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ABSTRACT
Gravitational waves can be emitted by accretion discs if they undergo instabilities that
generate a time varying mass quadrupole. In this work we investigate the gravitational
signal generated by a thick accretion disc of 1M� around a static super-massive black
hole of 106M�, assumed to be formed after the tidal disruption of a solar type star.
This torus has been shown to be unstable to a global non-axisymmetric hydrodynamic
instability, the Papaloizou-Pringle instability, in the case where it is not already ac-
creting and has a weak magnetic field. We start by deriving analytical estimates of
the maximum amplitude of the gravitational wave signal, with the aim to establish
its detectability by the Laser Interferometer Space Antenna (LISA). Then, we com-
pare these estimates with those obtained through a numerical simulation of the torus,
made with a 3D smoothed particle hydrodynamics code. Our numerical analysis shows
that the measured strain is two orders of magnitude lower than the maximum value
obtained analytically. However, accretion discs affected by the Papaloizou-Pringle in-
stability may still be interesting sources for LISA, if we consider discs generated after
deeply penetrating tidal disruptions of main sequence stars of higher mass.

Key words: gravitational waves – accretion, accretion discs – hydrodynamics – black
hole physics

1 INTRODUCTION

Tidal disruption events (TDEs) occur when a star wanders
too close to a super-massive black hole (SMBH), getting dis-
rupted by the tidal field of the hole. After the disruption,
roughly half of the star circularizes and forms a disc-shaped
structure that accretes onto the SMBH, while the other half
escapes on hyperbolic orbits with different orbital energies.
These events are important electromagnetic sources, in UV-
optical (e.g. Gezari et al. 2008, Komossa et al. 2008, Gezari
et al. 2009, Gezari et al. 2017), in X-rays (e.g. Bade et al.
1996, Komossa & Greiner 1999, Komossa & Bade 1999,
Greiner et al. 2000), in radio (e.g. Zauderer et al. 2011) and
also in γ-rays (e.g. Bloom et al. 2011, Levan et al. 2011 and
Cenko et al. 2012). The bolometric lightcurve of these events
is expected to decrease with time as t−5/3, like illustrated by
Rees (1988) and Phinney (1989). However, recent studies
(Lodato et al. 2009, Guillochon & Ramirez-Ruiz 2013) have
shown that this trend is reached only at late times and that
lightcurves in specific bands might show a different evolu-
tion (e.g. Lodato & Rossi 2011).

? E-mail: martina.toscani@unimi.it

The mechanism of accretion onto the central object may
affect the formation of the accretion disc. In particular there
are three parameters that we need to consider in this pro-
cess: the circularization time, tcirc, the viscous accretion time
tvisc and the radiative cooling time tcool (Evans & Kochanek
1989, Bonnerot et al. 2016). If tvisc > tcirc, the accretion pro-
cess starts only when the disc is formed. In this scenario, we
have two possibilities: if tcool < tcirc the disc is thin, otherwise
the disc is thick, so we have a torus (see, e.g., Lodato 2007).

If we consider a thick disc, the evolution of the sys-
tem may undergo a global non-axisymmetric hydrodynamic
instability, that is the Papaloizou-Pringle instability (PPI),
first described by Papaloizou & Pringle (1984). For this in-
stability to arise, the torus needs to have a shallow spe-
cific angular momentum profile and a well-defined inner and
outer radii. Recently, Nealon et al. (2018), using initial con-
ditions motivated by Bonnerot et al. (2016), have shown that
a torus formed after a TDE may be susceptible to the PPI,
with a frequency close to the Keplerian one and a radius
approximately two times the pericenter of the initial stellar
orbit. Additionally, for very low initial magnetic fields, they
also suggested that the PPI may drive super-Eddington ac-
cretion onto the SMBH faster than the magneto rotational

© 2019 The Authors

ar
X

iv
:1

90
8.

02
96

9v
1 

 [
as

tr
o-

ph
.H

E
] 

 8
 A

ug
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/227965658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Toscani et al.

instability (MRI). Around the same time, magnetohydro-
dynamic simulations of PPI susceptible tori by Bugli et al.
(2018) illustrated that the presence of magnetic fields is able
to quickly suppress the PPI.

The PPI generates a time dependent density distri-
bution, that leads to the emission of gravitational waves
(GWs). These waves might be detected by the Laser Inter-
ferometer Space Antenna (LISA)1.To date, the GW signal
from unstable accretion discs formed during TDEs has not
been investigated yet. Anyway there are few studies on the
GW emission associated with the phase of tidal disruption
of the star. Some of these are based on full general relativis-
tic hydrodynamics codes (see, e.g., Haas et al. 2012, Anni-
nos et al. 2018), other on smoothed particle hydrodynamics
(SPH) codes (Rosswog et al. 2009, Kobayashi et al. 2004).

Haas et al. (2012) focus on ultra-close TDEs of white
dwarfs (WDs) by a rotating intermediate-massive black hole
(IMBH). They assume to have a 103M� BH, with 1M� WD
of radius 6000 km on a parabolic orbit around it, at an aver-
age distance from us of 30 kpc. They find that the signal is a
burst, with an amplitude ≈ 10−18 and frequency of few Hz.
Moreover, they illustrate that the BH spin does not affect
the GW signal in a significant way. Anninos et al. (2018)
perform simulations of 0.2−0.6M� WD on a parabolic orbit
around a static 103 − 104M� BH, assuming that the source
is at an average distance of 10 Mpc. They derive that the
GW strain is ≈ 10−22 and the frequency of the GW signal is
10−2−10−1 Hz, so these sources might be possible interesting
targets for LISA.

On the other side, Rosswog et al. (2009), with an SPH
code, have simulated WDs tidally disrupted by IMBHs ob-
taining the same conclusions as Anninos et al. (2018). In-
stead Kobayashi et al. (2004), using an SPH code imple-
mented with general relativity, have investigated the GW
signal emitted during TDEs of main sequence (MS) and he-
lium stars around a SMBH (both static and rotating) of mass
106M�, showing that it might be detectable by LISA, in the
case of strong encounters and assuming that these events
take place at a distance ≤ 20 Mpc. They have also shown
that the signal is in most part insensitive to the particular
equation of state and structure of the star. Moreover, they
have calculated that, for a solar type star, the peak value
for the GW strain is around ∼ 10−22, in the case of static
SMBHs, while it is approximately one order of magnitude
higher, ∼ 10−21, in the case of rotating holes. They also have
studied the signal analytically, approximating the star with
a point-mass particle, and they have found that the numer-
ical results are well described by this approximation. In the
field of GW astronomy, all these works are important since
underline the basic features of the GW emission associated
with TDEs. In particular they all show that the strain as-
sociated with the phase of disruption has a similar shape,
independent on the particular structure of the star. In the
context of this paper, where we focus on disruption of solar
type stars from SMBHs, the most relevant work is that of
Kobayashi et al. (2004), of which our work can be seen as
an extension to describe what happens after the disruption
itself.

As for the GW signal generated by the PPI instead,

1 https://www.elisascience.org

Kiuchi et al. (2011) have illustrated that the PPI in thick
self-gravitating tori may produce a detectable signal for GW
detectors, both at high frequencies (100 ∼ 200 Hz) in the case
of stellar BHs, and in the low frequencies range (mHz) in the
case of SMBHs. For this latter case, which is the one that
LISA might observe, they have in particular considered a
system formed by a SMBH of 106M� and a thick accretion
disc of ∼ 105M�, system that they assume it might have
formed by the collapse of a super-massive star. The orbital
radius of the torus is ≈ 107 km and the system is at a dis-
tance of 10 Gpc. They have made both a numerical study,
with a general relativistic grid code, and an analytical study,
finding that, if they assume to have the PPI with one over-
density, the GW signal peak could reach 10−19 − 10−18, with
a frequency of ∼ 10−3 Hz. While Kobayashi et al. (2004) have
found a good agreement between the numerical and the an-
alytical results for the GW signal from the stellar disruption
phase, for the signal generated by an unstable accretion disc
Kiuchi et al. (2011)’s analytical estimates are one order of
magnitude higher than their numerical results.

In this paper we link the previous work of Kobayashi
et al. (2004) and Kiuchi et al. (2011), since we investigate
the GW signal from tori formed by TDEs of MS stars. In
particular, we start from 1M� TDE remnant unstable to the
PPI, as shown in Nealon et al. (2018), with no self-gravity,
around a non-rotating 106M� SMBH. We study this signal
both through an analytical and a numerical analysis.

The structure of the paper is the following. In Section 2
we illustrate the theory behind our work, i.e. TDE physics,
the main features of the PPI and the basics of GW emission.
In Section 3 we describe our analytical estimates, while in
Section 4 the numerical study. In Sections 5 and 6 we discuss
our results and give our conclusions respectively.

2 THEORY

2.1 Tidal disruption physics

Here we consider a standard scenario for stellar disruptions
by a SMBH, where a solar type star of mass M∗ and radius
R∗ is on a parabolic orbit around the hole of mass Mh. Let
us suppose to work under the impulse approximation, i.e.
the interaction between the star and the SMBH takes place
only at the pericenter of the stellar orbit, rp. To determine
the minimum approach at which the star can be tidally dis-
rupted, we have to equate the gravitational acceleration on
the stellar surface due to the self-gravity, gsg,

gsg =
GM∗

R2
∗
, (1)

where G is the gravitational constant, to the tidal field ex-
erted on the star, gt,

gt ≈
∂gh
∂r

R∗ = −
∂

∂r

(
GMh

r2

)
R∗ =

2GMh
r3 R∗, (2)

where gh is the gravitational acceleration due to the presence
of the central object and r is the distance between the centre
of mass of the star and the SMBH. Comparing equation (1)
and (2), we obtain that the two fields are comparable at a
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distance rt, called tidal radius, given by

rt = R∗

(
Mh
M∗

)1/3
'7 × 1012r∗

(
M6
m∗

)1/3
cm, (3)

where we have introduced the dimensionless parameters
m∗, r∗ and M6, such that M∗ = m∗M�, R∗ = r∗R� and
Mh = M6 × 106 M�.

Thus, the disruption of the star occurs when rp ≤ rt.
However, for deeply penetrating events, the star may be di-
rectly swallowed by the hole. This occurs when

rp ≤ 2rg=
2GMh

c2 = 3M6 × 1011 cm, (4)

where rg is the gravitational radius of the SMBH and c is
the speed of light. To quantify how close the star is with
respect to the SMBH and consequently the strength of the
disruption, we define a dimensionless parameter, called the
penetration factor β, as

β =
rt
rp
. (5)

Given the two constraints above, that rp ≤ rt and that rp >
2rg, β can vary in the range

1 ≤ β.20 × r∗M
−2/3
6 m−1/3

∗ . (6)

2.2 The Papaloizou Pringle instability

The PPI was first studied by Papaloizou & Pringle (1984)
and Blaes & Glatzel (1986), but a more simplified descrip-
tion of the PPI is covered in Pringle & King (2007). They
consider a cylindrical flow of an incompressible fluid, with no
z-dependence, that satisfies the Rayleigh criterion. In par-
ticular, they assume that this fluid has a rotational velocity,
Ω, given by

Ω(R) = Ω0

(
R0
R

)2
, (7)

where R is the cylindrical radius, R0 is a reference radius
and Ω0 is the angular velocity at R0. The solution of the
perturbation equation for this flow is given by (e.g. Blaes &
Glatzel 1986, Pringle & King 2007)

(ω + mΩ−)2 + mg−/R−
(ω + mΩ+)2 + mg+/R+

=

(
R+
R−

)2m (ω + mΩ−)2 − mg−/R−
(ω + mΩ+)2 − mg+/R+

, (8)

where ω is the mode frequency, m is the azimuthal wavenum-
ber, R− and R+ are the inner and outer radii respectively and
g is the effective gravity

g(R) = GM

R2
0

[
R0
R

]3 [
1 − R

R0

]
. (9)

Equation (8) tells us that the growth rate of the unstable
modes is independent of the mass of the torus, instead de-
pending on the geometry of the torus as defined by the inner
and outer boundaries.

One of the solutions of equation (8) is an unstable grow-
ing mode; this takes place when there is an exchange of
angular momentum and energy between a negative-energy
wave, that travels from the inner edge of the torus (where
ω < Ω), with a wave that travels from the outer edge (where
ω > Ω), in the opposite direction with respect to the lo-
cal medium but with the same angular phase speed of the

negative-energy wave. This redistribution of momentum and
energy happens at the corotation radius Rcor, defined as the
radius where ω = Ω. When this happens, we have the PPI.
In particular Nealon et al. (2018) have found that, for the
thick torus they have studied, the fastest unstable growing
mode corresponds to m = 1 and manifests as one over-dense
region forming in the torus.

2.3 Gravitational wave emission

In general relativity (GR), Einstein’s equations, under the
weak field approximation, become a wave equation plus a
gauge condition2 (Einstein 1918)

�h̄µν = −
16πG

c4 Tµν, (10)

∂µ h̄µν = 0, (11)

where Tµν is the stress-energy tensor and h̄µν is defined as

h̄µν = hµν −
1
2
ηµνh, (12)

where hµν are small perturbations of the Minkowskian met-
ric ηµν and h is trace of hµν . If we assume that (e.g. Buo-
nanno 2007)

(i) the internal motion of the source is slow compared to
the speed of light,

(ii) the self gravity of the source is negligible,
(iii) the signal is detected at a distance D very far from

the source,
(iv) the Transverse-Traceless gauge holds, where only two

components of hµν are independent,3

the solution of the wave equation may be written as

hTT
i j (t, xxx) '

4G
Dc4Λi j,kl(nnn)

∫
|x′ |<s

d3x′Tkl

(
t − D

c
+

x′ · nnn
c

; x′
)
,

(13)

where Λi j,kl is the TT-operator, s is the typical size of the
system and nnn is the direction of propagation of the wave.
With the previous assumptions, it is possible to write a mul-
tipole expansion of hTT

i j ; however, the monopole term is zero

(due to the conservation of mass of the system), and the
dipole term is also zero (due to the linear momentum con-
servation). For these reasons, the first non-vanishing term
in the expansion is the quadrupole term and so, after some
algebraic passages (see, e.g., Buonanno 2007), equation (13)
reads

hTT
i j (t,n) =

1
D

2G
c4 Λi j,kl(n) ÜM

kl

(
t − D

c

)
. (14)

where ÜMkl is the second time derivative of the moment of
inertia of the system, Mkl , defined as

Mkl =
1
c2

∫
d3x T00xk xl, (15)

with T00/c2 = ρ.
As shown in Buonanno (2007) and Maggiore (2007),

2 The Greek indices range from 0 to 3 (the four space-time coor-

dinates), while the Latin indices from 1 to 3 (only spatial coordi-
nates).
3 In the TT gauge we have h̄i j=hi j .
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from equation (13) we can derive the expression for a wave
propagating in any direction. In particular, if we consider a
wave along the zzz direction, we get the following expressions
for h11 � h+ and h12 � h× (see Maggiore 2007)

h+ =
G

Dc4 ( ÜM11 − ÜM22), (16)

h× =
2G
Dc4

ÜM12. (17)

The GW strain can be calculated as

h ≈ (h2
+ + h2

×)1/2. (18)

To make a simple estimate of the GW amplitude asso-
ciated to a source, we can approximate equation (18) using
the expression given in Thorne (1987),

h ' 1
D

4G
c2

Ekin
c2 , (19)

where Ekin is the kinetic energy of the moving source. In or-
der to see if this peak value may be detectable by LISA, we
need to compare it with the sensitivity curve of the instru-
ment. This curve (see Amaro-Seoane et al. 2017) is calcu-
lated in terms of the characteristic amplitude of the noise,
hn, as a function of the frequency, f . In particular, hn( f ) is
defined as (Moore et al. 2014, Maggiore 2018)

hn( f )2 = f Sn( f ), (20)

where Sn( f ) is the noise spectral density. The quantity re-
lated to the GW signal that we compare to hn( f ) is the char-
acteristic amplitude of the signal, hc, defined as (Maggiore
2018)

|hc( f )|2 = 4 f 2 | h̃( f )|2, (21)

where h̃( f ) is the Fourier transform of the strain.

3 METHOD

In this work we study the GW signal associated to 1M�
TDE remnant, simulated by Nealon et al. (2018), unstable
to the PPI with m = 1. They assume that the remnant is not
magnetised and that the star disrupted by the SMBH is a
solar type star, with β = 5, as in Bonnerot et al. (2016). They
study the evolution of the system for 20 orbits, although
the growth of the unstable PPI modes is expected to be
suppressed by the MRI before this.

Our work is divided into two parts: an analytical study,
to have some first estimates of the expected signal, and a
numerical study, to derive the GW strain associated to the
torus.

3.1 Analytical study

For the analytical estimates, we proceed as follows. The PPI
involves a displacement of a mass ≈ 1M�, moving roughly
on a Keplerian orbit around the SMBH at a distance ≈ 2rp
(see Bonnerot et al. 2016). A similar argument has been
made by Kobayashi et al. (2004), when considering the GW
signal of the disruption phase. Indeed, the GW signal as-
sociated to the stellar disruption can be estimated through
equation (19), expressing Ekin as

Ekin =
1
2

M∗v2
kepl =

1
2

M∗
GMh

rp
, (22)

where vkepl is the Keplerian velocity of the star. Thus, sub-
stituting equation (22) into equation (19), we find that

h =
rs∗rgh
Drp

, (23)

where rs∗ is the Schwarzschild radius of the star and rgh is
the gravitational radius of the hole. We expect the frequency
of the signal to be, approximately, the Keplerian frequency

f =
1

2π

(
GMh

r3
p

)1/2

. (24)

In particular, if we consider a MS star, for which it is rea-
sonable to assume that mass and radius scales in the same
way, i.e.

M∗
M�
≈ R∗

R�
⇒ m∗ ≈ r∗, (25)

we have that equation (23) and equation (24) become

h ≈ 10−22 × β
(

D
16 Mpc

)−1
m1/3
∗ M2/3

6 , (26)

f ≈ 10−4 Hz × β3/2m−1
∗ . (27)

To compare these estimates with the LISA sensitivity
curve, we need to derive hc through equation (21). It can be
shown (Maggiore 2018) that this equation may be expressed
in a more useful way as

hc ≈ hN1/2
c , (28)

where Nc is the number of cycles spent in the detector
bandwidth [ fmin, fmax] (Maggiore 2007). Since our source is
monochromatic, we can approximate this quantity as

Nc ≈ f τ, (29)

where τ is the emission time (Colpi & Sesana 2017).
With our analytical estimates we are assuming the raw

strain of the GWs to be the same in the case of TDEs and
unstable accretion discs. However, we see that this is not true
for hc, since in the case of TDEs (as explored by Kobayashi
et al. 2004) we have a burst signal with a duration that is
simply the inverse of the frequency. This means that, in this
scenario, Nc ≈ 1. Instead for the signal emitted during the
PPI, that we focus on here, we have to consider a period of
time of ≈ 20 orbits, which implies Nc is higher. As for the
GW frequency, we expect this to be the Keplerian frequency,
as in the case of TDEs, but multiplied by the PPI azimuthal
number m. However, since for our system m = 1, the expected
frequency is just the Keplerian one.

3.2 Amplitude of the maximum strain

If we consider the disruption of a solar type star by a non-
rotating 106M� hole, we know from equation (6) that β

varies in the range

1 ≤ β.20. (30)

Since, for a given star, the GW strain and frequency depend
only on β, we have that these quantities range from h≈10−22

and f≈10−4 Hz, for β = 1, to h≈2× 10−21 and f≈9× 10−3 Hz,
for β = 20. From the GW strain it is possible to derive hc

MNRAS 000, 1–9 (2019)
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Figure 1. Analytical estimates of the GW characteristic strain

for a MS star disrupted by a non-rotating 106M� hole, with

Nc ≈ 57 (see equations 28 and paragraph 3.2), used to conjec-
ture the characteristic strain of a TDE remnant unstable to the

PPI for 20 orbits. This signal is compared with respect to the

sensitivity curve of LISA (black curve, with the solid one being
the instrumental sensitivity curve + 4 year foreground, while the

dashed one being the instrumental noise). We consider three dif-
ferent values of stellar mass, M∗ = 1, 10, 100M� in blue, grey and

green respectively. The red triangle represents the signal from a

source which corresponds to the torus simulated by Nealon et al.
(2018) (i.e. a torus resulting from a TDE with β = 5). The pene-

tration factor β increases from left to right. The signal gets above

the sensitivity curve when βcr ≈ 6, 15, 45 for M∗ = 1, 10, 100M�
respectively.

through equation (28), where the number of cycles is given
by (see equation 29)

Nc ≈ 57. (31)

We obtain this number considering that the torus simulated
by Nealon et al. (2018) shows the PPI at a frequency which
is the Keplerian frequency of the star tidally disrupted (so
calculated at rp), while the torus is located around 2rp. So
τ is 20 times the period at 2rp. The peak signal expected
from this source with respect to the LISA sensitivity curve
is illustrated in figure 1, where we have that the black curve
is the sensitivity curve of the instrument, while the blue
dots stand for the signal from a 1M� TDE remnant. The
parameter β increases from left to right. We show with a red
triangle the case simulated by Nealon et al. (2018), which
has a characteristic strain and a frequency given by

hc ≈ 4 × 10−21, f = 10−3 Hz. (32)

The signal goes above the sensitivity curve of LISA for β &
6. To find this critical value of β, βcr, we infer from the
plot the frequency at which the signal intersects the LISA
sensitivity curve, and then we derive βcr using equation (27),
considering m∗ = 1. Therefore, the case simulated by Nealon
et al. (2018) appears not to be visible by the interferometer.

It is interesting to extend these calculations for a larger
range of stellar masses. So, we investigate the signal from
MS stars in the interval 1 ≤ m∗ ≤ 100. However we have to

consider, that, increasing m∗ also increases the minimum β

that is still in the frequency range visible to LISA, since, as
we can see from equation (27), we have

βmin =

(
fmin

10−4 Hz

)2/3
m2/3
∗ . (33)

Also in figure 1, we have plotted the signal for m∗ = 10, 100
(grey and green respectively), where β increases from left to
right. For m∗ = 10, we have considered 5 ≤ β ≤ 92, while
for m∗ = 100 we have 22 ≤ β ≤ 430. In particular, we have
that the signal overtakes the instrument sensitivity curve for
βcr ≈ 15 if m∗ = 10, and βcr ≈ 45 if m∗ = 100.

It is interesting to note that for each mass the signal
which corresponds to the highest value of β is at a frequency
of ≈ 9×10−3 Hz, which is indeed approximately the frequency
of the innermost stable orbit for a hole of 106M�. This can
be also seen from equation (27), from which we derive that
the maximum frequency, fmax, is independent on m∗ and is
given by

f . fmax = f [βmax] ' 9 mHz M−1
6 , (34)

where βmax = rt/2rgh.
From these simple, order of magnitude estimates of the

process, it seems that the TDE of a solar type star by a static
106M� hole may be detectable by LISA, when we consider
high values of β. However, we have to consider three im-
portant simplifications that probably make our calculations
overestimate the real value:

(i) not all of the stellar mass is involved in the PPI, i.e.
the amplitude of the PPI perturbations is < 1;

(ii) the torus is not located at 2rp but it is spreading out;
(iii) other effects, such as the MRI, would quench the PPI

after a few orbits (see section 6), reducing the number of
cycles Nc.

Thus, it is reasonable to expect that our analytical anal-
ysis overestimates the GW strain associated with the torus.
So it makes sense to assume that the strain associated with
the PPI, hPPI, can be written as

hPPI = ξh, (35)

where ξ is a factor that varies in the range (0,1]. To quantify
the effect of the assumptions listed above and find ξ we have
thus performed a numerical study described in Section 4.

4 NUMERICAL STUDY

We have repeated the simulation of Nealon et al. (2018):
using the PHANTOM code, we simulate a 1M� torus of
N = 5 × 106 particles and we require the cross section pa-
rameter, d, to be

d =
(r+ − r−)

2r0
= 1.15, (36)

where r0 = 0.5 AU≈2rp, rp being the pericenter of the Bon-
nerot et al. (2016)’s simulation. r0 is the distance of the
maximum density of the torus. First of all, we relax the par-
ticles in order to reduce numerical artefacts due to the fact
that they are set on a grid, then we set the torus in a fixed
Keplerian potential and we add m = 1 density perturbation

MNRAS 000, 1–9 (2019)



6 M. Toscani et al.

Figure 2. GW waveforms plotted with respect to time t, expressed in years, along the zzz direction of propagation. On the left panel we
plot hPPI

+ (t), that reaches the peak value (in magnitude) of ∼ 2 × 10−24 between 1 × 10−3 yr and ∼ 2 × 10−3 yr. On the right panel we plot

hPPI
× (t), that reaches the peak value of ∼ 4 × 10−24 between 1 × 10−3 yr and ∼ 2 × 10−3 yr.

to have the PPI. As in Nealon et al. (2018) we also only im-
plement viscosity in order to capture shocks. The simulation
runs for ∼ 20 orbits, and each period T is given by

T =
2πr3/2

0√
GMh

= 3.5 × 10−4 yr. (37)

As in Nealon et al. (2018), during the first 3 orbits an over-
density develops in the torus that orbits with the Keplerian
frequency. The PPI continues to grow until 5th-6th orbits,
when the over-density reaches its peak and a shock has de-
veloped, which spreads from the inner to the outer radii.
Then the overdensity remains beyond this and the shock
decreases.

Since we are interested in deriving h+, h× and h associ-
ated with the system, we need to discretize equations (16)
and (17). We start by discretizing the momentum of inertia
of the system, introduced with equation (15), as

Mkl =

∫
d3xρxk xl =

∫
dmxk xl ⇒ Mkl =

∑
a

maxka xla, (38)

where a is the index that runs over the number of particles
and ma is the mass of the a-th particle. Here we are only using
the motion of the star material to calculate the GW signal
(this is justified in appendix A). Since in the simulation we
use same mass particles, we can write ma = m and so we have

Mkl = m
∑

a
xka xla. (39)

Then we estimate the derivative of equation (39) numerically
using central differencing

ÜMkl
j =

Mkl
j+1 − 2Mkl

j + Mkl
j−1

∆t2 , (40)

where j is the index related to time. Finally we substitute
ÜM11, ÜM22 and ÜM12 into equations (16) and (17).

4.1 Numerical results

We numerically derive hPPI
+ , hPPI

× from the SPH simulations
for different directions, where the superscript ‘PPI’ stands
for the strain measured from the simulation. In particular in
figure 2 we show hPPI

+ (left) and hPPI
× (right), calculated for

the wave propagating in the zzz direction, that is the direction

Figure 3. GW strain, hPPI(t), plotted with respect to time t,

expressed in years. The signal reaches the peak value of ∼ 4×10−24,
two orders of magnitude lower than the analytical estimates of

equation (26), between ∼ 1 × 10−3 yr and ∼ 2 × 10−3 yr.

perpendicular to the stellar orbit. Both waveforms reach the
peak between ∼ 1× 10−3 yr and ∼ 2× 10−3 yr, that is around
the fifth and sixth orbit, when the overdensity is stronger
(see Nealon et al. 2018), and in particular the peak value for
the + polarization is lower than the one of the × polarization
by a factor ∼ 2.

In figure 3 we plot the strain of the wave hPPI (see equa-
tion 19) with respect to the time t in years, along the di-
rection of propagation zzz. It is interesting to note that the
peak value is ∼ 4 × 10−24, which is two orders of magnitude
lower than the expected analytical estimate of ∼ 5 × 10−22

for the raw strain, shown in equation (26). So for the torus
formed after a TDE of a solar mass star, disrupted by a
static 106M� hole, with β = 5, we have that ξ ∼ 10−2 and so

hPPI = 10−2h. (41)

If we assume that the same scaling factor holds also for dif-
ferent β and for different stellar masses, we can extrapolate
our results by shifting down by 10−2 the signals shown in
figure 1. Thus, the expected signal would be visible only
for M∗ ' 10M� and for values of β higher than βcr defined
above.
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Figure 4. Strain hPPI plotted with respect to the time for dif-
ferent resolutions. From bottom to top: 105 (green), 106 (blue),

5 × 106 (red) and 9 × 106 (pink) particles. It is possible to see the

convergence from 5 × 106 particles.

4.2 Resolution test

We have run the same simulation with different resolutions.
In particular we have used 105, 106, 5× 106 and 9× 106 par-
ticles. For each simulation we plot the strain of the wave
with respect to the time, as shown in figure 4. From this
plot, it seems that, already with 5 × 106 particles, there is
convergence. In particular the peak of the strain is in simi-
lar position for the two highest resolutions. The curve cor-
responding to 9 × 106 particles has only been run for long
enough to demonstrate convergence. We thus regard our es-
timates from the simulation to be robust.

5 DISCUSSION

According to our analytical study, the maximum peak value
associated to 1M� remnant disrupted by a static 106M�
hole, with β = 5, is just under the sensitivity curve of LISA.
However, if we increase β, the signal becomes visible to the
interferometer (β & 6). Similar results can be obtained also
for all the stars in the range 1 ≤ m∗ ≤ 100, but, while increas-
ing m∗, we have to check that the GW frequency remains in
the range accessible to LISA.

The estimates made for the raw strain are similar to the
ones in Kobayashi et al. (2004). However we need to consider

that hc is increased by a factor N1/2
c ≈ 7.5. In fact, since the

GW signal of a TDE is a burst signal, we have that Nc ≈ 1,
which means hc ≈ h. On the contrary, for the GW signal as-
sociated to the PPI in thick accretion discs, which is emitted
on a longer time interval (in our system, 20 orbits), we have
hc ≈ 7.5h.

As for the numerical study, we show that the GW strain
derived numerically from a 3D SPH simulation, performed
in a classical frame, is two orders of magnitude lower than
the analytical expectation

hPPI = 10−2h. (42)

This difference is due to the assumptions that we have
made for our analytical analysis. First of all, the derivation
of the strain is made for a tidally disrupted star, which is
approximated by a point mass particle. Instead, the real sys-
tem is made of a torus, that is spreading out due to the PPI.

For this reason, considering the disc as a point where all the
mass is located is not precise enough. Moreover, with our
analytical study, we assume that all the total gas mass of
the disc, since it is enclosed in the particle, undergoes the
PPI, but in the real physical system in general only a part
of the mass is involved. This is another feature that we are
neglecting in the first part of our study.

It is interesting to compare the results we obtain numer-
ically with the ones of Kiuchi et al. (2011). In contrast to
our work, they show that their numerical results are one or-
der of magnitude lower than the analytical estimates (figure
4 of Kiuchi et al. 2011), not two like in our case. However
their study present some differences with respect to ours
that may justify this discrepancy. First of all, they consider
a disc much more massive, formed in a completely different
scenario. In particular, the torus-SMBH mass ratio is bigger
than in our case, which implies that it is reasonable to expect
a significant contribution to the GW signal also from the BH.
Then, they consider a self-gravitating torus. Self gravity is
not a requirement of the PPI, since this instability can oc-
cur in any torus that is not accreting. However, self-gravity
plays an important role in the formation of clumps of matter
inside the torus, that are the sources of the GWs. Moreover,
we also need to consider that for sources with a non negli-
gible self-gravity, it is not clear that the derivation made in
paragraph 2.3 still holds (see Buonanno 2007). For detailed
discussions about the role of self-gravity in relativistic discs
see Korobkin et al. (2011) and Mewes et al. (2016). Finally
they use a grid code with GR. Kobayashi et al. (2004) have
shown that for TDEs with low β, GR does not change the
estimates of GW emission in a significant way. However, this
could be different in the case of accretion discs, which are
very massive (as in Kiuchi et al. 2011) and for this reason
have a non-negligible interaction with the SMBH.

6 CONCLUSIONS

In this work we have studied the GW signal associated with
the PPI in a thick disc, with a shallow specific angular mo-
mentum profile and an inner and outer radii well defined.
This disc has just resulted from the TDE of a 1M� star
around a non rotating SMBH of 106M�, with β = 5.

First of all we have made some analytical estimates of
the maximum amplitude, to see if the signal could be above
the LISA sensitivity curve. From this study we have found
that the signal might be visible for discs with masses in
the range [1M�, 100M�], for high values of β, in particular
β & 6 for 1M�, β & 15 for 10M�, and β & 45 for 100M�.

Then we have performed a numerical 3D SPH simula-
tion, using the PHANTOM code, and compared the numer-
ical results with the previous estimates. We have found that
the numerical maximum strain is two orders of magnitude
lower than the analytical one. This lowering can be justified
considering that, during our analytical analysis, we neglect
the disc is spreading out due to the PPI, and that not all
the disc mass is involved in the instability.

It is important to remember that in our simulation we
do not consider magnetic fields. The inclusion of magnetic
fields from the beginning could suppress the GW emission
or even avoid it, according to the particular structure of the
disc after circularization. In this regard, Bugli et al. (2018)
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have illustrated that the MRI can allow an initial formation
of the PPI, but the disc needs to already show a dominant
m = 1 mode. The final m = 1 mode present in Bonnerot
et al. (2016), that justifies the perturbation in our model as
in Nealon et al. (2018), may not occur if magnetic fields are
included a priori.

In conclusion, our numerical study suggests that this
source could still be detectable by LISA, if we consider tori
with masses in the range [10M�, 100M�], resulting after
deeply penetrating TDEs.
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APPENDIX A: THE CONTRIBUTION OF THE
BLACK HOLE TO THE GRAVITATIONAL
WAVE SIGNAL

In equation (38), we calculate the GW signal of the system
only taking into account the contribution of the torus and
not of the hole. This can be explained in the following ways.

First of all we can approximate the system SMBH-torus
as a binary system where we have that the total mass of the
system, M = Mh + Md, where Md is the mass of the disc,
can be approximated with the mass of the black hole, since
we have that Mh is between 106 and 104 times the mass
of the torus, if we consider tori with masses in the range
[1M�, 100M�]. The reduced mass of the system, defined as

µ =
MhMd

Mh + Md
, (A1)

is approximately equal to the mass of the disc, for the same
reasons above. So it is reasonable to say that the position of
the centre of mass of the system corresponds to the position
of the black hole, since the black hole is much more massive
than the torus. These considerations suggest that the mass
of the black hole is not a significant factor in the amplitude of
the GWs, and as such we do not consider it in our derivation
of equation (38).

A more formal way to show that the SMBH does not
contribute to the GW signal emission in our study, is the
the following. In the centre of mass frame, we have that

Mhr1 ≈ Mdr2, (A2)

where r1 and r2 are the displacements from the centre of
mass of the hole and the disc, respectively. If we want to
derive the moment of inertia of the black hole we have

Mhr2
1 = Mdr2

2

(
Md
Mh

)
. (A3)

In particular, if we assume Mh = 106M� and Md = 1M�, we
have that the moment of inertia of the hole becomes

Mhr1 = 10−6Mdr2
2 , (A4)
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while if Md = 100M� we have

Mhr1 = 10−4Mdr2
2 . (A5)

The above illustrates that the GW signal emitted by the
SMBH is negligible with respect to that emitted by the ma-
terial in the disc. Hence when we calculate the GW signal,
we only consider the mass in the disc.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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