We can in fact rewrite the first line as∑

k,k′

〈ψx̃| |ψk〉〈ψk| Λ(t) ◦ Λ(τ)
[
|ψk′〉〈ψk′ | |ψx〉〈ψx| |ψk′〉〈ψk′ |

]
|ψk〉〈ψk| |ψx̃〉

= 〈ψx̃| ∆ ◦ Λ(t) ◦ Λ(τ) ◦∆ [|ψx〉〈ψx|] |ψx̃〉 (B3)

= 〈ψx̃| ∆ ◦ Λ(t) ◦∆ ◦ Λ(τ) ◦∆ [|ψx〉〈ψx|] |ψx̃〉
= 〈ψx̃| Λ(t) ◦∆ ◦ Λ(τ) [|ψx〉〈ψx|] |ψx̃〉 .

where in the first line we used that only the terms x̃ = k,x = k′ are non-zero, and in the third line we used that
{Λ(t)}t∈R+ is NCGD.

For the converse, we start with the assumption that the equality (B2) holds for any x, x̃, t, τ ∈ R+. The statement
then simply follows by the linearity of the propagators since ∆ is a projection onto the span of {|ψx〉〈ψx|}x.

We can now prove the Proposition 1.

Proof. Using Eq.(3) of the main text and Eq.(A4) we have that

QX̂1|1 {x, t|x0, 0} −
∑
y

QX̂1|1(x, t− s|y, 0)QX̂1|1(y, s|x0, 0)

= 〈ψx|Λ(t) [|ψx0
〉〈ψx0

|] |ψx〉 −
∑
y

〈ψx|Λ(t− s) [|ψy〉〈ψy|] |ψx〉 ∗ 〈ψy|Λ(s) [|ψx0
〉〈ψx0

|] |ψy〉 ,

so that using the semigroup composition law Λ(t) = Λ(t− s)Λ(s) and the resolution of the identity, the first term in
the previous expression can be written as

〈ψx|Λ(t− s)
[
Λ(s) [|ψx0

〉〈ψx0
|]
]
|ψx〉

=
∑
y,y′

〈ψx|Λ(t− s)
[
|ψy〉〈ψy|Λ(s) [|ψx0

〉〈ψx0
|] |ψy′〉〈ψy′ |

]
|ψx〉 ,

=
∑
y,y′

〈ψx|Λ(t− s) [|ψy〉 〈ψy′ |] |ψx〉 〈ψy|Λ(s) [|ψx0〉〈ψx0 |] |ψy′〉 ,

so that the ‘diagonal terms’ (with y = y′) cancel out with the second contribution and the violation of the homogeneous
Chapman-Kolmogorov condition is given by

QX̂1|1 {x, t|x0, 0} −
∑
y

QX̂1|1(x, t− s|y, 0)QX̂1|1(y, s|x0, 0)

=
∑
y 6=y′
〈ψx|Λ(t− s) [|ψy〉 〈ψy′ |] |ψx〉 〈ψy|Λ(s) [|ψx0

〉〈ψx0
|] |ψy′〉 , (B4)

which implies that such difference is equal to 0 for any x0, x, t ≥ s if and only if the Lindblad dynamics is NCGD, see
Eq.(B1).

Now, Theorem 1 easily follows from the following Lemma.



10

Lemma 2. Consider a dichotomic observable X̂ with values in {0, 1} and such that the conditional probabilities

QX̂1|1 {x, t;x0, 0} satisfy Eq.(6) of the main text, then the correlation function CX(t, 0) satisfies the LGtI

|2CX(t, 0)− CX(2t, 0)| ≤ 〈X(0)〉. (B5)

Proof. First note that

CX(t, 0) :=
∑

x,x0=0,1

QX̂2 {x, t;x0, 0}x ∗ x0 = QX̂2 {1, t; 1, 0} ;

since the dichotomic observable has values in {0, 1}; thus

|2CX(t, 0)− CX(2t, 0)| =
∣∣∣2QX̂2 {1, t; 1, 0} −QX̂2 {1, 2t; 1, 0}

∣∣∣
=
∣∣∣2QX̂1|1 {1, t|1, 0} −QX̂1|1 {1, 2t|1, 0}∣∣∣QX̂1 {1, 0}

=

∣∣∣∣∣∣2QX̂1|1 {1, t|1, 0} −
∑

xkk=0,1

QX̂1|1 {1, t|xk, 0}Q
X̂
1|1 {xk, t|1, 0}

∣∣∣∣∣∣QX̂1 {1, 0} , (B6)

which provides us with Eq.(B5), since 〈X(0)〉 = QX̂1 {1, 0}, while 2QX̂1|1 {1, t|1, 0} −∑
xkk=0,1Q

X̂
1|1 {1, t|xk, 0}Q

X̂
1|1 {xk, t|1, 0} is maximized by 1 for QX̂1|1 {1, t|1, 0} = 1 or QX̂1|1 {1, t|1, 0} = 0 and

QX̂1|1 {0, t|1, 0} = 1 (as seen using QX̂1|1 {1, t|0, 0} = 1−QX̂1|1 {1, t|1, 0}).

Note that Lemma 2 holds independently of whether the conditional probabilities are referring to the quantum setting
(and hence are defined as in Eq.(1) of the main text) or are directly referring to a classical theory: our proof goes
along the same line as that in [7], simply adapting it to (possibly) quantum conditional probabilities.

Appendix C: Proof of Theorem 2 and Theorem 3.

Before presenting the proof to Theorem 2, let us give the basic idea behind it. The time-homogeneous Chapman-
Kolmogorov equation holds for any classical time-homogeneous Markov process, that is, Markovianity and classicality
imply Chapman-Kolmogorov; note that the time-homogeneity of the statistics holds, as a consequence of (2)M and
the Lindblad dynamics [see Eq.(A4)]. For the converse, we can exploit the definition of jM, which provides us with
a notion of Markovianity beyond classical processes, i.e., for any quantum statistics. As said, the Markov property
(both for classical and nonclassical statistics) connects the multi-time probability distributions to the initial one-time

distribution and the conditional probability QX̂1|1; as a direct consequence of this, it is then easy to see that, if

the Chapman-Komogorov equation holds, jM directly turns into jCL. Theorem 2 thus follows from the equivalence
established in Proposition 1.

Explicitly, both the Theorems 2 and 3 directly follow from the following Lemma.

Lemma 3. Given a non-degenerate observable X̂ =
∑
x x |ψx〉〈ψx| and a jM hierarchy of probabilities, the latter

defines a jCL statistics for any initial diagonal state ρ(0) =
∑
x0
px0
|ψx0
〉〈ψx0

| if and only if Eq.(6) of the main text

holds for the quantum conditional probability QX̂1|1 {x, t|x0, 0}.

Proof. “Only if”: the statistics is, in particular, 2CL, so that we have, for any x, t ≥ s ∈ R+,∑
y

QX̂2 {x, t; y, s} = QX̂1 {x, t} .

But then, using the definition of conditional probability QX̂2 {x, t; y, s} = QX̂1|1 {x, t|y, s} ∗Q
X̂
1 {y, s} and, crucially, the

time-homogeneity guaranteed by the 2M and the Lindblad equation (see Eq.(A4)), we can write∑
y

QX̂1|1 {x, t− s|y, 0} ∗Q
X̂
1 {y, s} = QX̂1 {x, t} .
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Using the Kolmogorov condition, this time w.r.t. the initial value, and the definition of conditional probability, the
previous relation gives

∑
x0

QX̂1 {x0, 0}

(∑
y

QX̂1|1 {x, t− s|y, 0} ∗Q
X̂
1|1 {y, s|x0, 0} −QX̂1|1 {x, t|x0, 0}

)
= 0,

which directly provides us with the Chapman-Kolmogorov composition law in Eq.(6) of the main text, since,
by assumption, we can choose any initial diagonal state ρ(0) =

∑
x0
px0
|ψx0
〉〈ψx0

|, and then any distribution of

QX̂1 {x0, 0} = px0
.

“If”: Eq.(6) of the main text for the quantum conditional probability QX̂1|1 {x, t|x0, 0} means that

tr
{
PxeLt [|ψx0

〉〈ψx0
|]
}

=
∑
xk

tr
{
PxeL(t−s) [|ψxk〉〈ψxk |]

}
tr
{
PxkeLs [|ψx0

〉〈ψx0
|]
}

∀x0, x; t ≥ s ∈ R+,

which, replaced in Eq.(A3), implies Eq.(2) of the main text [s 7→ tk − tk−1, x0 7→ xk−1, t 7→ tk+1 − tk−1, x 7→ xk+1], so
that if the hierarchy is jM it will also be jCL; note that this is the case also for k = 1 since we assume the initial state
to be diagonal in the selected basis.

Theorem 2 hence directly follows from Lemma 3 and Proposition 1, while Theorem 3 follows, e.g., from Lemmas 2
and 3.

Appendix D: Difference between the various types of incoherent operations

Let us start by presenting a very simple example of an evolution which is CGD, i.e., which can generate and detect
coherence [see Eq.(5) of the main text] and which, in addition, allows us to connect such property with nonclassicality
in an easy way. Hence, consider a two-level system, initially in the eigenstate |−1〉 of σ̂z (where {|`〉}`=−1,1 is the

eigenbasis of the operator σ̂z) and evolving under the unitary operators

U(t) = e−iσ̂yt. (D1)

Indeed, this evolution can generate coherence with respect to σ̂z at an intermediate time, i.e., there are times t1 > 0
when | 〈±1|U(t1) |−1〉 〈−1|U†(t1) |∓1〉 | 6= 0, and can convert such coherence into populations, i.e. there are times t2
such that 〈1|U(t2 − t1) |∓1〉 〈±1|U†(t2 − t1) |1〉 6= 0, which implies that the condition in Eq.(5) of the main text is
satisfied: the evolution is CGD; see also Fig.4 a). An important point of this example is that, since the evolution is
unitary, the QRT is automatically guaranteed [i.e, Eq.(1) and Eq.(4) of the main text coincide], so that the two-time
statistics associated with measurements of the observable σ̂z is simply given by

Qσ̂z2 {1, t2;x, t1} = |〈1|U(t2 − t1) |x〉|2 |〈x|U(t1) |−1〉|2 ,

with x = −1, 1. It is then easy to see that the CGD condition implies
∑
xQ

σ̂z
2 {1, t2;x, t1} 6= Qσ̂z1 {1, t2} =

|〈1|U(t2) |−1〉|2, so that the multitime statistics is nonclassical (see Definition 1 in the main text): the coher-
ence generated at intermediate time t1 and turned into population at time t2 directly implies a violation of the
Kolmogorov condition, i.e., nonclassicality. This is not surprising, since, by virtue of the Theorem 2, we know that
nonclassicality and CGD of the system’s (nondegenerate) observables coincide, whenever the QRT holds. If this is not
the case, the correspondence between nonclassicality and CGD is no longer guaranteed, as we will exemplify in the
next Section.

As mentioned in the main text, it is trivial to see that the maximally incoherent operations (MIO) [19] and the
coherence nonactivating maps [25] are subsets of the NCGD maps. What we show here is that they are strict subsets,
by giving an explicit example. Consider the completely positive and trace preserving map acting on a basis of linear
operators on C2 as

Λ :

(
1 0
0 0

) (
0 1
0 0

)
(

0 0
1 0

) (
0 0
0 1

) 7→
(

0.996 −0.003i
0.003i 0.004

) (
0.003 0.99

0 −0.003

)
(

0.003 0
0.99 −0.003

) (
0.004 0.003i
−0.003i 0.996

) . (D2)
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The map is NCGD, while it both creates coherence and also is able to detect it. Explicitly:

‖∆ ◦ Λ ◦ Λ ◦∆−∆ ◦ Λ ◦∆ ◦ Λ ◦∆‖∞ = 0, (D3)

‖Λ ◦∆−∆ ◦ Λ ◦∆‖∞ = 0.003, (D4)

‖∆ ◦ Λ−∆ ◦ Λ ◦∆‖∞ = 0.003, (D5)

where ‖Λ‖∞denotes the infinity norm of the 4× 4 matrix given by the action of Λ on the basis of operators on C2;
recall that the infinity norm is the maximum among the absolute sums of the columns. Indeed, the same is true for
applying the map multiple times: the NCGD condition remains fulfilled, while the above norm increases to over 0.12,
as shown in Fig. 4 c).

(a) (b) (c)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

0.12

Figure 4. a) Example of an evolution fixed by Eq.(D1) and by a possible measurement of σ̂z at the intermediate time t1 = π/4:
starting from |−1〉, the system’s state follows the solid blue line until t1. If no measurement is performed, the system will then
follow the dotted blue line, completely turning the coherence with respect to σ̂z generated at t1 into the population |1〉 at
t2 = π/2. On the other hand, if a measurement at t1 is performed, the state will be projected to |1〉 or |−1〉, with probability
1/2 each; after that, the state will continue its evolution along the solid orange or blue line, respectively, so that a second
measurement at time t2 = π/2 would still project the system’s state to |1〉 or |−1〉, with equal probabilities 1/2. But then, we

clearly have 1/2 =
∑
x=±1Q

σ̂z
2 {1, π/2;x, π/4} 6= Qσ̂z1 {1, π/2} = 1, i.e., the multitime statistics is nonclassical. b) Evolution of

seven states on the XZ plane of the Bloch sphere under 1 to 300 applications of a map (see Eq. (D2)) that is NCGD, but neither
coherent nor coherence nonactivating. c) Norm of the difference between the coherent map in Eq. (D2) and the incoherent
one (see Eq. (D4)) as a function of the number of applications. In this example this is the same as the norm of the difference
between the coherence nonactivating and the actual evolution (see Eq. (D5)).

Appendix E: More details on the examples of NM multi-time statistics

In this Section, we provide the explicit calculations for the examples discussed in the main text. Let us emphasize
that the model taken into account is very similar to the photonic system considered in [65] to realize experimentally the
transition between a Markovian and a non-Markovian dynamics, and further exploited in [47] to investigate the link
between the dynamical notions of Markovianity and the QRT for system’s observables (rather than for the projective
maps resulting from ideal selective measurements, as done here). There, the open system is given by the polarization
degree of freedom of a photon, while the continuous degree of freedom represents the frequency of the photon, ω ∈ R+.
Here, instead, we are taking into account a continuous degree of freedom, say the particle’s momentum, which can
take on negative values, p ∈ R, for a reason which will become clear in a moment. Furthermore, essentially the same
model (with coupling to position) has been studied in the context of dynamical decoupling in [66].

Before proceeding, let us introduce more general definitions, which can be applied also to the non-Lindblad dynamics
encountered in the following examples (in particular, in the second one, referring to an initial momentum distribution
given by the superposition of two Gaussians). To do so, we need the notion of propagators of the dynamics, that is,
the maps Λ(t, s) (not necessarily completely positive, neither positive) such that

Λ(t) = Λ(t, s)Λ(s), (E1)
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for any t ≥ s ∈ R+, so that ρ(t) = Λ(t, s)[ρ(s)]. For the sake of simplicity, we assume that the dynamics is divisible
[57], i.e., that the propagators can be defined as in Eq.(E1) for any t ≥ s ∈ R+; indeed, this is always the case for a
Lindbladian dynamics, where the propagators are defined by Λ(t, s) = Λ(t− s, 0) = eL(t−s).

We say that the multi-time statistics is j-Markovian if it satisfies the QRT theorem with respect to the dynamical
maps and the corresponding propagators, i.e., if

QX̂Sn {xn, tn . . . x1, t1} = trS {PxnΛ(tn, tn−1) . . .Px1
Λ(t1)ρS(0)} , (E2)

for any n ≤ j, x1, . . . xn, tn ≥ . . . t1. Of course, this definition reduces to that in Eq.(4) of the main text if we consider a
Lindblad dynamics. The validity of the QRT and a Lindblad dynamics ensure that the statistics is time-homogeneous,

i.e., that the two-time conditional probabilities satisfy QX̂1|1 {x, t|y, s} = QX̂1|1 {x, t− s|y, 0}. Hence, we can see the

definition in Eq.(E2) as the general definition of Markovian, possibly time-inhomogeneous statistics, while the definition
in Eq.(4) of the main text corresponds to the Markovian time-homogeneous case.

Finally, we say that a (divisible) dynamics {Λ(t)}t∈R+ , with propagators Λ(t, s) is CGD whenever there exist instants
t ≥ s ≥ r ∈ R+ such that

∆ ◦ Λ(t, s) ◦∆ ◦ Λ(s, r) ◦∆ 6= ∆ ◦ Λ(t, r) ◦∆; (E3)

once again, this reduces to the definition given in the main text [Eq.(5)] for a Lindblad dynamics.

1. General expressions

Given the unitary

U(t) |`, p〉 = ei`pt |`, p〉 (E4)

(where, as in the main text, {|`〉}`=−1,1 is the eigenbasis of the system operator σ̂z), one can straightforwardly evaluate

the exact expression of the multi-time joint probability distribution, as given by Eq.(1) of the main text, as well as that
provided by the QRT, see Eq.(E2), i.e., the one which is given by a Markovian description of the multi-time statistics.
For the sake of simplicity, we focus on the two-time statistics and we take as initial condition ρ(0) = |+〉 〈+|⊗|ϕE〉 〈ϕE |,
with |ϕE〉 =

∫∞
−∞ dpf(p) |p〉 (

∫∞
−∞ dp|f(p)|2 = 1). It is useful to define k(t) =

∫∞
−∞ dp|f(p)|2e2ipt. Now, let us also fix

that both the first and the second outcomes of the measurement of σ̂x yield the same result, +, so that we have

Qσ̂x2 {+, t; +, s} = trE{〈+| U(t− s)[|+〉 〈+| U(s)[|+〉 〈+| ⊗ |ϕE〉 〈ϕE |] |+〉 〈+|] |+〉}

=
1

4
<
[

1

2
k(t− 2s) +

1

2
k(t) + k(t− s) + k(s) + 1

]
, (E5)

where < denotes the real part. Moreover, since the map and the propagator of the above dynamics are given by

Λ(t)[ρ] =

(
ρ−1−1 k(t)ρ−11

k∗(t)ρ1−1 ρ11

)
(E6)

and

Λ(t, s)[ρ] = Λ(t) ◦ Λ−1(s)[ρ] =

(
ρ−1−1

k(t)
k(s)ρ−11

k∗(t)
k∗(s)ρ1−1 ρ11

)
, (E7)

we get, see Eq.(E2),

Qσ̂x2M{+, t; +, s} = 〈+|Λ(t, s)
[
|+〉 〈+|Λ(s)[|+〉 〈+|] |+〉 〈+|

]
|+〉

=
1

4
<
[

1

2
k(t)

(
k∗(s)

k(s)
+ 1

)
+
k(t)

k(s)
+ k(s) + 1

]
. (E8)

This means that the Markovian description implies Qσ̂x2 {+, t; +, s} = Qσ̂x2M{+, t; +, s}, i.e.,

<
[

1

2
k(t)

k∗(s)

k(s)
+
k(t)

k(s)

]
= <

[
1

2
k(t− 2s) + k(t− s)

]
; (E9)

indeed, a violation of this condition will be enough to prove that the statistics is NM.
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In order to check whether the Kolmogorov condition in Eq.(2) of the main text holds for the two-time probabilities,
we need also to evaluate the other two-time probability distribution

Qσ̂x2 {+, t;−, s} = trE{〈+| U(t− s)
[
|−〉 〈−| U(s)[|+〉 〈+| ⊗ |ϕE〉 〈ϕE |] |−〉 〈−|

]
|+〉}

=
1

4
<[

1

2
k(t− 2s) +

1

2
k(t)− k(t− s)− k(s) + 1], (E10)

as well as the one-time probability

Qσ̂x1 {+, t} = trE{〈+| U(t)[|+〉 〈+| ⊗ |ϕE〉 〈ϕE |] |+〉}

= <[
1

2
+

1

2
k(t)]. (E11)

Hence, setting K±(t, s) ≡ Qσ̂x2 {±, t; +, s}+Qσ̂x2 {±, t;−, s} −Q
σ̂x
1 {±, t}, the statistics is 2-CL if and only if

K+(t, s) =
1

4
<[k(t− 2s)− k(t)] = 0; (E12)

note that, since Qσ̂x2 {−, t;±, s} = Qσ̂x1 {±, s} −Q
σ̂x
2 {+, t;±, s}, one has K−(t, s) = −K+(t, s).

Finally, since we are interested in the connection between classicality and coherences, we want to check whether the
dynamics is (N)CGD. With ∆ defined with respect to the eigenbasis of σ̂x, we have

‖(∆ ◦ Λ(t, s)−∆ ◦ Λ(t, s) ◦∆)Λ(s)∆‖∞ =
2 |= [k(s)]= [k∗(s)k(t)]|

4|k(s)|2
(E13)

where = denotes the imaginary part. For the sake of simplicity, we set r = 0 [compare with the general definition in
Eq.(E3)], which is in any case enough to detect CGD.

2. Lorentzian distribution

As said in the main text, for a Lorentzian distribution

|f(p)|2 =
Γ

π(Γ2 + (p− p0)2)
, (E14)

the decoherence function simply reduces to

k(t) = e2ip0te−2Γt. (E15)

The latter implies a Lindblad pure dephasing dynamics [47],

d

dt
ρ(t) = −ip0 [σ̂z, ρ(t)] + Γ (σ̂zρ(t)σ̂z − ρ(t)) , (E16)

from which we can read the physical meaning of the two parameters, p0 and Γ defining the Lorentzian distribution in
this context.

In particular, for p0 = 0, we get

Qσ̂x2 {+, t; +, s} =
1

4

(
1 + e−2Γs + e−2Γ(t−s) +

1

2
e−2Γt

)
+

1

8
(cosh (2Γ(t− 2s))− sinh (2Γ|t− 2s|)) , (E17)

while the QRT gives us

Qσ̂x2M {+, t; +, s} =
{
〈+| eL(t−s) [|+〉〈+| eLs [|+〉〈+|] |+〉〈+|

]
|+〉
}

=
1

4

(
1 + e−2Γs

) (
1 + e−2Γ(t−s)

)
. (E18)

As shown in Fig.1a) of the main text, these two functions are clearly different, implying that the present statistics is
NM, since the QRT is not satisfied [67]. In addition, the statistics is not even classical, as follows from∑

y

Qσ̂x2 {1, t; y, s} 6= Qσ̂x1 {1, t} , (E19)
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which can be easily shown since one has

∂s
∑
y

Qσ̂x2 {+, t; y, s} = Γsgn {t− 2s} e−2Γ|t−2s|,

which is of course different from 0, thus guarantying the inequality in Eq.(E19). For p0 = 0 the model is furthermore
NCGD: Eq.(5) of the main text does not hold for any choice of times and states spanned by the reference basis. As we
have here pure dephasing in the z-direction, coherences in the x-direction cannot be even generated. This example
clearly shows how the non-classicality of a NM statistics might be fully unrelated even from the presence itself of
quantum coherence in the dynamics.

The main reason behind that is, as said, the irreducible complexity of the hierarchy of joint probability distributions,
so that two-time probabilities cannot be generally inferred from one-time probabilities, even if the latter follow a
homogeneous (Lindblad) dynamics. Note that for the same model, if we consider as initial state of the system the

totally mixed state, ρ(0) = (|+〉〈+|+ |−〉〈−|)/2, one has Qσ̂x2 {x, t; y, s} = Qσ̂x2 {x, t− s; y, 0}, which then satisfies the

QRT, so that the statistics is 2M. Nevertheless, in this case the three-time probability distribution Qσ̂x3 would not
satisfy the QRT [42, 60] (essentially, the state after the first selective measurement plays the role which was played by
the initial state above): one has here a statistics which is 2M, but not 3M. We also note that, for a generic initial
environmental distribution, such choice of ρ(0) would lead to a 2CL, but not 3CL statistics. We conclude that one
cannot generally go from one-time probability distributions to two-time ones; and even if one can go from one- to
two-time probabilities, the three-time probability distributions might not be deducible from the lower ones. Finally, we
leave as an open question whether it is possible to find more elaborated examples where the statistics can be jCL
(jM), but not j + 1CL (j + 1M) for a generic j. In any case, the whole hierarchies introduced in Definitions 1 and 2
of the main text are useful, both for the practical reasons mentioned in the main text (one might be able to access
j-time, but not j + 1-time statistics) and because one might want to quantify different degrees of non-classicality
(non-Markovianity) in the multi-time statistics: even if the statistics is neither jCL nor j + 1CL (jM nor j + 1M), it
can be of interest to speak of a stronger violation of, say, jCL rather than j + 1CL (jM rather than j + 1M), e.g., by
comparing the different deviations from the corresponding Kolmogorov conditions in Eq.(2) of the main text (the QRT
in Eq.(4) of the main text).

3. Superposition of Gaussians

For a distribution given by the sum of two Gaussians

|f(p)|2 =
∑
i=1,2

Aie
− (p−pi)

2

2σ2
i (E20)

where A1 = 1√
2πσ(1+Aθ)

, A2 = AθA1 and σ1 = σ2 = σ, the decoherence function reduces to

k(t) =
e−2σ2t2

Aθ + 1

[
e2ip1t +Aθe

2ip2t
]
. (E21)

For the specific choice of parameters Aθ = σ = p1 = t = 1, p2 = 2p1, the functions Qσ̂x2 {+, t; +, s} and Qσ̂x2M {+, t; +, s}
are, in general, different. The present statistics is thus NM, as shown in Fig.5 a).

In order for the statistics to be 2-CL, the following condition must hold

K+(t, s) =
1

4
<[k(t− 2s)− k(t)]

=
e−2σ2(t−2s)2

4(Aθ + 1)
[cos(2p1(t− 2s)) +Aθ cos(2p2(t− 2s))]

+
e−2σ2t2

4(Aθ + 1)
[cos(2p1t) +Aθ cos(2p2t)] = 0. (E22)
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Figure 5. a) Comparison of the two-time probability distribution as a function of the first time s, for the exact formula (solid,
black line) and the 2M statistics (dashed, red line). b) Violation of 2CL (K+(t, s)) (dashed, blue line) and violation of NCGD
(N(t, s)) (solid, red line). For both plots the environmental distribution is given by a sum of two Gaussians, with (in arbitrary
units) Aθ = σ = p1 = t = 1, p2 = 2p1, s ∈ [0, t].

Furthermore, the model is CGD if [see Eq.(E13)] the quantity

N(t, s) :=
2 |= [k(s)]= [k∗(s)k(t)]|

4|k(s)|2
(E23)

=
1

2(1 +Aθ) |e2isp1 +Aθe2isp2 |2
(
e−2t2σ2

[sin(2sp1) +Aθ sin(2sp2)]

× [sin(2(s− t)p1) +Aθ(Aθ sin(2(s− t)p2)− sin(2tp1 − 2sp2) + sin(2sp1 − 2tp2))]

)
is different from 0.

As can be seen in Fig.5 a), for the considered choice of parameters the dynamics is NM at instants different from
s = 0.29. This allows for the existence of scenarios where the possible classicality of the statistics is unrelated to the
absence of coherences. As a matter of fact, at the specific instants s = 0.21 and s = 0.79, where QRT is not satisfied,
one finds that K+(t, s) = 0 and N(t, s) 6= 0, implying that 2-CL holds together with CGD (Fig.5 b)). By investigation
(not reported here) of the model at hand in a wide region of parameters, we also observe that there does not seem to
be a threshold in the amount of CGD, above which the violation of 2CL is guaranteed.
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